niversity -c:f“ Tnfo{'mation Technology
solan (H.P)
LEARN\NG RESOURCE CENTER

Acc. NumSQ oo %\ Call Num:
General Guidelines:
hould be used with great care.

cutting of librevy books Of making
em is not permi.tted and shall lead

Jaypee U

¢ Library pooks S
¢ Tearing, folding,
any marks oN th

to disciplinary action.

at the time of borrowingd books

ff immediately-

& Any defect noticed

ught to the libr

ary sta

must be bro
Otherwise the bor

the boo

rower ma

Kk by @ new copy-

y be required o replace

t be immediate\y

(s) mus

\

¢ Theloss of LRC pook
t to the notice of the

L bro.{gh_t

Librarian in writing-

Le
arning Resource Centre-JUIT

L

SP06061

i

L —

Intelligent Human-Computer Interaction System

Project Report submitted in partial fulfillment of the requirement

Jor the degree of
Bachelor of Technology
in
Computer Science
by
Abhinav Paliwal — 061203
Sahil Gu.pta ~ 061284
Sahil Jain — 061285

under the Supervision of

Sh. Satish Chandra

JAYPEE UNIVERSITY OF
OLOGY

INFORMATION TECHN

May 2010

Jaypee University of Information Technology
Waknaghat, Solan - 173 234, Himachal Pradesh

—

Acknowledgement

The Intelligent Human Computer Interaction project marks the culmination of all
the concepts assimilated while studying concepts of Image Processing. It has
presented us with an opportunity to use the technical know-how to create a real time

system,

Learning through the project under the guidance of our esteemed mentor Sh. Satish
Chandra, whose expertise knowledge in the domain of Artificial Intelligence as well
as Image Processing, not only cleared all our ambiguities but also generated a high
level of interest and gusto in the subject. We are truly grateful for his guidance and
support throughout the project. We would also like to thank our Head of the
Department, Brig (Retd.) SP Ghrera for his undying faith in the department of

computer science and allocation of the project as well as its resources.

The prospect of working in a group with high level of accountability fostered a spirit
of team work and created a feeling of oneness which thus, expanded our ken,

motivated us to perform to the best of our ability and create a report of the highest

quality.

To do the best quality work, with utmost sincerity and precision has been our

constant endeavor.

Date: [] /09’ /p e Abhinav Paliwal(061203)

Sahil Gupta (061284)

Sahil Jain (061285)

e b

Abstract

Head Tracking technology is an alternative to the mouse that allows the person control
over the movement of the cursor by using only the movement of his head. We present a
simple prototype system for real time tracking of a human head. This system uses a

simple yet an effective Face tracking algorithm.

The general requirements of a real time tracking algorithm — it should be computationally
inexpensive, should possess the ability to perform in different environments and should
be able to start and initialize itself with minimum knowledge about the environment, are
well addressed by the elliptical head tracking algorithm. The objective of this project is to
create an alternative user interface uniquely using real time video of the user’s face
captured using an off-the-shelf web-camera. The position of the head is tracked and
converted into two-dimensional coordinates on a computer screen; additionally, it is
intended to enable the recognition of a deliberate blink in order that this could be

considered as a command from a user.

People who are quadriplegic and somewhat physically disabled, for example from
cerebral palsy or traumatic brain injury or stroke, have limited motions they can make
voluntarily. Some people can move their heads. Some can blink or wink voluntarily. A

low cost system is proposed to assist such people in handling computers and/or connected

peripherals. Still, there are many people with no reliable means to access the computer.

—, -

Table of Content

ADSIACE: cvoscx smmpams it R RS L RS 4
Table o Contents:svinsmmminnnmis e o e e 5
LBt OF BASITRE, o2 vononsmmssarnrveomcmmreiissborssintt e 7
BIBLOSEADIY: s svsvunnsriisiimainisiimiamsnnmisiss G e, 93
1. General Discussion 8

1.1 Introduction 8

1.2 Problem Statement

1.3 Objective & Scope of the Project 9
1.4 Existing Systems 10
2. Literature Survey 12
2.1 Optical flow 12
2.1.1 Uses of Optical Flow 13
2.2 Face detection 14
2.2.1 Techniques 14
2.3 Feature Ex_tﬁractio_n 16
2.3.1 Edge Properties 17
232 A Simple Edge Model 17
2i3:5 Approaches to Edge Detection 18
2.4 OpenCYV library 18
2.4.1 Applications 19
5

2.4.2 Features of Open CV 21
?;; 3. System Analysis and Design 22
b
3.1 System Flow Diagram 23
3.2 Modular Description 23
3.3 System architecture 23
3.3.1 Tracking Layer 25
3.3.2 Client layer 26
3.4 Tracker Function Hierarchy 27
\ 3.5 State Transition Diagram 28
4 3.6 Class Diagram 29
4. Implementation Details 31
4.1 DFD 35
4.2 Camera Functions 36
4.3 Configuration Settings 38
4.4 Configurator 44
4.5 Eyes Tracking Implementation 46
4.6 Face Feature Initialization 58
_5 4.7 Face Tracking 66
' 4.8 Tracking Layer 77
4.9 System Snapshots 87
S. Future Work 91
D

=

W

1
2
3
4
5
6
7
8
9
10

List of Figures

Description

Optical flow example

Open Frameworks running the OpenCV add-on example
Block diagram for System Flow

System Architecture

Tracking Layer Functions

Tracker FunctionHierarchy

State Transition Diagram

Class Diagram

Class diagram II

The proposed speech-recognition components of our

head-tracking system.

Page.

12

22
24
25
27
28
29
30

91

Chapter 1

General Discussion

— *w”wﬂ‘w
|

1.1 Introduction

In the recent years there has been a major effort to develop new tools that allow an
advanced human-computer interaction. These type of interfaces are commonly addressed
as Perceptual User Interface for Computers. Interfaces that allow a computer to be

operated without the use of one's hands are particularly interesting as they can be

considered a step towards a 'transparent computerized assistant’. A system capable of

¢ receiving input from natural human behavior, instead of forcing the user to learn to utilise

devices such keyboard and mouse.

People who are quadriplegic and somewhat physically disabled, for example from
cerebral palsy or traumatic brain injury or stroke, have limited motions they can make
voluntarily. Some people can move their heads. Some can blink or wink voluntarily.
Some can move the eyes or tongue. Family, friends, and other care providers usually
detect these motions visually.

Many computer access methods have been developed to help people who are
quadriplegic and nonverbal: external switches, devices to detect small muscle movements
\ or eye blinks, head pointers, infrared or near infrared camera based systems to detect eye

movements, electrode based systems to measure the angle of the eye in the head, even

systems to detect features in EEG. These have helped many people access the computer
and have made tremendous improvements in their lives. Still, there are many people with
no reliable means to access the computer. We are interested in developing computer
vision systems that work under normal lighting to provide computer access to people

who are quadriplegic and physically disabled.

There are various systems capable of interpreting a human face as a form of input, an

application which is particularly important for people with severe disabilities, but who

— i

_—

are able to move their head, and for able-bodied users that require an additional input

source while they operate a personal computer with both hands.

1.2 Problem Statement

Develop a system that uses a camera to visually track a feature on a person’s face, for

example the tip of the nose, and use the movement of the tracked feature to directly

control the mouse pointer on a computer.

