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ABSTRACT

The prediction of DNA Binding proteins and their classification into six major classes is one of
the most important problems in the biological world. Many previous algorithms have been
developed to solve this intricacy. But none of them has been able to provide a reliable method.
The previous methods used a much complex method for prediction ie. from its 3-dimensional
structure. It proved out to be a time consuming and a costly method with a lot of limitation, A
large number of data are constantly being generated, thanks to several genome-sequencing
projects throughout the world. However, the gap between the growth rate of biological sequences
and the capability to characterize experimentally the roles and functions associated with these
new sequences is constantly increasing. This results in an accumulation of raw data that can lead
to an increase in our biological knowledge only if computational characterization tools are
developed. The family of DNA-binding proteins is one of the most populated and studied
amongst the various genomes ofbacteria, archea and eukaryotes. Understanding the molecular
details ofprotein-DNA interactions is critical for deciphering the mechanisms of gene regulation,

We focus here on the annotation of novel protein as DNA/ Non-DNA Binding and ifit is a DNA

Binding protein, then its classification into six major classes.




CHAPTER 1

INTRODUCTION
What are DNA Binding Proteins?

DNA Binding Proteins are those proteins that comprise many DN A Binding domains and thus
have a specific or general affinity to DNA.A DNA Binding domain includes any protein motif
that binds to double or single stranded DNA with affinity to a specific sequence or set thereofor
a general affinity to DNA.DNA Binding domains are included in many proteins involved in
regulation of gene expression(including transcription factors), proteins involved in the packaging
of DNA within the nucleus(such as histones), nucleic acid dependent-polymerases involved in
DNA replication and transcription or any of many accessory proteins which are involved in these
processes. Proteins that bind DNA and are involved in replication or transcription do so in a
sequence specific way. Transcription factors are dimers when active, ie., they bind to DNA upon
dimerisation and are inactive in the monomeric form Dimerisation is a regulatory mechanism of
controlling transcription factor activity. There are three common features most DNA Binding

proteins have in common:

1. The major groove is the binding site of proteins through alpha-helices;the dimension of
the major groove is 12 A wide and 8A deep

2. The minor groove of B-DNA is 5A wide, 8A deep and is generally too narrow to fit
entire alpha-helices but is recognized beta-sheet structures of TATA-box binding
proteins.

3. Sequence specific DNA Binding proteins generally do not disrupt the base pairs ofthe

DNA, but do distort backbone conformation by bending the double helix.




Fig 1: Showing DNA Binding protein Interaction
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Classification of DNA Binding Proteins

1. Helix-Turn-Helix (HTH):

In proteins, the helix-turn-helix (HTH) is a major structural motif capable of binding DNA. It is
composed of two o helices joined by a short strand of amino acids and is found in many proteins

that regulate genc expression. It should not to be confused with the helix- loop- helix domain.

Its discovery was based on similarities between the genes for Cro, CAP, and A repressor, which
share a common 20-25 amino acid sequence that facilitates DN A recognition. In particular,
recognition and binding to DNA is done by the two o helices, one occupying the N-terminal end
of the motif, the other at the C-terminus. In most cases, such as in the Cro repressor, the second
helix contributes most to DNA recognition, and hence it is often called the "reco gnition helix". It
binds to the major groove of DN A through a scries of hydrogen bonds and various Van der
Waals interactions with exposed bases. The other a helix stabilizes the interaction between
protein and DNA, but does not play a particularly strong role in its recognition. This motif is
found in hundreds of DN A Binding proteins including tryptophan repressor, catabolite activator
\ protein (CAP), octamer transcription factor-1{Oct-1) and heat shock factor (HSF). Products of
homeotic genes contain a homeo domain which is a special form of the helix-turn- helix motif
The helix- turn-helix motif is the common DNA recognition motif in prokaryotes. The motif
resembles that ofan EF-hand described in calmodulin. The F-helix is a recognition helix and the
side chains give the specificity of binding. Sometimes more than one protein competes for the
same sequence. The protein binds to a 22bp site, which consists of two groups of crucial bases,

separated by one group of 10 bases (one turn of a DNA helix).Cyclic AMP (cCAMP - Magenta in

the structure) binds to the protein, which then binds to DNA, activating transcription.

11
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Fig 2: Helix-Turn-Helix DNA Binding Protein

2. Helix-Loop-Helix(HLH):

Helix- Loop-Helix is characterized by two alpha helices connected by a loop. Transcription
factors including this domain are dimeric, each with one helix containing basic amino acid
residues that facilitate DNA binding. In general, one helix is smaller and due to the flexibility of
the loop, allows dimerization by folding and packing against another helix. The larger helix
typically contains the DN A-binding regions. HLH proteins typically bind to a consensus
sequence called an E-box, CANNTG. The canonical E-box is CACGTG (palindromic), however
some HLH transcription factors bind to non-palindromic sequences, which are ofien similar to
the E-box. The loop in the HLH motif is flexible enough to permit folding back so that the two
helices can pack against each other, that is, the two helices lie in planes that are parallel to each
other. The helix-loop-helix (HLH) DNA-binding domain consists of a closed bundle of four

helices in a lefi-handed twist with two crossover connections. The HLH domain directs
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dimerisation, and is juxtaposed to basic regions to create a DNA interaction interface surface that

recognizes specific DNA sequences. HLH proteins regulate diverse biological pathways.

Since many HLH transcription factors are heterodimeric, their activity is often highly regulated
by the dimerization of the subunits. One subunit's expression or availability is oflen controlled,
whereas the other subunit is constitutively expressed. Many of the known regulatory proteins,
such as the Drosophila extramacrochaetae protein, have the helix- loop- helix structure but lack
the basic region, making them unable to bind to DNA on their own. They are, however, able to
form heterodimers with proteins that have the HLH structure, and inactivate their abilities as

transcription factors.

Fig 3: Helix Loop Helix DNA Binding Protein
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3. Leucine Zipper:

A leucine zipper is a super secondary structural motif found in proteins that creates adhesion

forces in parallel alpha helices. Leucine Zipper was first identified by sequence alignment of
certain transcription factors which identified a common pattern of leucines EVery seven amino
acids. Bach half of'a leucine zipper consists of a short alpha helix with a leucine residue at every
seventh position. Insome transcription factors the dimer binding site with the DNA forms a so
called leucine zipper. This motif consists of two amphipathic helices, one from each subunit,
interacting with each other resulting in a left handed coiled-coil super secondary structure. The
leucine zipper is interdigitation ofregularly spaced leucine residues in one helix with leucines
from the adjacent helix. Mostly the helices involved in leucine zippers exhibit a heptad sequence
(abcdefg) withresidues ‘a’ and ‘d” being hydrophobic and all others hydrophilic. Leucine zipper
motif itself is not the DNA binding part of the helices.

The standard 3.6 residues per turn alpha- helix structure changes slightly to become a 3.5 residue

per turn alpha-helix. Known as the heptat repeat, one leucine comes in direct contact with |
:> another leucine on the other strand every second turn. ‘The bZip family oftranscription factors

consist of a basic region which interacts with the major groove ofa DNA molecule through

hydrogen bonding and the leucine zipper which is responsible for dimerization.

These proteins interact with DNA as dimers and are called basic zipper proteins. Leucine zipper
regulatory proteins include fos and jun(the API transcription factor), important regulators of
normal development. If they are overproduced or mutated in a vital area, they may generate
cancer. These proteins interact with the DNA as dimers (homo- or hetero-} and are also called

basic zipper proteins (bZips).

14
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Fig 4: Leucine Zipper DNA Binding Protein

=

4. Zinc Finger:

Zinc fingers are small protein domains that can coordinate one or more zinc ions to help stabilize
their folds. They can be classified into several different structural families and typically function

as interaction modules that bind DNA, RNA, proteins or small molecules.

This domain is common in eukaryotic DNA-binding proteins. It was first noticed in the

eukaryotic transcription factor, TFIIIA

TFIIIA contains 9 repeated modules, each of which contains two Cysteine and two Histidine

residues. These four residues chelate one Znt ion. Each finger is bound in the major groove of
B-DNA.

Some eukaryotic transcription factors showed a unique motif called a Zn- finger where a Zn'™ ion

is coordinated by 2 Cys and 2 His residues.
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Each Zn-finger interacts ina conformationally identical manner with successive triple base pair

segments in the major groove of the double helix.
The protein-DNA interaction is determined by two factors:

» H-bonding interaction between a -helix and DNA segment, mostly between Arg residues
and Guanine bases.
» H-bonding interaction with the DN A phosphate backbone, mostly with Argand His. An

alternative Zn- finger motif chelates the Zn'" with 6 Cys . In all cases the Zn™ does not

itself participate in binding interaction.

Zn268 is a protein which contains three zinc fingers. Each zinc finger has a helix associated with
itand it is the helix which is involved in binding to the recognition sequence onthe DNA. The
structure of'the Zn Fingers is identical. , and consist of a beta-hairpin followed by analpha-helix.
The sequence is guanine rich, although this is not necessary for all Zn fingers. Each finger
recognizes three bases on the strand. The helices of the fingers fit into the major groove of the
DNA, with the N-terminal ends interacting with the phosphate backbone. Recognition derives
from the specific H-bonds from the Arginine residues in the protein to the guanine bases in the
DNA.

There is no distortion of the DNA when the protein binds. The fingers simply slot into the major

groove. The Zine fingers are inherently flexible, and they adapt to the DN A structure instead.

16
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Fig 5: Zinc Finger DNA Binding Protein

5. TATA Box:

TATA box binding proteins (TBP) were first identified as a component of the class I1 initiation
factor TFIID. These proteins participate in transcription by all three nuclear RNA polymerases
acting as subunit in each of them. The structure of TBP was solved at 2.1A resolution showing
two alpha/beta structural domains of 89-90 amino acids. The C-terminal or core region binds

with high affinity to the TATA consensus sequence recognizing minor groove determinants and

17




promoting DNA binding . TBP resembles a molecular saddle with approximate dimensions
32Ax45Ax60A. The binding side is lined with the central 8 strands of the 10-stranded anti-
parallel b eta-sheet. The upper surface contains four alpha-helices and binds to various

components of the transcription machinery.

Crystal structures of TBP with bound double helical segments of viral promoter regions

demonstrate an induced- fit mechanism of protein-DNA recognition.

The bending of the double helix is mediated by the curved, 8 stranded beta-sheet motif providing

a large concave surface for minor groove and phosphate-ribose contacts with the 8 base pair
TATA element.

The 5"end of DNA form helix that interacts with the C-terminal portion of TBP producing a
conformational transition to a partially unwound form of the double helix, induced by the
interaction of two Phenylalanine with the first AT base pair. A second pair of phenylalanine
insert between the last TA base pair of the TATA element, inducing a similar bend and the DNA

forms back to the DNA conformation. e

Fig 6: TATA Box DNA Binding Protein
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6. Histone Binding:

Histones are the chief protein components of chronmatin,

There are a total of six classes of histones (H1, H2 A, H2B, H3, H4, and HS) organized into two

super classes as follows:

e core histones — H2A, H2B, H3 and H4
e linker histones — H1 and H5

Two of each of the core histones assembles to form one octameric nucleosome core particle by
wrapping 146 base pairs of DNA around the protein spool in 1.65 lefi-handed super-helical turn.
The linker histone H1 binds the nucleosome and the entry and exit sites of the DNA, thus locking

the DNA into place and allowing the formation of higher order structure.

The nucleosomme core is formed of two H2A-H2B dimers and a H3-H4 tetramer, forming two
nearly symmetrical halves by tertiary structure. The 4 'core’ histones (H2A, H2B, H3 and H4) are
relatively similar in structure and are highly conserved through evolution, all featuring a 'helix

turn helix turn helix' motif.
Histones make five types of interactions with DN A -

e Helix-dipoles fromalpha-helices in H2B, H3, and H4 cause a net positive charge to
accumulate at the point of interaction with negatively charged phosphate groups on DNA

o Hydrogenbonds between the DNA backbone and the amide group on the main chain of
histone proteins

¢ Nonpolar interactions between the histone and deoxyribose sugars on DNA

e Salt links and hydrogen bonds between side chains ofbasic amino acids (especially |
lysine and arginine) and phosphate oxygens on DNA

o Non-specific minor groove insertions of the H3 and H2B N-terminal tails into two minor

grooves each on the DNA molecule

19
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NEED OF PREDICTION AND CLASSIFICATION OF DNA BINDING
PROTEINS

Enzymes are substances that occur naturally in all living things, including the human body. Ifit’s
ananimal or a plant, it has enzymes. Enzymes are critical for life. At present, researchers have
identified more than 3,000 different enzymes in the human body. These enzymes are constantly
changing and renewing, sometimes at an unbelievable rate. Our body’s ability to function, to
repair when injured, and to ward off disease is directly related to the strength and numbers of our

enzymes.

Using the protein engineering techniques, new enzymes have been created, ranging from food
enzymes to the enzymes used for curing diseases. The large international genome sequence
projects are gaining a great amount of public attention and huge sequence data bases are created.
It becomes more and more obvious that we are very limited in our ability to access functional
data for the gene products- the proteins, in particular for enzymes. It seems quite improbable to
experimentally determine function and structure of each candidate protein. So a new method is
needed to solve this computation catastrophe. Primary sequence of these proteins are readily
available, therefore a method using the sequence derived features will prove a much valuable and

a cost effective process of determining and classifying these proteins into six major classes.
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MACHINE LEARNING CLASSIFICATION

As a broad subfield of artificial intelligence, machine learning is concerned with the design and
development ofalgorithms and techniques that allow computers to ‘learn’. At a general level,
there are two types of learning: inductive and deductive. Inductive machine learning methods
extract rules and patterns out of massive data sets. The major focus of Machine learning research
is to extract information from the data automatically by computational and statistical methods.
Hence, machine learning is closely related to data mining and statistics but also theoretical
computer science. Machine learning has a wide spectrum of applications including natural
language processing, syntactic pattern recognition, search engines, medical diagnosis,
bioinformatics and chemoinformatics, detecting credit card fraud, stock market analysis,
chssifying DNA sequences, speech and handwriting recognition, object recognition in computer

vision, game playing and robot locomotion.
NEURAL NETWORKS

Neural Network or more appropriately Artificial Neural Network is basically a mathematical
model of what goes in our mind (brain). The brain ofall the advanced living creatures consist of
neurons, a basic cell, which when interconnected produces what we call Neural Network. The
sole purpose of a Neuron is to receive electrical signals, accumulate them and see further if they
are strong enough to pass forward. The basic functionality lies not in neurons but the complex
pattern in which they are interconnected. NN are Just like a game of chess, easy to learn but
hard to master. In the same way, a single neuron is useless. Well, practically useless. It is the
complex connection between them and values attached with them which makes brains capable of

thinking and having a sense of consciousness (much debated).
BASIC WORKING OF ANEURON