1.3 Objective & Scope of the Project

This project explores the field of computer vision with the broad aim of developing a

system capable of interpreting the movements of human facial features. The facial

movements considered are rotation of the head and blinking of the eyes. The three

dimensional position of the head is tracked and converted to 2D coordinates on the

computer screen; at the same time, intentional blinks are recognized and interpreted as an

action. The tracker works uniquely using the real time video of the person sat in front of

the Screen.

To design an Intelligent Agent for real time tracking of head movements

To provide a Computer vision system to provide computer access to people who

are quadriplegic and physically disabled.

Performance requirements: computationally inexpensive, adaptability, self

initializing, use of minimum knowledge about the environment.

The system would detect the Head Movement as Input and Process to give

corresponding mouse movement as the output.

e e

S e

i

]

e

o e .

1.4 Existing System

A number of techniques and tools are available for assisting the disabled. Most of these

make use of one or more of the following:

e External switches.

e Head pointers.

o Infrared or near infrared camera based systems to detect eye movements.
* Electrode based systems that measure the angle of the eye in the head.

¢ Electric Encephalography (ECG) based systems.,

These have helped many people access the computer and have made tremendous
improvements in their lives. Still, there are many people with no reliable means to access
the computer.

In the modern world, computer use has become essential for many everyday tasks such as
electronic communications, information gathering, and recreational activities. The
current computer interface set up of a mouse and keyboard requires the user to have full
use of his or her hands. Unfortunately, many people do not have sufficient use of their
hands due to injury or illness and are thus unable to use a computer using traditional
hardware

Some alternative interfaces have been developed using electroencephalograms (EEGs)
and eye motion, however these require a great deal of expensive hardware, require
significant processing time, and only give the user limited control. More recently,
development has focused on systems that monitor head motion either electromechanically
or optically. These systems can provide faster speeds and more control, but they are often
very expensive and difficult or awkward to use. Additionally, many of these systems
utilize mouth controls to some degree, which can by hygienically troublesome.

A system called Quick Glance monitors the location of a user’s pupils using an infrared
emitter/receiver. In this way, direction of the eyes can be estimated, and the mouse

moved accordingly. The trigger for a mouse click is a consecutive eye blink. However, in

10

e

—

s T —————

order to use this system a user must maintain their head completely still, for this reason

the Applied Science Laboratory with their Mobile Eye use a similar

technique but the camera is installed directly on a pair of special glasses, making head
movements possible.

Other control devices that monitors eye movements uses the electrooculographic

potential. Electrodes are attached to the user's face in order to measure all the electrical

changes that occur.

The problem with all of these systems is twofold: firstly, they all make use of some sort
of non-standard hardware, which in some cases is expensive and for which there may be
very limited support. Secondly, a user must wear pieces of hardware that can be

considered invasive, such as an infrared emitter, reflectors, electrodes or helmets.

In contrast, an interface based on an image captured by a normal web-camera is
completely 'transparent' to the user, who may use it without not even notice how it is
working. Such hardware is now increasingly found in most of the personal computers

configurations.

Chapter 2

Literature survey

4 The implementation of this project requires an extensive knowledge of —
1) Optical flow

2) Face detection

3) Feature Extraction

4) OpenCV library

2.1 Optical flow

It is the pattern of apparent motion of objects, surfaces, and edges in a visual scene
¢ caused by the relative motion between an observer (an eye or a camera) and the
scene. Using the optical flow methods we try to calculate the motion between two
image frames which are taken at times ¢ and 7 + 8¢ at every position. Sequences of
ordered images allow the estimation of motion as either instantaneous image

velocities or discrete image displacements.

\ Fig 1: Optical flow example

12

e,

.

2.1.1Uses of optical flow

Motion estimation and video compression have developed as a major aspect of optical
flow research. While the optical flow field is superficially similar to a dense motion field
derived from the techniques of motion estimation, optical flow is the study of not only the
determination of the optical flow field itself, but also of its use in estimating the three-
dimensional nature and structure of the scene, as well as the 3D motion of objects and the

observer relative to the scene,

Optical flow was used by robotics researchers in many areas such as: object detection and

tracking, image dominant plane extraction, movement detection, robot navigation and

visual odometry,

The application of optical flow includes the problem of inferring not only the motion of
the observer and objects in the scene, but also the structure of objects and the
environment. Since awareness of motion and the generation of mental maps of the
structure of our environment are critical components of animal (and human) vision, the
conversion of this innate ability to a computer capability is similarly crucial in the field of

machine vision.
The optical flow vector of a moving object in a video sequence.

Consider a five-frame clip of a ball moving from the bottom left of a field of vision, to
the top right. Motion estimation techniques can determine that on a two dimensional
plane the ball is moving up and to the right and vectors describing this motion can be
extracted from the sequence of frames. For the purposes of video compression (e.g.,
MPEG), the sequence is now described as well as it needs to be. However, in the field of
machine vision, the question of whether the ball is moving to the right or if the observer
is moving to the left is'unknowable yet critical information. Not even if a static, patterned

background were present in the five frames, we could confidently state-that the ball was

moving to the right, because the pattern might have an infinite distance to the observer.

2.2 Face detection

Face detection is a computer tecHnology that determines the locations and sizes of human
faces in arbitrary (digital) images. It detects facial features and ignores anything else,
such as buildings, trees and bodies. Face detection can be regarded as a specific case of
object-class detection; In object-class detection, the task is to find the locations and sizes

of all objects in an image that belong to a given class. Examples include upper torsos,

pedestrians, and cars.

Face detection can be regarded as a more general case of face localization; In face
localization, the task is to find the locations and sizes of a known number of faces

(usually one). In face detection, one does not have this additional information.

Early face-detection algorithms focused on the detection of frontal human faces, whereas
newer algorithms attempt to solve the more general and difficult problem of multi-view
face detection. That is, the detection of faces that are either rotated along the axis from
the face to the observer (in-plane rotation), or rotated along the vertical or left-right axis

(out-of-plane rotation),or both.
2.2.1 Techniques

Face detection as a pattern-classification task: Many algorithms implement the face-
detection task as a binary pattern-classification task. That is, the content of a given part of
an image is transformed into features, after which a classifier trained on example faces

decides whether that particular region of the image is a face, or not.

Often, a window-sliding technique is employed. That is, the classifier is used to classify

the (usually square or rectangular) portions of an image, at all locations and scales, as

either faces or non-faces (background pattern).

P et

Controlled background

Images with a plain or a static background are easy to process. Remove the background

and only the faces will be left, assuming the image only contains a frontal face.
By color

Using skin color to find face segments is a vulnerable technique. The database may not
contain all the skin colors possible. Lighting can also affect the results. Non-animate
objects with the same color as skin can be picked up since the technique uses color
segmentation. The advantages are the lack of restriction to orientation or size of faces and

a good algorithm can handle complex backgrounds.
By motion

Faces are usually moving in real-time videos. Calculating the moving area will get the
face segment. However, other objects in the video can also be moving and would affect
the results. A specific type of motion on faces is blinking. Detecting a blinking pattern in
an image sequence can detect the presence of a face. Eyes usually blink together and
symmetrically positioned, which eliminates similar motions in the video. Each image is
subtracted from the previous image. The difference image will show boundaries of
moved pixels. If the eyes happen to be blinking, there will be a small boundary within the

face.
Model-based

A face model can contain the appearance, shape, and motion of faces. There are several
shapes of faces. Some common ones are oval, rectangle, round, square, heart, and
triangle. Motions include, but not limited to, blinking, raised eyebrows, flared nostrils,
wrinkled forehead, and opened mouth. The face models will not be able to represent any

person making any expression, but the technique does result in an acceptable degree of

accuracy. The models are passed over the image to find faces, however this technique

S

works better with face tracking. Once the face is detected, the model is laid over the face

and the system is able to track face movements.
2.3 Feature Extraction

Edge detection is a terminology in image processing and computer vision, particularly in
the areas of feature detection and feature extraction, to refer to algorithms which aim at
identifying points in a digital image at which the image brightness changes sharply or

more formally has discontinuities.