A neuron is basically a cell which accumulates electrical signals with different strengths. What it
does more is that it compares the accumulated signal with one predefined value unique to every
neuron. This value is called bias. Function of a neuron could be explained in the following

diagram.
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Fig 8: Typical Artificial Neural Network Setup

The circles in the image represent neurons. This network or more appropriately this network
topology is called feed- forward multi layered neural network. It is the most basic and most
widely used network. The network is called multi layered because it consists of more than two
layers. The neurons are arranged in a number of layers, generally three. They are input,
hidden/middle and output layers. This network is feed —forward, means the values are
propagated in one direction only. There are many other topologies in which values can be looped
or move in both forward and backward direction. But, this network allows the movement of

values only from input layer to output layer. The functions of various layers are explained below:

Input Layer: As it says, this layer takes the inputs and forwards it to hidden layer. We can
imagine input layer as a group of neurons whose sole task is to pass the numeric inputs to the
next level. The larger the number greater is its strength. e.g. 0.51 is stronger than 0.39 but
0.93412 is stronger still. But, the interpretation of this strength depends upon the implementation

and the type of problem assigned to NN to solve. For an OCR we connect every pixel with its
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input neuron and darker the pixel, higher the signal/input strength. Input layer never processes

data, it just hands over it.

Middle Layer: This layer is the real thing behind the network. Without this layer, network
would not be capable of solving complex problems. There can be any number of middle or
hidden layers. But, for most of the tasks, one is sufficient. The number of neurons in this layer is
critical. This layer takes the input from input layer, does some calculations and forwards to the
next layer, in most cases it is the output layer. There is no specific formula for deciding the

number of hidden nodes.

Outpﬁt Layer: This layer consists of neurons which predict the output value of the given input
data. This layer takes the value from the previous layer, does calculations and gives the final
result. Basically, this layer is just like hidden layer but instead of passing values to the next layer,

the values are treated as output.

Dendrites: These are straight lines joining two neurons of consecutive layers. They are just a
passage (or method) through which values are passed from one layer to the next. There is a value
attached with dendrite called weight. The weight associated with dendrites basically determines
the importance of incoming value. A weight with larger value determines that the value from that
particular neuron is of higher significance. To achieve this we do is multiply the incoming value
with weight. So no matter how high the value is, if the weight is low the multiplication yields the

final low value.

Training: Training is the most important part of a neural network and the one consisting of the
most mathematics. It uses Back Propagation method for training the NN, Training a neural
network model essentially means selecting one model from the set of allowed models (or, in a
Bayesian framework, determining a distribution over the set ofallowed models) that minimizes
the cost criterion. There are numerous algorithms available for training neural network models;
most of them can be viewed as a straightforward application of optimization theory and
statistical estimation. Most of the algorithms used in training artificial neural networks are
employing some form of gradient descent. This is done by simply taking the derivative ofthe
cost function with respect to the network parameters and then changing those parameters in a

gradient-related direction. Evolutionary methods, simulated annealing, and expectation-
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maximization and non-parametric methods are among other commonly used methods for training
peural networks. The training procedire must be repeated for larger number of samples so that

the NN can produce accurate results for untrained input samples.

LEARNING PARADIGMS

There are three major learning paradigms, cach corresponding to a particular abstract learning
task. These are supervised learning, unsupervised learning and reinforcement learning. Usually

any given type of network architecture can be employed in any ofthose tasks. \
Supervised learning

This form of learning assumes the availability of a labeled set of training data made up of N

input—output examples:
T={(xid)}"i-1

where x; = input vector of ith example

d; = desired (target) response of ith example, assumed to be scalar for convenience of

presentation

. ol

N =sanple size

Given the training sample 7, the requirement is to compute the free parameters ofthe neural
network so that the actual output yi of the neural network due to x/ is close enoughto di for all i
in a statistical sense. For example, we may use the mean-square error as the index of

performance to be minimized.

E(n) = %Z{-‘Li (di-v3)
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Multilayer Perceptrons and Back-Propagation Learning

The back-propagation algorithm has emerged as the work horse for the design of a special class
of layered feed- forward networks known as multilayer perceptrons (MLP). As shown in Fig.9, a
multilayer perceptron has an input layer of source nodes and an output layer of neurons (ie.,
computation nodes); these two layers connect the network to the outside world. In addition to
these two layers, the multilayer perceptron usually has one or more layers of hidden neurons,
which are so called because these neurons are not directly accessible. The hidden neurons extract

important features contained in the input data.

Input layer Layer of Layer of
of sourve hidden output
nodes neurons neurons

Fig 9: Fully connected feed-forward with one hidden layer and one output layer

The training ofan MLP is usually accomplished by using backpropagation (BP) algorithm that

involves two phases:
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* Forward Phase.

During this phase the free parameters of the network are fixed, and the input signal is propagated
through the network of Fig.9 layer by layer. The forward phase finishes with the computationof
an error signal

ei=di- yi

where dj is the desired response and y; is the actual output produced by the network in response

to the input x;.

* Backward Phase.

During this second phase, the error signal e; is propagated through the network of Fig.9 in the
backward direction, hence the name ofthe algorithm. It is during this phase that adjustments are
applied to the free parameters of the network so as to minimize the error e; in a statistical sense.

Back-propagation learning may be implemented in one of two basic ways, as summarized here:

> Sequential mode (also referred to as the on-line mode or stochastic mode):
In this mode of BP learning, adjustments are made to the free parameters of the network on an

example-by example basis. The sequential mode is best suited for pattern classification.

» Batch mode
In this second mode of BP learning, adjustments are made to the free parameters ofthe network
onan epoch by-epoch basis, where each epoch consists of the entire set of training examples.

The batch mode is best suited for nonlinear regression.

The back-propagation learning algorithm is simple to implement and computationally efficient in
that its complexity is linear in the synaptic weights of the network. However, a major limitation
of the algorithm is that it does not always converge and can be excruciatingly slow, particularly
when we have to deal with a difficult learning task that requires the use ofa large network.

We may try to make back-propagation learning perform better by invoking the following list of

heuristics:
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+ Use neurons with anti-symmetric activation functions (e.g., hyperbolic tangent function) in

preference to non-symmetric activation functions (e.g., lo gistic function).

* Shuffle the training examples afler the presentation ofeach epoch; an epoch involves the

presentation of the entire set of training examples to the network.

* Follow an easy-to-learn example with a difficult one.
* Preprocess the input data so as to remove the mean and de-correlate the data.

* Arrange for the neurons in the different layers to learn at essentially the same rate. This may be
attained by assigning a learning rate parameter to neurons in the last layers that is smaller than

those at the front end.
* Incorporate prior information into the network design whenever it is available.