The purpose of detecting sharp changes in image brightness is to capture important
events and changes in properties of the world. It can be shown that under rather general
assumptions for an image formation model, discontinuities in image brightness are likely

to correspond to:

 discontinuities in depth,
o discontinuities in surface orientation,
» changes in material properties and

e variations in scene illumination.

In the ideal case, the result of applying an edge detector to an image may lead to a set of
connected curves that indicate the boundaries of objects, the boundaries of surface
markings as well curves that correspond to discontinuities in surface orientation. Thus,
applying an edge detector to an image may significantly reduce the amount of data to be
processed and may therefore filter out information that may be regarded as less relevant,
while preserving the important structural properties of an image. If the edge detection
step is successful, the subsequent task of interpreting the information contents in the
original image may therefore be substantially simplified. Unfortunately, however, it is not
always possible to obtain such ideal edges from real life images of moderate complexity.
Edges-extracted from non=trivial images are often hampered by fragmentation, meaning
that the edge curves are not connected, missing edge segments as well as Jalse edges not
corresponding to interesting phenomena in the image — thus complicating the subsequent

task of interpreting the image data.

16

e

2.3.1 Edge properties

The edges extracted from a two-dimensional image of a three-dimensional scene can be
classified as either viewpoint dependent or viewpoint independent. A viewpoint
independent edge typically reflects inherent properties of the three-dimensional objects,
such as surface markings and surface shape. A viewpoint dependent edge may change as

the viewpoint changes, and typically reflects the geometry of the scene, such as objects

occluding one another.

A typical edge might for instance be the border between a block of red color and a block
of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small
number of pixels of a different color on an otherwise unchanging background. For a line,

there may therefore usually be one edge on each side of the line.

Edges play quite an important role in many applications of image processing, in
particular for machine vision systems that analyze scenes of man-made objects under
controlled illumination conditions. During recent years, howeQer, substantial (and
successful) research has also been made on computer vision methods that do not

explicitly rely on edge detection as a pre-processing step.
2.3.2 A simple edge model

Although certain literature has considered the detection of ideal step edges, the edges
obtained from natural images are usually not at all ideal step edges. Instead they are

normally affected by one or several of the following effects:

e focal blur caused by a finite depth-of-field and finite point spread function.
. * penumbral blur caused by shadows created by light sources of non-zero radius.

» shading at a smooth object

and a number of researchers have used a Gaussian smoothed step edge (an error function)
as the simplest extension of the ideal step edge model for modeling the effects of edge

blur in practical applications.

17

2.3.3 Approaches to edge detection

> There are many methods for edge detection, but most of them can be grouped into two

categories, search-based and zero-crossing based. The search-based methods detect edges
by first computing a measure of edge strength, usually a first-order derivative expression
such as the gradient magnitude, and then searching for local directional maxima of the

gradient magnitude using a computed estimate of the local orientation of the edge,

usually the gradient direction. The zero-crossing based methods search for zero crossings
in a second-order derivative expression computed from the image in order to find edges,
usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear
differential expression, as will be described in the section on differential edge detection

> following below. As a pre-processing step to edge detection, a smoothing stage, typically f

Gaussian smoothing, is almost always applied (see also noise reduction).

The edge detection methods that have been published mainly differ in the types of
smoothing filters that are applied and the way the measures of edge strength are

! computed. As many edge detection methods rely on the computation of image gradients,

they also differ in the types of filters used for computing gradient estimates in the x- and

y-directions.

2.4 OpenCYV Library

OpenCV is a open source computer vision library released by Intel which provides a
collection of basic algorithms and some sample data.

In particular it provided the complete trained ANN used to identify the location of the

. ¢ nitial faces. Although it is completely implemented in C , it offers an abstraction layer to
L SRy

ol ;W‘- ¥ & ; 4
.agcess the camera driver in a platform independent fashion.

OpenCV is an open source computer vision library originally developed by Intel. It is

free for commercial and research use under a BSD license. The library is cross-platform,

> and runs on Mac OS X, Windows and Linux. It focuses mainly towards real-time image

processing, as such, if it finds Intel's Integrated Performance Primitives on the system, it

will use these commercial optimized routines to accelerate itself.

? This implementation is not a complete port of OpenCV. Currently, this library supports :

o real-time capture
e video file import ;
 basic image treatment (brightness, contrast, threshold, ...) I
» object detection (face, body, ...)

e blob detection

Fig 2: Open Frameworks running the OpenCV add-on example.

2.4.1Applications
OpenCV's application areas include:

e 2D and 3D feature toolkits

« Egomotion estimation

» Facial recognition system

» Gesture recognition

o Human-Computer Interface (HCI)
e Mobile robotics

> e Motion understanding

19

e

e Object Identification

¢ Segmentation and Recognition

» Stereopsis Stereo vision: depth perception from 2 cameras
e Structure from motion (SFM)

¢ Motion tracking

To support some of the above areas, OpenCV includes a statistical machine learning

library that contains:

» Boosting

e Decision tree learning

o Expectation-maximization algorithm
» k-nearest neighbor algorithm

» Naive Bayes classifier

» Artificial neural networks

e Random forest

e Support vector machine (SVM)
Programming language

The library is mainly written in C, which makes it portable to some specific platforms
such as Digital signal processor. But wrappers for languages such as C#, Python and

Ruby have been developed to encourage adoption by a wider audience.
OS Support

OpenCV runs under FreeBSD, Linux, Mac OS and Windows. The user can get official
releases from sourceforge, or take the current snapshot under SVN from there. OpenCV

now uses CMake.

The BaseClasses from DirectShow SDK is required to build some camera input-related
parts of OpenCV on Windows. This SDK is found in the

Samples\Multimedia\DirectShow\BaseClasses subdirectory of the Microsoft Platform

20

SDK (or DirectX SDK 8.0 to 9.0c / DirectX Media SDK prior to 6.0), which must be
built prior to the building of OpenCV. a

} ‘ 2.4.2 Features of OPEN CV

Features:

* Image data manipulation (allocation, release, copying, setting, conversion).

 Image and video I/O (file and camera based input, image/video file output).

* Matrix and vector manipulation and linear algebra routines (products, solvers,
eigenvalues, SVD).

\ » Various dynamic data structures (lists, queues, sets, trees, graphs).

 Basic image processing (filtering, edge detection, corner detection, sampling and

interpolation, color conversion, morphological operations, histograms, image
pyramids).
e Structural analysis (connected components, contour processing, distance

transform, various moments, template matching, Hough transform, polygonal

approximation, line fitting, ellipse fitting, Delaunay triangulation),

e Camera calibration (finding and tracking calibration patterns, calibration,
fundamental matrix estimation, homography estimation, stereo correspondence).

* Motion analysis (optical flow, motion segmentation, tracking).

» Object recognition (eigen-methods, HMM).

[¢ Basic GUI (display image/video, keyboard and mouse handling, scroll-bars).

 Image labeling (line, conic, polygon, text drawing)

“Resouran P L
(\‘\Q . LG.

i Y
(®"
A " Nom..):
S Po (; LIPSy
. [=¥g Lt _:,,

21

Chapter 3
System Analysis and Design

3.1 System Flow Diagram

The overall system is as depicted in the block diagram given in figure 1. The image
acquisition module grabs frames from the video device which are fed into the tracking
module. Now the tracking module checks if the grabbed frame is the first frame. A global
search is performed for the first frame and the likelihood is computed. This way the
tracking module automatically initializes the tracker by performing this global search on
the first frame thus eliminating the need for any explicit knowledge of the environment
before hand. For all the subsequent frames, the location of head is found by performing a
local search in the search range. Finally the object which is tracked in real time is

displayed on the Computer screen.

Vicdeo Device

Frame I.ikelihood

A
s Cilobal
Rt Search]

Grab J - Compute]

Compute Gradients

+

Locate heacd position
by performing iocal
search

+

Dissplay; Tracked Head

v

Computer Screen

oy

-

A

Fig 3. Block diagram for System Flow

22

\..*’_

—

3.2 Modular Description

The system comprises of the following modules:

1.

Graphical User Interface:

This consist of creating a GUI of the systems in any higher level programming
language like JAVA / NET. It will be used to provide a User Interface in
which the user will be able to initiate various functionalities & view the real time
streaming from the web camera. Also user can set various Parameters from this

interface so as to run the system under various constraints.

. Audio / Video Enablement:

The user interface will give a native call to the core application written in c++,
Here we would first enable the hardware device drivers for the Web Camera &

Microphone. After this we will capture the live video from the camera.

Video Processing:

The video captured will be processed. The details of the first frame will be
captured stored either in a temporary file. This will be compared with the next
frame & the details of the Face transition / movement will be stored & provided to

the mouse scaling module.

Mouse Scaling:
The position of the head would provide the coordinate value for the mouse cursor.

Any transition to the head position would provide us with the mouse movement.

3.3 System architecture

The two subsystems of the project are: the Tracking Layer and the Client Layer.

The Tracking Layer is designed as a procedural library[OpenCV], it receives the input
from the web-camera which is interpreted and analysed. Only a subset of functions are

exposed to the Client Layer, which are called using the Tracker Layer Wrapper.

23

S

S

The Client Layer is designed as ObjectOriented system in JAVA, it a employs the |
Wrapper in order to have an internal ObjectOriented representation of the library. |
The user can interact with the Framework using the GUI (Graphical User Interface)
> provided. 1;
| There is minimal coupling between these two layers, the only dependency is the 'one way' 5|
relationship between Tracker Layer Wrapper and the functions exposed by the Tracking

Layer.

OpenCVv
Algorithms

Nativ'e, Functions

Framework =~ = | " Mouse
: S J Controller

Fig 4: System Architecture

T T,

24

3.3.1 Tracking Layer

The Tracking Layer is responsible for encapsulating all the algorithmic functionality
regarding tracking in a single library; it hides all the complexity from the other layer
exposing only the high level functions.

Its purpose is to provide a face tracker robust enough to be usable in visually noisy
environments and without perfect light conditions. The tracking mechanism must be able

to deal efficiently with the natural behavior of a computer user in a typical indoor

environment.

FEATURES INIT

INITIALIZATION @
one face found
INIT == FACE DETECTION =)

%
EYES IDENTIFICATION BAD FEATURE REMOVAI

ures Lost
|
!
|
E
|
|
I
I
|
I
|
I
I
I
I
|
|
I
|
I

TRACKING

Fe

ERROR DETECTION

BLINKS TRACKING

FEATURES TRACKING

-

Fig 5: Tracking Layer Functions

Face Detection:

The system needs the ability to understand when it requires initialization i.e. whenever a
user appears in front of the camera. The frames provided real-time by the camera are
continuously scanned in order to identify the number of faces in visual spectrum, each
time a single face is detected its location is calculated and passed to the features
identification algorithm.

The network is trained using a set of frontal faces provided with the OpenCV library.

25

Feature Identification:

The technique created is based on four simple steps:

Retrieve face location: the location of the face is retrieved thanks to the face

detection algorithm from OpenCV,

Identify eyes location: the location of the eyes is calculated relatively to the
location of the face.

Remove unwanted areas edges of the face

Identify good features to track

Movement Tracking:

A sequence of the operations performed as follows:

The number and the initial position of the facial features are obtained from the
previous step.

The initial configuration of the features is stored in the memory.

The real-time video clip provided by the camera is analyzed frame by frame by
the tracker in order to detect the movements of each single feature.

For each feature the difference between its current and initial location is

calculated, then the average of all the differences is calculated. In this way the

tracker detects a small movement when the head performs a roll.

Eye Blink Detection:

The technique used to detect the eye blinks is entirely based on the movements of the

eyelids which, can be effectively detected using a USB camera (capable of achieving 30

fps).

3.3.2 Client layer

The main aim of Client layer is to make available the GUI that allows the user to manage

options & all the functionality for the operation-of the system.

3.4 Tracker Function Hierarchy

SlopTracker

1
el

chosaeCarTeras

seiConfguration | | getConfquraton

|,m’ cetC onfiguroation —

|

1 setConfiguraticor ﬁ.

CletexCrER Tiruic W

=
£
=
=
=
=
=
=
=
=2 =
= =
=
= \a_ =
= =
5

update Eyasi_ocaticrm m

INMterpretfovermentsOSsrerag e 1_

Face T racikiro _

”
./%‘_——n'--ﬂ——-ﬁnﬁ'-u g Doy

Tracking L Funcors eposed o e Clen Layey

£

J pobos pbu pelen codug

Sheeck T racking Ecroes: w

M

identifyFaceas: 1_

caphreNextFrame | | intFaceFeatnes | enlfFaces

SlanTracker

ket et ilodabhls Eefbldolabd bRy Wb A AL EA L LTS ELEEE LY T PETTE YT Prpepepopapnpeg SEpuguyspn isunpupu g S

_q T roc ko *
._— imitFaceFeatures _
”w Setirmage Iu
| imitFace tdentifier l_
4

! it Carrresra ﬁ
1 £

Hin Tracking Lyer Funclions

[R e e e e

Fig 6: Tracker FunctionHierarchy

27

3.5State Transition Diagram

W

*4 Stand By JI ’JL Locate Faces]%wﬁﬁ.-__,

/

Setting Initial Position]

._

\

[Face Features Tracking]

[Eyes Tracking]

Fig 7: State Transition Diagram

28

g |

3.6 Class Diagram

entagr i

j |

it |
‘ ity MBAD ™ || SNHESH D
] [}

D mougeAbslt

| Lt 0

gy (5

~ Dlghaushete
; o m e by

Fig 8: Class Diagram

Cndroderlits

29

e NG 2

Configuration

t'A

~ eads
~

initializes

<<[reads»
Tracker

-slate int
listenar : Plugin

 ~\s<constructor>) Tracker

<agonstiuctors>Tracker)
sslart))
+stopTracker() : boolean

ClientLayer

franiework : Framework
lrac¢er ; Tracker

+actiatePlugin(index: int)
+removePlugin{index: int)

+0etlugins(; Pluging

+0edefaultPluging : String

+setonfiguration(configuration : Configuration)
+etconfiguration() : Configuration