One other heuristic that deserves to be mentioned relates to the size ofthe training set, N, for a
pattern classification task. Given a multilayer perceptron with a total number o f synaptic weights

including bias levels, denoted by W, a rule of thumb for sclecting V is
w
N=0O (E)

where , O denotes “the order of,” and € denotes the fraction ofclassification errors permitted on
test data. For example, with an error of 10% the number of training examples needed should be

about 10 times the number ofsynaptic weights in the network.

Radial-Basis Function Networks

Another popular layered feed- forward network is the radial-basis function (RBF) network which
has important universal approximation properties (Park and Sandberg 1993), and whose structure
is shown in Fig. 10. RBF networks usc memory-based learning for their design. Specifically,

learning is viewed as a curve-fitting problem in high-dimensional space
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1. Learning is equivalent to finding a surface in a multidimensional space that provides a best fit
to the training data.

2. Generalization (Le., response of the network to input data not seen before) is equivalent to the
us¢ of this multidimensional surface to interpolate the test data.

RBF networks differ from multilayer perceptrons in some fundamental respects:

* RBF networks are local approximators, whereas multilayer perceptrons are global

approximators.

* RBF networks have a single hidden layer, whereas multilayer

percepirons can have any number of hidden layers.

* The output layer of a RBF network is always linear, whereas ina multilayer perceptron it can

be linear or nonlinear.

Tnput Hidden layer Output
layer of radial- layer
basis
functions

Fig 10: Radial-basis function network.
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» The activation function of the hidden layer in an RBF network computes the Euclidean distance
between the input signal vector and parameter vector of the network, whereas the activation

function of'a multilayer perceptron computes the inner product between the input signal vector

and the pertinent synaptic weight vector,

The use of a linear output layer in an RBF network may be justified in light of Cover’s theorem
on the separability of patterns.

According to this theorem, provided that the transformation from the input space to the feature
(hidden) space is nonlinear and the dimensionality of the feature space is high compared to that
of the input (data) space, then there is a high likelihood that non-separable pattern classification

task in the input space is transformed into a linearly separable one in the feature space.

Learning algorithms

Training a neural network model essentially means selecting one model from the set ofallowed

models (or, ina Bayesian framework, determining a distribution over the set of allowed models)

that minimizes the cost criterion, There are numerous algorithms available for training neural E:
network models; most of them can be viewed as a straightforward application

of optimization theory and statistical estimation.

Most of the algorithms used in training artificial neural networks employ some form of gradient
descent. This is done by simply taking the derivative of the cost function with respect to the

network parameters and then changing those parameters in a gradient-related direction.

Evolutionary methods, simulated annealing, expectation- maximization and non-parametric

methods are some commonly used methods for training neural networks.

Applications:

The utility of artificial neural network models lies in the fact that they can be used to infer a
function from observations. This is particularly useful in applications where the complexity of

the data or task makes the design ofsucha function by hand impractical.
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Real life applications: -

The tasks to which artificial neural networks are applied tend to fall within the following broad

categories:

 Function approximation, or regression analysis, including time series prediction and
modeling.

e Classification, including pattern and sequence recognition, novelty detection and
sequential decision making,

¢ Data processing, including filtering, clustering, blind source separation and compression,

» Application areas include system identification and control (vehicle control, process
control), game-playing and decision making (backgammon, chess, racing), pattern
recognition (radar systemé, face identification, object recognition and more), sequence
recognition (gesture, speech, hand written text recognition), medical diagnosis, financial
applications, data mining (or knowledge discovery in databases, “K DD”), visualization

and e-mail spam filtering,
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OBJECTIVE

Rational classification of proteins encoded in sequenced genome is critical for making the ‘
genome sequences maximally useful for functional and evolutionary studies. The family of
DNA-bmding proteins is one of the most populated and studied amongst the various genomes of
bacteria, archaea and eukaryotes and the method presented here is an approach to their
classification. Sequence similarity metrics are a useful approach to provide functional .
annotation, but its use is sometimes limited, prompting the development and use of machine
learning methods (MLMs). MLMs also have a certain degree of flexibility re garding data inputs, '

allowing them to expand progressively to meet the requirements ofrapid ly accumulating

mountain of data generated ffom genomics research.

Hence, in this study an attempt has been taken to develop an automated tool using machine

learning technique for annotation of protein sequences with following objectives: !

1. To extract sequence derived features and selection of important features from protein
sequences to be used for prediction and classification of DNA binding proteins.

2. To develop and optimize the Ist layer ANN for classifying the user input protein
sequences into DNA or Non-DNA binding based on sequence derived features.

3. Todevelop and optimize the 2nd layer ANN for classifying the predicted DNA binding

proteins into 6 major classes based on sequence derived features.
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CHAPTER 2

A TOOLFOR PREDICTION AND CLASSIFICATION OF DNA BINDING !
PROTEINS INTO SIX MAJOR CLASSES USING ANN FROM SEQUENCE |
DERIVED FEATURES
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ABSTRACT

The problem of predicting the DNA binding and Non-DNA binding from protein sequence
information is still an open problem in bioinformatics. It is further becoming more important as
the number of sequenced information grows exponentially over time. The large amount of
proteomic data is available for a variety of organisms which allow researchers to efficiently
identify novel proteins in distantly related organisms and annotating them. A faster means of
annotation would be to match them with the already annotated sequences. Therefore arises the
need for development ofa prediction tool which can take raw protein sequence as input and can
predict the output as whether the input protein sequence is DNA binding or not and if it is then
which class it belongs to. This will further give us the predictive insight on molecular function
and pathways in which a novel protein may be involved prompting the development and use of

machine learning methods.

The tool would be consisting of2 levels of Classification. First layer classification includes
whether protein is DNA Binding or Non-DNA Binding. Ifthe protein is DNA Binding the
program enters into the second level of hierarchical classification system which then groups
them into one of the following categories — Helix Loop Helix, Helix Turn Helix, Leucine Zipper,

Histone Binding, T-Box and Zinc Finger.
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INTRODUCTION

The prediction of protein structure from amino acid sequence has become the Holy Grail of
computational molecular biology. Since Anfinsen first noted that the information necessary for
protein folding resides completely within the primary structure, molecular biologists have been
fascinated with the possibility of obtaining a complete three-dimensional picture of a protein by
simply applying the proper algorithm to a known amino acid sequence. The development of
rapid methods of DNA sequencing coupled with the straightforward translation of the genetic
code into protein sequences has amplified the urgent need for automated methods of interpreting
these one-dimensional, linear sequences in terms of three-dimensional structure and function.
Advanced and specialized databases are needed to facilitate the retrieval ofrelevant information
from the deluge of sequence data and to provide insight into the protein structure and function,
Further, it is clear that rational classification of proteins encoded in sequenced genomes is
critical for making the genome sequences maximally useful for functional and evolutionary

studies.

The family of DNA binding proteins is one of the most populated and studied amongst the
various genomes of bacteria, archea and eukaryotes. Most of these proteins, such as the
eukaryotic and prokaryotic transcription factors, contain independently folded units (domains) in
order to accomplish their recognition with the contours of DN A. It is now clear that the majority
of these DNA-binding scaffolds which are in generalrelatively small, less than 100 amino acid
residues, belong to a large number of structural families with characteristic sequences and three-
dimensional designs or conformations. Computational biology applying fast and sensitive
algorithms strives to extract the maximum possible information fiom these sequences by
classifying them according to their homologous relationships, predicting their likely biochemical
activities and/or cellular functions, three-dimensional structures and evolutionary origin. There
have been studies to detect, design and predict them using a probabilistic recognition code. There
have also been works towards analyzing protein-DNA recognition mechanism and binding site
discovery. DNA binding proteins represent a broad category ofproteins, known to be highly
diverse in sequence and structure. Structurally, they have been divided into 54 protein-structural

families. With such a high degree of variance, using conventional annotation methods rooted in
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database searching for sequence similarity, profile or motif similarity and phylogenetic profiles

; may not lead to reliable annotations.

Previously, there have beena few bioinformatics methods developed towards automated
identification and prediction of DNA binding proteins. Caiand Lin used pseudo-amino acid
composition to identify proteins that bind to RNA, rRNA and DNA. Ahmad integrated structural .

information with a neural network approach for the prediction of DNA binding proteins.

Stawiskiand Jones characterized electrostatic features of proteins for an automated approach to

DNA binding protein and DNA binding site prediction. Ahmad and Sarai showed that overall

charge and electric moment can be used to identify DNA binding proteins.

Strategically, we have used a neural network, two-layer, fully automated computational method
capable of recognizing DNA binding proteins first, and then classifying them into six different !

classes based on their sequences derived features.

7 ——— e
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MATERIALS AND METHODS

These neural networks cluster takes the sequences one by one for the prediction. In the study
along with usage of machine learning approach like ANN automated as wells as customized, we
have also used three types of parameters like physicochemical properties, amino acid
composition and pseudo amino acid composition. Using this combination of we have seven

neural network models- ANN pepstats ANN Ap comp a0d ANNpgean as the individual ANNs and rest

all are their combinations.

For building up the neural network models we have used STATISTICA v.9.1 by Statsoft. SANN is
STATISTICA Enterprise-Wide Data Mining System (Data Miner) that offers a

comprehensive selection of Neural Network solutions. By joining' these models we have

developed 7 neural network clusters.

Following are the steps which are performed for the development of the too:1

¢ Data Collection

¢ Data Reduction

o Descriptor Calculation

¢ Neuwal Network Model Building
e Neural Cluster Formation

e Server Development

All the above steps are described in detail:

37
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1. Data Collection and Data Reduction:

o Dataset for prediction of DNA binding/non-DNA binding

A dataset 0f 766 DNA binding protein sequences extracted from UniProt

(http ://www. uniprot.org/) was used as a model class after removing the redundant sequences. A

non-redundant treatment was applied to eliminate the sequences which share a high degree of
similarity (>90%) with others in order to avoid overtraining, The treatment was carried out using
the program BLASTCLUST (http ://www.ncbi.nlm.nih. gov/BLAS T/), which used the BLAST

algorithm to systematically cluster protein sequences on the basis of pair-wise matches. The

default values were used for all BLAST parameters: matrix BLOSUM62, gap opening cost of 11,
gap extension cost of 1, E-value threshold of 1e®. These sequences were used as positive
examples for prediction as DNA binding proteins. The sequences data on negative examples

were obtained from the IMTECH (http://imtech.res.in/). DNA binding proteins were removed

from the original dataset. A non-redundant treatment was applied (same as for positive datasets)
such that no sequence had similarity higher than 25% to any others. Thus, 983 non-DNA binding

sequences were optimized as negative examples.

e Dataset for classification of DNA binding proteins into six major classes

The above mentioned 766 protein sequences of DNA binding proteins were then grouped into six
major classes: Helix- Loop-Helix(219), Helix- Turn-Helix(109), Leucine Zipper(102), Histone
Binding(170), T-Box(74) and Zinc Finger(92). They were used for construction of neural

networks, training and validating the model for classification of predicted DNA binding proteins

mto six classes.

2. Descriptor Calculation:

Molecular descriptors play a fundamental role in chemistry, pharmaceutical sciences,
environmental protection policy, and health researches, as well as in quality control, being the
way molecules, thought of as real bodies, are transformed into numbers, allowing some
mathematical treatment ofthe chemical information contained in the molecule. This was defined

by Todeschini and Consonni as:
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"The molecular descriptor is the final result of a logic and mathematical procedure which
transforms chemical information encoded within a symbolic representation of a molecule into a

useful number or the result of some standardized experiment."
The descriptors used are:

e Amino Acid composition: This descriptor consist of 20 factors each representing

composition 0f20 standard amino acids in the protein sequences that include A, C, D, E,F,
G HILK,LMP,Q,R,S,T,V,W,X, and Y. The formula to calculate this composition is:

Freq.of AA(Q)
Y. Freq.of AA in seq.

AA comp(i) =

e Physicoche mical Properties: This descriptor consists of 12 properties calculated using

EMBOSS (EBI) package. The parameters include Molecular weight, Charge, Isoelectric
point., Mole percentages of Tiny, Small, Aliphatic, Aromatic, Non-polar, Polar, Charged,
Acidic, Basic amino acids . The different categories include different sets of amino acids like
Tiny (A+C+G+S+T), Small (A+B+C+D+G+N+P+S+T+V), Aliphatic (I+1L+V), Aromatic
(F+H+W+Y), Non-polar (A+CHF+GHH+LAM+P+V+W+Y), Polar
(DHE+H+KAN+Q+R+S+T+Z), Charged (B+D+E+H+K+R+Z), Basic (H+K+R) and Acidic
(B+D+E+Z).

o Pseudo AA composition: This descriptor is a collection of 37 factors, 20 of which are simple

amino acid compositions and rest 17 are correlation factors calculated among amino acids of
the given sequences. It was introduced by K uo-Chen Chou in 2001 to represent protein

samples for statistical prediction.

The simplest discrete model is using the AA composition to represent protein samples, as

formulated as follows. Given a protein sequence P with L amino acid resides, i.e.,

P — R,IR.QR,33,4R.5R5R.7 ol R.L (l)
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where R represents the 1st residue of the protein P, Ry the 2nd residue, and so forth, accord ing

to the AA composition model, the protein P of Eq.1 canbe expressed by
T )
P=[fi fa - f?{)] (2)

where fu (n = 1: 21 T 20)&1’& the normalized occurrence frequencies of the 20 native
amino acids in P, and T the transposing operator. The additional fictors are a series of rank-
different correlation factors along a protein chain, but they can also be any combinations of other
factors so long as they can reflect some sorts of sequence-order effects one way or the other, The

algorithm for this is as follows:

According to the Pseudo AA composition model, the protein P of Eq.1 can be formulated as

P = [p1,p2, -+, P20, P20t - - ,P20+A]T, (A<L) (3)

where 20 + ) the components are given by c

e (1<u<2)
E¢=1fi+w2k=17’v

WTy—20

\ Efii fi + WZL T

Where w is the weight factor, and 1 the &-th tier correlation factor that reflects the Asequence

(4)

Pu

(204+1<u<20+ 1)

order correlation between all the k-th most contiguous residues as formulated by

1 Lk .
T = T—F Z Jigrr, (k<L) (5)

i=1
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with

|

Jiin = % 2 @ (Rirs) — @ (R)]”  (6)
|
|

g=1

Where (I)f (Rl')is the &-th function of the amino acid Ri, and I'the total number of the
functions considered. For example, in the original paper by Chou, ®, (Ri), W, {R:' )and