+8t0)Pluging

+setdefaultPluging indexOmPlugin: int)
+ins:allPlugin(jarLocation ; String)
+saveConfiguration(configuration : Configuration)

+etsavedConfiguration()

1

+setState(state - int) . int

+qetListener(): Plugin

+setListener(listenar: Plugin)

+etState() ; int
<<native>>+setConfiguration(newConfiguration : Configuration)
<<nativez2 +gpiCanfiguration() Configiratinn
<enatives>-staTrackerLayer() ; int
<<native>>-captureNexFrame() : int
<<native>>-identifyFaces() ; int
<<pative>>-initF aceFeatures()
<<pative>faceTracking() : int]
<<native>»-gyesTracking() : int

-un()

(Interface with the fibrary of |
the TrackingLayer

LI

sends events o

Hamework

-plugins : Pliging 1

1

Plugin

Fname . Stng
#ersion ; String
#description ; String

+eyesBlinkTrackingSuccessull() : int
+etinitialState() : int

HateFound(numofFaces int) int
+selinitialPosition() : int
+FaceTrackingSuccessfull(x: it y: int): int
+FealuresLost():int

+start()

+stop()

+gelversion() - String

+oetName() : String
+etDescription() : String
+gStoppable() : boolean

*

has available p»

-attivePlugin: Plugin A8

provides

-loader ; Loader

<<ronstiuctor=+Framework)
+installPlugin Jocation : Sking)
+removePlugin(plugin: Plugin) : hoolean
+0etPIugins() : Pluging 1
+(etPlugin(name : Sting) : Plugin
+setActivePluging plugin : Plugin)
+etActivePluging : Plugin
+(etDefaultPluging : String
+seiDefaultPlugin(pluginindex: int)
+(etPlugin(pluginindex:int): Plugin

Loader

HoadstandardLibraries()

Uses ! "03(1”“0'!]30 : Pluging

+installPluain location : String) : Plugin
+removePlugin(name : Sting) ; baclean
+OeDefaulPluging : String
+setDefaultPlugin defaultPhugin : Plugin)

F ig 9: Class diagram I1

30

Chapter 4

Implementation Details

PROGRAMMING LANGUAGES

The programming languages used to code the system are: VC++ for the the tracking layer

and Java for the Client Layer.

Front End : Features of JAVA: Java (with a capital J) is a high-level, third
generation programming language, like C, FORTRAN, Smalltalk, Perl, and many
others. You can use Java to write computer applications that crunch numbers,
process words, play games, store data or do any of the thousands of other things

computer software can do.

Java is Simple: Java is an excellent teaching language and an excellent choice with
which to learn programming. The language is small so it's easy to become fluent. The
language is interpreted so the compile-run-link cycle is much shorter. The runtime
environment provides automatic memory allocation and garbage collection so there's less
for the programmer to think about. Java is object-oriented unlike Basic so the beginning
programmer doesn't have to unlearn bad programming habits when moving into real
world projects. Finally, it's very difficult (if not quite impossible) to write a Java program

that will crash your system, something that you can't say about any other language.

Java is High Performance: Java byte codes can be compiled on the fly to code that
rivals C++ in speed using a "just-in-time compiler." Several companies are also working
on native-machine-architecture compilers for Java. These will produce executable code
that does not require a separate interpreter, and that is indistinguishable in speed from
C++ While you'll never get that last ounce of speed out of a Java program that you might
be able to wring-from-C-or- FORTRAN;-the-results-will-be-suitable-for-all-but the most

demanding applications.

31

Java database Connectivity: A great promise of Java has been the ability to build
platform-independent client/server database applications. In Java 1.1 this has come to
fruition with Java Data Base Connectivity (JDBC). One of the major problems with
databases has been the feature wars between the database companies. There is a
“standard” database language, Structured Query Language (SQL-92), but usually you
must know which database vendor you’re working with despite the standard. JDBC is
designed to be platform-independent, so you don’t need to worry about the database
you're using while you’re programming. However, it’s still possible to make vendor-

specific calls from JDBC so you aren’t restricted from doing what you must.

Java is Platform Independent: Java was designed to not only be cross-platform in source
form like C, but also in compiled binary form. Since this is frankly impossible across
processor architectures Java is compiled to an intermediate form called byte-code. A Java
program never really executes natively on the host machine. Rather a special native
program called the Java interpreter reads the byte code and executes the corresponding
native machine instructions. Thus to port Java programs to a new platform all that is
needed is to port the interpreter and some of the library routines. Even the compiler is
written in Java. The byte codes are precisely defined, and remain the same on all

platforms.
Why Java ?

Here we list the basic features that make Java a powerful and popular programming

language:

Platform Independence : The Write-Once-Run-Anywhere ideal has not been achieved

(tuning for different platforms usually required), but closer than with other languages.

e Object Oriented
e Object oriented-throughout-=-no-coding-outside-of class-definitions, including
main().

e An extensive class library available in the core language packages.

32

"

Compiler/Interpreter Combo

Robust

Code is compiled to byte codes that are interpreted by a Java virtual machines
VM) .
This provides portability to any machine for which a virtual machine has been
written.
The two steps of compilation and interpretation allow for extensive code checking

and improved security.

Exception handling built-in, strong type checking (that is, all data must be

declared an explicit type), local variables must be initialized.

Several dangerous features of C & C++ eliminated:

No memory pointers
No preprocessor

Array index limit checking

Features such as eliminating memory pointers and by checking array limits greatly help
to remove program bugs. The garbage collector relieves programmers of the big job of
memory management. These and the other features can lead to a big speedup in program

development compared to C/C++ programming,

The Java Native Interface: The Java Native Interface (JNI) is a programming
framework that allows Java code running in a Java Virtual Machine (JVM) to call and to
be called by native applications (programs specific to ahardware and operating

system platform) and libraries written in other languages, such as C, C++ and assembly.

JNI allows one to write native methods to handle situations when an application cannot
be written entirely in the Java programming language, e.g. when the standard
Java class library does not support the platform-specific features or program library. It is

also used to modify an existing application—written in another programming language—

33

to be accessible to Java applications. Many of the standard library classes depend on JNI
to provide functionality to the developer and the user, e.g. file I/O and sound capabilities.
Including performance- and platform-sensitive APl implementations in the standard
library allows all Java applications to access this functionality in a safe and platform-
independent manner. Before resorting to using JNI, developers should make sure the

functionality is not already provided in the standard libraries.

The JNI framework lets a native method utilize Java objects in the same way that Java
code uses these objects. A native method can create Java objects and then inspect and use
these objects to perform its tasks. A native method can also inspect and use objects

created by Java application code.

JNI is sometimes referred to as the "escape hatch" for Java developers because it allows
them to add functionality to their Java application that the standard Java APIs cannot
otherwise provide. It can be used to interface with code written in other languages, such
as C and C++. It is also used for time-critical calculations or operations like solving

complicated mathematical equations, since native code can be faster than JVM code.

34

4.1Data Flow Diagram

Level 0 DFD

Human Face
Movements

Mouse Movement

e R T —>

INTELLIGENT HUMAN
INTERACTION SYSTEM

Level 1 DFD

Human Face

Movements Video Frame

UHIgE & ot F = Salankinn \\.

Image
Processing

Mouse Movement Facial

Coordinates

35

e

ke

4.2 Camera Functions

Camera.cpp :-

StartTracker:Module containing the functions that interrogate the camera.

int initcamera():-This function detect whether any camera is available to the system.It
does so by using an integer variable called "successfulllnit" which is initialized to '0".An
openCV inbuilt function "cvCaptureFromCAM(0)" is used to find a camera attached to
the computer and store the camera's specifications in an object "capture" of openCV
inbuilt structure "cvCapture".This structure contains all of the information about the AVI
file being read, including state information. When created in this way, the CvCapture

structure is initialized to the beginning of the AVI.
If the camera is found the "successfullinit" variable is changed to 'l' else it returns '0".

Ipllmage* initFaceldentifier():-This function is used to initialize the system.An object
"frame" is created of openCV inbuilt structure "Ipllmage" .This structure is used to store
images.An inbuilt function "cvQueryFrame()" that takes as its argument a pointer to a
CvCapture structure "capture”. It then grabs the next video frame into memory (memory
that is actually part of the CvCapture structure). A pointer is returned to that frame.And

Ipllmage's object is returned.

// Module containing the functions that interrogate the camera

#include "TrackingLayer.h"
#include "camera.h"

CvCapture* capture; 7
/**< stores the connection with the camera */
/‘* *
* Initialize the camera */
int initCamera(){
int successfulllnit = 0;

36

“'*/

/fuse the first camera found
capture = cvCaptureFromCAM(0);

if(capture)
successfulllnit = 1;

return successfulllnit;

}

/**

* Get the current image from the camera
*\n The camera needs to be initialized from \ref initCamera()
*\return the pointer to the image retrieved
*/
Ipllmage* getlmage() {
Ipllmage* frame = 0;
frame = cvQueryFrame(capture);

return frame;

}

// Terminates the camera

void closeCamera(){
cvReleaseCapture(&capture); //Release the captured memory
}

// Header of \ref camera.cpp

int initCamera();

Ipllmage* getlmage();

void closeCamera();

37

“'M,

4.3 Configurator

It containing the functions to set the configuration of the object identified by the camera. ‘
It is used to identify features of the object captured like the max feat , EyeErosion |

?

Eyeframegap, Eyemax relations.
This C-++ program includes “TrackingLayer.h” and "configurator.h" header files.

Configurator.cpp |
/* il
* Module containing the functions to set the configuration |

"

#include "TrackinglLayer.h"
#include "configurator.h"

//declaration of the default configuration variables
int DEBUG = 0;

int FACE_TRIM = 25;

int MAX_FEAT = 20;

double FEAT QUALITY = 0.15;

int MIN_FEAT DISTANCE = 5;

int WIN_SIZE W = 10;

int WIN_SIZE H=10;

int TRACKER ERROR = 320;

int EYES _EROSION = 1;

int EYES TRESHOLD = 20;

int EYES MAX_ANGLE = 10;

int EYES FRAMES GAP = 1;

int EYES_PIX RATIO = 20;

int EYES MAX RELATIONS = 30;

int ACTION_NUM_MOVEMENTS = 2;

int ACTION-FRAMES =-15; i

jclass getConfClass(JNIEnv *env){
jelass confClazz = env->FindClass("clientlayer/Configuration");
assert(confClazz != NULL); //be sure that the class has been found

38

}

return confClazz;

void setConfiguration(JNIEnv *env, jobject conﬁguraﬁon){

jelass configurationClass = getConfClass(env);
jfieldID tempField = 0;

jint tempResultInt = 0;

jdouble tempResultDouble = 0;

jobject tempResultString = 0;

//Set DEBUG

tempField = env->GetFieldID(configurationClass, "debug", "I");
tempResultInt = env->GetIntField(configuration, tempField);
DEBUG = tempResultlnt;

//Set FACE_TRIM

tempField = env->GetFieldID(configurationClass, "faceTrim", "I');
tempResultInt = env->GetlIntField(configuration, tempField);
FACE_TRIM = tempResultInt;

//ISet MAX_FEAT

tempField = env->GetFieldID(configurationClass, "maxFeat", "I");
tempResultInt = env->GetIntField(configuration, tempField);
MAX FEAT = tempResultInt;

//Set FEAT QUALITY

tempField = env->GetFieldID(configurationClass, "featQuality", "D");
tempResultDouble = env->GetDoubleField(configuration, tempField);
FEAT QUALITY = tempResultDouble;

//Set MIN_FEAT_DISTANCE

tempField = env->GetFieldID(configurationClass, "minFeatDistance", "I");
tempResultInt = env->GetIntField(configuration, tempField);

MIN_FEAT DISTANCE = tempResultInt;

//Set WIN_SIZE_W

tempField = env->GetFieldID(configurationClass, "winSizeW", "I");
tempResultInt = env->GetIntField(configuration, tempField);
WIN_SIZE W = tempResultlnt;

//Set WIN_SIZE_H

39

e

tempField = env->GetFieldID(configurationClass, "winSizeH", "I");
tempResultint = env->GetIntField(configuration, tempField);
WIN_SIZE H = tempResultlnt;

//Set TRACKER_ERROR

tempField = env->GetFieldID(configurationClass, "trackerError", "I");
tempResultInt = env->GetIntField(configuration, tempField);
TRACKER_ERROR = tempResultInt;

//Set EYES EROSION

tempField = env->GetFieldID(configurationClass, "eyesErosion”, "I");
tempResultInt = env->GetIntField(configuration, tempField);
EYES_EROSION = tempResultInt;

//Set EYES TRESHOLD

tempField = env->GetFieldID(configurationClass, "eyesThreshold", "I");
tempResultInt = env->GetIntField(configuration, tempField);
EYES_TRESHOLD = tempResultint;

//Set EYES MAX ANGLE

tempField = env->GetFieldID(configurationClass, "eyesMaxAngle", "I");
tempResultInt = env->GetIntField(configuration, tempField);
EYES_MAX_ANGLE = tempResultInt;

//Set EYES FRAMES GAP

tempField = env->GetFieldID(configurationClass, "eyesFramesGap", "I");
tempResultint = env->GetIntField(configuration, tempField);

EYES FRAMES GAP = tempResultInt;

//Set EYES PIX RATIO

tempField = env->GetFieldID(configurationClass, "eyesPixRatio", "I");
tempResultint = env->GetIntField(configuration, tempF 1eld),

EYES PIX RATIO = tempResultint;

//Set EYES_MAX_RELATIONS

tempField = env->GetFieldID(configurationClass, "eyesMaxRelation", "I");
tempResultint=env->GetIntField(configuration; tempField);

EYES MAX_RELATIONS = tempResultInt;

//Set ACTION_ NUM_MOVEMENTS

40

tempField = env->GetFieldID(configurationClass, "actionNumMovements", "[");
tempResultInt = env->GetIntField(configuration, tempField);
S ACTION_NUM_MOVEMENTS = tempResultInt;

//Set ACTION FRAMES

tempField = env->GetFieldID(configurationClass, "actionFrames", Iy
tempResultInt = env->GetlIntField(configuration, tempField);
ACTION_FRAMES = tempResultInt;

}

Jobject getConfiguration(JNIEnv *env){

jelass configurationClass = getConfClass(env);

//allocate a configuration object without calling its constructor;
\ Jobject currentConf = env->AllocObject(configurationClass);
assert(currentConf!=NULL); //make sure that the object can be created
JjfieldID tempField = 0;

/IGet DEBUG
tempField = env->GetFieldID(configurationClass, "debug", "I");
env->SetIntField(currentConf, tempField, DEBUG); : ‘