L2 (R'i)are respectively the hydrophobicity value, hydrophilicity value, and side chain mass of
amino acid R«;‘; while D1 (RHI), D, (Rz‘+1)and Dy (Ri+1)the corresponding values for the

amino acid Ri+1, Therefore, the total number of functions considered there is I' = 3. It can be

seen from Eq.3 that the first 20 components, i.e. 1, P2, ** -, P20are associated with the

conventional AA composition ofprotein , while the remaining components

P20+1y * **y P20+ xare the correlation factors that reflect the 1st tier, 2nd tier, ..., and the A-th '
tier sequence order correlation patterns. It is through these additional Afactors that some \“"

important sequence-order effects are incorporated.
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‘ 3. Neural Network Model Building:

The implementation of ANN was realized using the sofiware package STATISTICA v.9.1 by
Statsoft SANN. We have used two feed- forward back-propagation neural networks with a single
hidden layer. First layer of neural network is used for prediction of DNA binding/non-DNA

binding proteins from the protein sequence, whereas, the second layer is used for classifying the

predicted DNA binding protein into six major classes.

= DNA Binding

NON DNA Layer 2
Binding

Fig 11: Architecture of Layer 1
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Helix Loop Helix

Helix Turn Helix

Leucine Zipper

Zinc Finger

TATA Box

Histone Binding

e 00

Fig 12: Architecture for Layer 2
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[ Parameters Architecture

) Amino Acid Composition 20-16-2
Physiochemical Properties 12-20-2
Pseudo AA Composition 37482
Pseudo AA + AA 57-35-2
AA + Physiochemical 32-14-2
Pseudo AA + Physiochemical 49-54-2
Pseudo AA + AA + Physiochemical 69-61-2

Table 1: Binary Classification

Parameters Architecture

Amino Acid Composition 20-18-6

Physiochemical Properties 12-18-6

Pseudo AA Composition 37-40-6

Pseudo AA + AA 57-39-6

AA + Physiochemical 32-40-6 ‘.
Pseudo AA + Physiochemical 49-55-6 !
Pseudo AA + AA + Physiochemical 69-53-6

Table 2: Classification in Six Classes

4. Neural Cluster Formation:

Firstly, we saved the C codes for each Neural Network model generated. Then converted the C

codes to C library references as Header files. After that we generated a main parser code, which
can take in the descriptors in the formofa file and can send them to the particular network
models in their corresponding header files and retrieving the output of the model based on
output, taking the decision to go which way or to which particular model to feed the descriptor

and retrieving the output.
5. Server Development: |
|

We have generated a Perl parser which can take the constraints ofthe descriptor from the user
and take in the sequences from the file, then it can pipe in the sequences to the other codes for
calculation of the desired descriptor and thereby the prediction cluster is fired, which has been

developed in the previous case and this retrieve the output and presents it to the user.
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6. Validation: |
)
The Validation is the way to confirm the validity of data, information, or processes of a model.
e Self consistency
Consistent with one's self or with itself; not deviation from the ordinary standard by which the
conduct is guided; logically consistent throughout; having each part consistent with the rest.
Inour case we have taken the entire dataset that we have used for creation ofthese models, and
we have used this data set for validating our prediction tool. We took 766 protein sequences in
DNA Binding category and 983 protein sequences in Non-DNA Binding category.
Table 3(a) Percentage of correct prediction in DNA Binding and Non- DNA Binding i
category for Self Consistency pld
.k Parameters DNA Binding Non-DNA Binding g“
Amino Acid Composition 98.96 98.58 W
Physiochemical Properties 98.43 96.85
Pseudo AA Composition 93.86 98.98
Pseudo AA + AA 99.22 98.58
AA + Physiochemical 99.22 98.78
Pseudo AA + Physiochemical 99.09 99.09 i
Pseudo AA + AA + 99.09 99.80
Physiochemical f
\‘
|
|
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Parameters HLH HTH Leucine Zinc Histone T-Box
) Zipper Finger like
Amino Acid 88.58 87.16 85.29 84.26 80.29 | 75.68

Composition

Physiochemical 78.54 61.47 70.59 75.58 72.41 | 65.37

Properties
Pseudo AA 93.61 86.24 91.18 88.74 84.68 |95.95
Composition
AA+ 96.81 83.49 92.16 85.63 90.28 [92.23
physiochemical

Pseudo AA + AA 94.98 82.57 91.18 86.31 88.25 [91.90

Pseudo AA + 97.26 88.07 94.12 89.37 91.24 | 95.81

Physiochemical

Pseudo AA+AA+ | 9817 87.16 95.10 88.74 91.38 | 96.27

Physiochemical

e External Validation

Validation ofthe software was done using the dataset that was not used for training or we can

say the dataset that we have removed in the process of data cleaning and data scaling. We took

==, e ==

172 protein sequences in DNA Binding category and 184 protein sequences in Non-DNA

Binding category.

Table 3(b) Percentage of correct prediction in DNA Binding and Non-DNA Binding
category for External Validation

Parameters DNA Binding Non-DNA Binding

Amino Acid Composition 87.42 89.67
Physiochemical Properties 92.81 92.39
Pseudo AA Composition 81.43 86.41
Pseudo AA+ AA 86.22 89.13
AA + Physiochemical 82.63 85.32
Pseudo AA + Physiochemical 96.40 95.10

Pseudo AA + AA + 97.00 89.67

Physiochemical
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Parameters HLH HTRH Leucine Zinc Histone T-Box
Zipper Finger like
Amino Acid 34.29 30.85 62.5 56.67 28.0 12.27
Composition
Physioc hemical 45.71 80.80 81.25 43.33 40.0 33.37
Properties
Pseudo AA 57.14 26.23 46.88 36.67 12.0 24.31
Composition
Pseudo AA + AA 68.58 11.54 81.25 46.67 28.0 32.67
AA+ 42 .86 29.17 65.63 43.33 48.0 49.97
Physiochemical
Pseudo AA + 71.43 53.84 81.25 70.0 56.0 56.55
Physiochemical
Pseudo AA+ AA + 82.86 76.92 84.38 80.0 80.0 62.39
Physiochemical
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DISCUSSION

The DN A Binding Prediction Tool has been developed in this study using two layered neural
network based on sequence derived features. The results demonstrate that the deve loped ANN
based model for binary prediction of DNA Binding Proteins/Non-DNA Bind ing Proteins and
classification of proteins into six major classes is adequate and can be considered an effective
tool for 'inssilico” screening. . The results also demonstrate that the sequence derived parameters
readily accessible from the protein sequences only, can produce a variety of useful information
to be used ‘in silico ; clearly demonstrates an adequacy and good predictive power of the
developed ANN model. There is strong evidence, that the introduced sequence features do
adequately reflect the structural properties of proteins. The structure ofa protein is an important
determinant for the detailed molecular function of proteins, and would consequently also be
useful for prediction of Binding Proteins/Non-DNA Binding Proteins and for their classification.
This agrees well with our result that sequence derived features can be used for predicting DN A

Binding Proteins.

Presumably, accuracy of the approach operating by the sequence derived features can be
improved even further by expanding the parameters or by applying more powerful classification
techniques such as Support Vector Machines or Bayesian Neural Networks. Use of merely
statistical techniques in conjunction with the sequence parameters would also be beneficial, as
they will allow interpreting individual parameter contributions into Binding Proteins/Non-DNA

Binding Proteins.

The results ofthe present work demonstrate that the sequence derived features with ANN appear
to be a very fast protein classification mechanism providing good results, comparable to some of
the current efforts in the literature. The developed ANN -based model for Binding Proteins/Non-
DNA Binding Proteins prediction and their classification into different classes can be used as a
powerful tool for filtering through the collections of genome sequences to discover novel

proteins,
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CONCLUSION

Froma practical point of view the most important a spect of a prediction method is its ability to
make correct predictions. Till date most of the available methods use the 3-d structure of the
protein to predict and classify DNA binding proteins. This is a very tedious job and requires
much costlier endeavors. The sequence of a protein is an important determinant for the detailed
molecular function of proteins, and would consequently also be useful for prediction of DNA
binding proteins and in turn into various classes. Therefore, we have developed a tool which

predicts the DNA binding proteins and their subsequent classes based on both strategies.

This thesis contains detailed work on DN A binding proteins prediction and classification. We
achieved an accuracy of 70% based on dataset of 1749 proteins using the ANN technique . The
neural network architecture used for the prediction was optimized for maximum accuracy. This
was achieved by gradually testing networks with variable hidden nodes and retaining the one
with highest true predictions. This is at par with best prediction tools available till date, but to the
contrary, uses a much simpler and efficient prediction method based on sequence features only.
This application not only gives optimum result with the dataset used, but also predicts DNA
binding proteins from complex genomes to a very high satisfactory level. A much elaborate

analysis has been done, which is evident from the extracted data, figures and tables compiled.
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APPENDIX 1: WEBPAGE OF THE SITE

b DN4BINDING PREDICTION TOOL
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APPENDIX 2:
1. Pscudo Amino Acid Composition
Class Train Test
Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 139 92.37
Non Binding 785 785 100 198 194 97.84
2. Amino Acid Composition
Elas Train Test
Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 143 94.11
Non Binding 785 785 100 198 184 92.39
3. Physicoche mical Properties
Cha Tram Test
= Total Correct Correct % Total Correct Correct %
Binding 615 583 94 151 136 90.21
Non Binding 785 770 08 198 182 91.95
4. Pseudo Amino Acid Composition + Amino Acid Composition
Cla Train Test
£ Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 146 96.78
Non Binding 785 785 100 198 188 04.97
5. Pseudo Amino Acid Composition + Physicochemical Properties
Train Test
Class Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 142 93,96
Non Binding 785 785 100 198 191 96.28
6. Amino Acid Composition + Physicochemical Properties
Clasa Train Test
Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 142 94.26
Non Binding 785 785 100 198 181 91.47
7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical
Properties
Class Train Test
Total Correct Correct % Total Correct Correct %
Binding 615 615 100 151 149 98.87
Non Binding 785 785 100 198 193 97.29

TABLE 3: MODEL SUMMARY OF LAYER 1
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1. Pseudo Amino Acid Composition

Class Train Test
Total Correct Correct % Total Correct Correct %
Helix- Loop-Helix 177 177 100 44 33 74.26
Helix- Turn-Helix 86 81 94 21 15 73.75
Zinc Finger 75 75 100 19 14 72.17
Leucine Zipper 82 79 96 20 14 69.48
| Histone Binding 137 136 99 34 25 73.27
T-Box 56 56 100 14 11 75.31

2. Amino Acid Composition

Class Train Test
Total Correct Correct % Total Correct Correct %

Helix- Loop-Helix 177 162 91 44 31 69.93

Helix- Turn-Helix 86 76 88 21 14 67.83

Zinc Finger 75 72 96 19 14 72.26

Leucine Zipper 82 73 89 20 14 70.18

Histone Binding 137 |13 83 34 23 68.31 .‘,H |

T-Box 56 46 82 14 10 74.95 ] |

3. Physicochemical Properties ‘{:

Class Train Test fi
Total Correct Correct % Total Correct Correct %

Helix- Loop-Helix 7 151 85 44 31 70.15

Helix- Turn-Helix 86 68 79 21 14 67.32

Zinc Finger 75 62 82 19 13 70.13

Leucine Zipper 82 53 64 20 14 68.25

Histone Binding 137 105 76 34 22 65.33

T-Box 56 44 78 14 11 75.32

4. Pseudo Amino Acid Composition + Amino Acid Composition

Class Train Test
Total Correct Correct % Total Correct Correct %
Helix- Loop-Helix 197 177 100 44 31 69.57
Helix- Turn-Helix 86 81 94 21 15 71.24
Zinc Finger 79 75 100 19 13 69.43
Leucine Zipper 82 80 97 20 15 73.64
Histone Binding 13% 136 99 34 24 70.16
T-Box 56 56 100 14 11 76.34 3
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5. Pseudo Amino Acid Composition + Physicochemical Properties

i Train Test

Total Correct Correct % Total Correct Correct %
Helix- Loop-Helix 177 176 99 44 38 85.62
Helix- Turn-Helix 86 82 95 21 17 81.04
Zinc Finger 75 75 100 19 15 80.95
Leucine Zipper 82 79 96 20 16 79.38
Histone Binding 137 137 100 34 28 83.21
T-Box 56 56 100 14 11 75.46

6. Amino Acid Composition + Physicochemical Properties

Class Train Test

Total Correct Correct % Total Correct Correct %
Helix- Loop-Helix 177 177 100 44 33 75.81
Helix- Turn-Helix 86 80 93 21 15 73.26
Zinc Finger 75 73 97 19 14 7431
Leucine Zipper 82 78 95 20 16 79.22
Histone Binding 137 135 98 34 23 67.94
T-Box 56 55 98 14 10 71.47

7. Pseudo Amino Acid Composition + Amino Acid Composition + Physicochemical
Properties

Class Train Test

Total Correct Correct % Total Correct Correct %
Helix- Loop-Helix 177 176 99 44 36 82.61
Helix- Turn-Helix 86 83 96 21 17 81.70
Zinc Finger 75 74 98 19 16 85.39
Leucine Zipper 82 79 96 20 16 80.05
Histone Binding 137 137 100 34 27 79.37
T-Box 56 56 100 14 11 77.82

TABLE 4: MODEL SUMMARY FOR SECOND LAYER

63

v_*"—_‘; =
e




APPENDIX 3: C Codes

7_formatter_and_prediction _execution.pl

#lormatting input sequence given by user so that it can be used by Prediction cluster
ffopening sequence file

open(INP, "par. txt");

while(<INP>)
{
if($_ 1~ />/)
{
chomp($ );

$seq=$seq.$_;
}

}
close(INP);

#updating sequence file

$seq =~ tr/a-Z/A-Z/;

open(OUT, "+>par. txt");

print OUT ">Query|PDBID|CHAIN|SEQUENCE\nS$seq";
close (OUT);

#prediction execution |
system "modified pseaa_desc calc.exe"; ‘
“7_modified_aa_composition_desc_calc.pl';
system "pepstats.exe par.txt pepstat.xIs";
7_modified_pepstats_parsing.pl’;

system "7 pseaa_aa_pepstat ANN.exe";
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“del par.xls’;
‘del pepstat.xls’;