//Get FACE_TRIM
tempField = env->GetFieldID(configurationClass, "faceTrim", ik}
env->SetIntField(currentConf, tempField, FACE TRIM);

//Get MAX_FEAT
tempField = env->GetFieldID(configurationClass, "maxFeat", "I");
> env->SetIntField(currentConf, tempField, MAX_FEAT);

//Get FEAT QUALITY
tempField = env->GetFieldID(configurationClass, "featQuality", "D");

: I

env->SetDoubleField(currentConf, tempField, FEAT QUALITY); I

//Get MIN_FEAT DISTANCE !
tempField = env->GetFieldID(configurationClass, "minFeatDistance", "I"); ’
env->SetIntField(currentConf, tempField, MIN_FEAT DISTANCE);

/IGet WIN_SIZE W
tempField = env->GetFieldID(configurationClass, "winSizeW", "I");
env->SetIntField(currentConf, tempField, WIN_SIZE_W);

4]

//Get WIN_SIZE H
tempField = env->GetFieldID(configurationClass, "winSizeH", "I"):
env->SetlntField(currentConf, tempField, WIN_SIZE_H);

//Get TRACKER ERROR
tempField = env->GetFieldID(configurationClass, "trackerError", "I');
env->SetIntField(currentConf, tempField, TRACKER ERROR);

//Get EYES_EROSION
tempField = env->GetFieldID(configurationClass, "eyesErosion", "I");
env->SetIntField(currentConf, tempField, EYES_EROSION);

/IGet EYES_ TRESHOLD
tempField = env->GetFieldID(configurationClass, "eyesThreshold", Y
env->SetIntField(currentConf, tempField, EYES_TRESHOLD);

/IGet EYES MAX ANGLE
tempField = env->GetFieldID(configurationClass, "eyesMaxAngle", "I");
env->SetIntField(currentConf, tempField, EYES_ MAX_ANGLE);

//Get EYES FRAMES GAP
tempField = env->GetFieldID(configurationClass, "eyesFramesGap", "I");
env->SetIntField(currentConf, tempField, EYES_FRAMES_ GAP);

//Get EYES_PIX_RATIO
tempField = env->GetFieldID(configurationClass, "eyesPixRatio", "I");
env->SetIntField(currentConf, tempField, EYES_PIX_ RATIO);

//Get EYES MAX RELATIONS
tempField = env->GetFieldID(configurationClass, "eyesMaxRelation", "I");
env->SetIntField(currentConf, tempField, EYES_MAX_RELATIONS);

//Get ACTION_NUM_MOVEMENTS

tempField = env->GetFieldID(configurationClass, "actionNumMovements", "I");

env->SetIntField(currentConf, tempField, ACTION_NUM MOVEMENTS)
1/Get ACTION-FRAMES =
tempField = env->GetFieldID(configurationClass, "actionFrames",)R
env->SetIntField(currentConf, tempField, ACTION_FRAMES);

return currentConf;}

42

T~

Configurator.h

/*
* Header of \ref configurator.cpp

%/
#include <jni.h>

/**

* Set the new configuration passed as a parameter

* @param obj the new configuration

£/

void setConfiguration(JNIEnv *env, jobject obj);

/**

* Create a configuration object with the current configuration
* @return current configuration

G

jobject getConfiguration(JNIEnv *env);

43

4.4 Configuration.h

> Itis a header file which contains the configuration values for the TrackingLayer. It defines various
default configuration variables used in Configuration.cpp.

This program calls java function ‘configuration’ .once the link is set then java function is used to

configure the tracking layer.
Configuration.h

/*

> * Contains the configuration values for the TrackingLayer
2

#ifndef CONF_SETTINGS

#define CONF_SETTINGS

extern int DEBUG;
/**<Ifitis set to 1 it will display a window with the result of the algorithms */

extern int FACE TRIM;
/**< How much trim the edge of the face in percentage */

extern int MAX FEAT;
/**< Max number of face features used to track the face movements */

extern double FEAT QUALITY;
/**<Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of image feature. */

S~

extern int MIN_FEAT DISTANCE;
/**< Define the minimum distance in pixel between the features found */

extern int WIN_SIZE W, 5
/**< Width of the window size for the tracker and the feature refinement */ |

extern int WIN-SIZE-H;
/**< Height of the window size for the tracker and the feature refinement */

f extern int TRACKER _ERROR;
/**< the accuracy of the error detection in pixel (the smaller the value the more accurate it is) */

44

extern int EYES EROSION;
/**< Number of iteration of erosion of the image of the eyes */

extern int EYES_TRESHOLD; il
/##< It describe the threshold level of the eyes. The smaller the value more value are displayed */

extern int EYES MAX ANGLE; _
/**< Maximum angle allowed to the axis that link the two eyes. It is used for the initial identification*/

extern int EYES FRAMES GAP;
/**< Frames compared to retrieve an eye blink action */

extern int EYES_PIX RATIO;
/**< The minimum number of pixel necessary in the eyes area to be considered as a possible blink
* (expressed as a ratio with the total eye window area, i.e. the hi gher = the less pixel required) */

extern int EYES MAX RELATIONS;
/**< The maximum number of relations allowed between eyes */

extern int ACTION_NUM MOVEMENTS;
/**< The number of consecutive eyes movements required required to trigger an action */

extern int ACTION_FRAMES;
/**< The maximum frame gap allowed between two consecutive blinks */

ftendif /* CONF_SETTINGS */

#define CASCADE_LOCATION "res\\haarcascade frontalface.xml"

/**< Location of the Trained Cascade to use */

#define FEAT REFINEMENT 1

/**< Perform the feature refinement */

#define FEAT REFINEMENT CRITERIA
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT EPS,20,0.03)
/**< Criteria for termination of the iterative process of corner refinement */
#define TRACKER PYR -NUM 3 i
/*¥*< Maximal pyramid level number for the tracker */

#define TRACKER _CRITERIA

cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT EPS,20,0.03)

45

/**< Criteria for termination of the iterative process of tracking */
#idefine TRACKER_FLAGS 0

/**< Tracking flags */

9 fidefine WINDOWS_NAME "Debug"

| /**< Title of the debug window */

/fttdefine SHOW_POINTS

/**<if defined shows the points tracked in a window */

/ftdefine SHOW _MOVEMENTS

/**<if defined shows the hypotetic movements of the cursor */

4.5 EyesTracking ' '

\ evesTracking.cpp:-

It contains the functions to track the eyes position and the eye blinks.
It includes ‘Trackinglayer.h’ and ‘eyesTracking.h’ header files.
It uses various variables and buffers to store initial and final eye coordinates.

Eg: CvRect *initialLeftEye , *initialRightEye.

The difference of coordinates and angle is calculated between right eye and left eye.

The function used to do so are:

void eyesTrackerInit(CvRect *leftEyeln, CvRect *rightEyeln, Iplimage* frame)
void setEyesDebuglmg(Iplimage* image)

int compareRect(CvRect *tempBox1, CvRect *tempBox2)

i 5

CvPoint getRectCenter(CvRect *tempBox1) |
void removeUnfeasibleEyes(list < CvRect* > &lines)

void difference(Iplimage* imgl, Iplimage* img2, Iplimage* resultimage)

The integer variable “minimumWhitePixel” is used for the minimum number of pixel necessary

in the eyes area to be considered as a possible blink in both eyes..

inline int checkEyeFeasibility(CvRect* eye) — Check if the eyes are still in the view of the camera.