“del par.txt’;

7_modified_aa_composition_ desc_calc.pl

#opening pseaa descriptor file
open(PSEAA, "par.xls");
while(<PSEAA>)
{
chomp($_);
@pseaa=split(As+/,$ );
}
close(PSEAA);

#Amino Acid Compostion Balsed Descriptors
#inputting file

#print "\nInput filename (.txt):At™;
#$filename=<>;

open (file, "par.txt")

or print "cannot open sequence file";

fireading file into array
$=0;
while(<file>)

{
if(/~>)
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{

i+ ;
Sname({$il=$ ;
i

else

{
chomp($_);

$seq[$il=$seq($il.$ ;
}

}
close(file);

#Reference array
$ref~(ACDEFGHIKLMNPQRSTVWY),
@ref=split(",$ref);

#output file open

#print "\nenter output filename: ";
#Jout=<>;

open (desc, "+>par.xls");

#printing PSEAA descriptors
foreach $y(@pseaa)
{ |
print desc "$y\t"; ]
}
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#opening sequence and calculating frequency of amino acids
for($=1;$i<$#name+1;$i++)

{

@pro=();

@pro=split(",$seq[$1]);

for($y=0;3y<S#refri;$yt+)

{
$freq[$y]=0;
}
foreach $aa(@pro)
{
for($j=0;$j<$#refr1;$j++)
{ M
) if (Saa eq $ref[$il) :
! { !Ja
Sfreq[$j]+=1; !
}
}
}

$proname=(split /[[]/,$name [$1])[0];
print "protein: $proname\i@ freq\n";
#print desc "$proname't”;
for(k=0;$k<S#refr1;$k++)

{

$probab=$ freq[$k]/(S#pro+1);

if($ freq$k] eq 0)

{
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$probab=0;
h
print desc "$probabit"™;
}
print desc "\n";
}
close(desc),

7_modified_pepstats_parsing.pl

#opening PSEAA+AA descriptors
open (PSEAA AA,"par.xls")
or print "cannot open sequence file";
$c=0;
while(<PSEAA_AA>)
{
chomp($ );
$pseaa_aa[Sc]=$ ;
$ett;
}
close(PSEAA_AA);

#PEPSTATS Parsing

#inputting file

#print "\nlnput filename (.x1s):\t";
#$filename=<;

open (INP,"pepstat. xIs")
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or print "cannot open sequence file";

! $c=0;

while(<INP>)
{
chomp($ );
$file{$Sc]=$_;
Sett;
J

close(INP);

#output file open
#print "nenter output filename: ",
#out=<>;

open (OUT,"+>par.xIs");

#parsing PSEAA+AA descriptors
foreach $y(@pseaa_aa)

{
print OUT "$w\t",
h
#parsing output ofpepstat
foreach $y(@file)
{ |
. !
@line = (); i

@line = split (A\s+/,$y);
if ($line[0] eq "Molecular")
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{
print OUT "$line[3]\t";

}

elsif ($line[0] eq "Average”)
{
print OUT "$line[7]\t";
}

elsif ($1ine[0] eq "Isoelectric)
{
print OUT "$line{3]\t";
1

elsif ($line[0] eq "Tiny™)
{
print OUT "$line[3]\t";
'

elsif ($line[0] eq "Small™)
{
print OUT "$line[3]\t";
}

elsif ($line[0] eq "Aliphatic")
{
print OUT "$line[3]\t";
}

ekif ($line[0] eq "Aromatic")
{
print OUT "$line[3]\t";
}
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elsif ($line[0] eq "Non-polar")

{
print OUT "Shne{3]\t";
}
elsif (8line[0] eq "Polar")
{
print OUT "$line[3]\t";
}
elsif ($line[0] eq "Charged™)
{
print QUT "$line[3]\t";
}
elsif ($line[0] eq "Basic"™)
! {
)' print OUT "$line[3]\t"; )I
| J
elsif ($line[0] eq "Acidic")
{
print OUT "$line[3]\t";
}
elsif ($line[0] eq "PEPSTATS")
{
#print OUT "n";
} 4
}
print "DONE!!";
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close(OUT);

binding_standalone.pl

#1C:/Perl/bin/perl.exe
#i#standalone prediction program

print "\n\t\t ...SEQUNECE PREDICTION...\n\t\t(Standalone Version)";

#reading in the sequence
print "\n\nEnter the file with Sequences(in fasta format): ";
Stile=<>;

chomp($file);

open(SEQ, "$file") or print "\nError!!\nCannot open sequence file";

‘ while(<SEQ>)
N {
if(/>/)
{
$e=-1;
last;
}
else
{
$c=0;
}
}
close(SEQ);

open(SEQ,"$file") or print "\nError!\nCannot open sequence file":
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while(<SEQ>)
{
(/7>
{

$C++;

chomp($ );
$name[$c]=$& ;
}

else
{
chomp($ );
$seq[$cl=$seq[$c].$_:
}

}

#taking in the choice ofparameters

print "\nPrediction through Pseudo Amino Acid Composition(37 factors)(Y/N): *;

$pseaa=<>;
cuomp($pseaa);
print "\nPrediction through Amino Acid Composition(20 factors)(Y/N): ",

$aa=<>;

chomp($aa);
print "\nPrediction through PhysicoChemical Properties(12 factors)(Y/N): "

$pep=<>;

chomp($pep);

#opening Output file

print “\nEnter the Output Filename: "
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$ile=<;
chomp($file);
open(O UT,"+>$file");

#Prediction Segment
for($i=0;$i<=$#seq;$i++)
{
#preparing input sequence file
open(PAR,"+>par.txt";
print PAR $seq[$1];
close(PAR);
#STARTING PREDICTION based on the choice of parameters(user given)
#firing predictor executers accordingly
ift(Spseaa =~ /y/) && ($aa !~ /y/i) && (Spep !~ /y/i))
{ i
'1_formatter_and_prediction_execution.pl’;
}
clsif((Spseaa I~ /y/)) && ($aa =~ /y/i) && ($pep !~ /y/i))
{
'2_formatter_and_prediction executio npl’;
}
clsif{($pseaa I~ /y/i) && (Saa !~ /y/i) && ($pep =~ 1yliy)
{
'3_formatter_and_prediction_executionpl’;
} .
clsifi(3pseaa =~ /y/i) && ($aa =~ /y/i) && ($pep !~ /vii))
{
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'4_formatter_and_prediction execution.pl’;

}
elsif{(Spseaa =~ /y/i) && (Saa I~ /y/i) && ($pep =~ /y/1))

{

*5_formatter_and_prediction_execution.pl’;

}
clsif{($pseaa !~ /y/1) && ($aa =~ /y/i) && ($pep =~ /y/i))
{
"6_formatter_and prediction_executionpl’;
}
elsif(($pseaa =~ /y/1) && ($aa =~ /y/i) && ($pep =~ /y/i))
{
“7_formatter_and_prediction execution.pl’; |
} )
i
#printing the output

open(INP,"binding_out.txt");

@output=<INP>;

close(INP);

‘delbinding out.txt";

print OUT "binding for protein: $name[$i]\n@output\n";

print "\n binding for protein: $name[$i]\n\n@output";

}

close(OUT);

print "\n\nPrediction Complete...\h‘.\.nPreés enter to terminate...";

<>
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