_—

It return 0 if the eye is feasible, 1 otherwise.

46 | !

Program then updates mouse coordinates keeping in consideration old mouse coordinates
using function ‘int updateEyesLocation’ .This also checks if eyes are in the view of camera by

using function:
int updateEyesLocation(int newX, int newY, int oldX, int oldY, Iplimage *outputlmage)

All this operations are done using image buffers Ipllimage.
Function ‘eyesTrackerlnit’ is one of the imp functions in this program it does following
action in a sequence:
1. Camera resolution: It checks camera height and width.
2. eyes difference: It finds difference between initial image and final image using
CvCreatelmage.
3. eyes images buffers: It stores various eye details in variables or buffers.

4. Function ‘detect Blink’ is used to detect if there were any ‘repeated blinking’.

‘eyesTracking.h’ is a header file which does

1. Update the location of the eyes.
2. Identify if a blink has occurred that may trigger an action.
3. Set the output image used for the debug process.

eyestracking.cpp

/*

* Module containing the functions to track the eyes position and the eye blinks
¥

#include "TrackingLayer.h"

#include "eyesTracking.h"

CvMemStorage* contStore = 0; -
CvSeq* contourn= 0;

list < CvRect > objectsFound;

list < CvRect* > relationshipsFound;

47

#ifdef SHOW_POINTS

Ipllmage* imageTempBlink = 0,
Iplimage* imageTempEyes = 0;
3 Hendif

/ldifference variables (and buffers)
Ipllmage* imgI BW = 0;
Iplimage* img2BW = 0;
Ipllmage* imgRes = 0;

Ipllmage* imgResEroded = 0;

/leyes images buffers ; 1

Iplimage* imgOldLeftEye = 0; bl
Iplimage* imgActualLeftEye = 0; |

> Ipllmage* imgOIldRightEye = 0;

Iplimage* imgActualRightEye = 0;

Iplimage* diffLeftEye = 0;

Iplimage* diffRightEye = 0;

Ipllmage* eyesContournlmgBuft = 0; //the image used to find the countourns

CvRect *initialLeftEye = 0, *initialRightEye = 0;

CvRect actualLeftEye, actualRightEye, oldLeftEye, oldRightEye;
//the old...eyes position must correspond to the old and new image parsed |
int positionX = 0;
int positionY = 0;

int minimumWhitePixel = 0; //The minimum number of pixel necessary in the eyes area to
> be considered as a possible blink in both eyes.

int CAMERA_HEIGHT E = 0;

/**< It stores the height of the camera resolution */
int CAMERA WIDTH _E =0;

/**< It stores the width of the camera resolution */

Iplimage *DEBUG_EYES_IMAGE = 0;

void eyesTrackerInit(CvRect *leftEyeln, CvRect *rightEyeln, Ipllmage* frame){ L

//init cam resolution
\ CAMERA_WIDTH_E = frame->width; |
(CAMERA_HEIGHT _E = frame->height; }

48

e Yl

/finit the countourn detection
contStore = cvCreateMemStorage(0);
contourn = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), contStore);

//init the eyes difference

imgl BW = cvCreateImage(cvSize(leftEyeln->width, leftEyeln->height), IPLL DEPTH _8U, 1);
img2BW = cvCreatelmage(cvSize(leftEyeln->width, leftEyeln->height), IPL_ DEPTH 8U, 1);
imgResEroded = cvCreatelmage(cvSize(leftEyeln->width, leftEyeIn->height), IPL_DEPTH_8U, 1);
imgRes = cvCreatelmage(cvSize(leftEyeln->width,leftEyeln->height), img2BW->depth, img2BW-
>nChannels);

/feyes images buffers

imgOldLeftEye = cvCreatelmage(cvSize(leftEyeln->width, leftEyel n->height),
frame->depth, frame->nChannels); :

imgActualLeftEye = cvCreatelmage(cvSize(leftEyeln->width,leftEyeln->height),
frame->depth, frame->nChannels);

imgOldRightEye = cvCreatelmage(cvSize(rightEyeln->width,rightEyeln->hei ght),
frame->depth, frame->nChannels);

imgActualRightEye = cvCreatelmage(cvSize(rightEyeln->width,rightEyeln->height),
frame->depth, frame->nChannels);

diffLeftEye = cvCreateImage(cvSize(leftEyeln->width,leftEyeIn->height), IPL_DEPTH 8U, 1);
diffRightEye = cvCreatelmage(cvSize(rightEyeln->width,rightEyeIn->height), IPL_ DEPTH 8U, 1);
eyesContournlmgBuff = cvCreatelmage(cvSize(rightEyeln->width,rightEyeln->height),
IPL_DEPTH 8U, 1);

//init the eyes
initialLeftEye = leftEyeln;
initialRightEye = rightEyeln;

actualLefiEye = cvRect(leftEyeln->x, leftEyeln->y, leftEyeln->width, leftEyeln->height);
actualRightEye = cvRect(rightEyeln->x, rightEyeln->y, rightEyeln->width, rightEyeln->height);
oldLeftEye = cvRect(leftEyeln->x, leftEyeln->y, leftEyeln->width, leftEyeIn->height);
oldRightEye = cvRect(rightEyeln->x, rightEyeln->y, rightEyeln->width, rightEyeln->height);

minimumWhitePixel-=((int)(leftEyeln->width*leftEyeln->height / EYES-PIX_RATIO)*2;
}

void setEyesDebuglmg(Iplimage* image){

49

DEBUG_EYES_IMAGE = image;
}

> int compareRect(CvRect *tempBox 1, CvRect *tempBox2){ i
int res = 0; :
assert(tempBox1);
assert(tempBox2);
if(tempBox1->height > tempBox2->height){
res=1;
yelse if(tempBox 1->height < tempBox2->height){
res =-1;
telse if(tempBox 1->width > tempBox2->width){
res = 1; .
\ telse if(tempBox1->width < tempBox2->width){
/ res =-1;
telse if(tempBox1->x > tempBox2->x){
res = 1;
yelse if(tempBox1->x < tempBox2->x){
res =-1;
relse if(tempBox1->y > tempBox2->y){
res = 1;
telse if(tempBox1->y < tempBox2->y){
res =-1;

}

return res;

}

CvPoint getRectCenter(CvRect *tempBox1){
assert(tempBox1);

return cvPoint((int)(tempBox1->x + (tempBox1->height / 2)),
(int)(tempBox 1->y + (tempBox1->width / 2)));

}

void-drawkines(-list-<-CvRect* > &lines;-Iplmaget-dstlmage}fooo-———— Jll -
CvRect* tempLine;
CvPoint centerl, center2;

50

e

for (list<CvRect*>:iterator it = lines.begin(); it!=lines.end(); ++it) {
tempLine = *it;
center] = getRectCenter(&tempLine[0]);

center2 = getRectCenter(&tempLine[1]);

3

cvLine(dstlmage,
centerl,
center2,
CV_RGB(255,0,0)

}

void removeUnfeasibleEyes(list < CvRect* > &lines){
double pi = 3.1415926535;
double angle;
CvRect* tempLine;
CvPoint centerl, center?;

list<CvRect*>::iterator it = lines.begin();
while(it!=lines.end()){
tempLine = *it;
center] = getRectCenter(&tempLine[0]);
center2 = getRectCenter(&tempLine[1]);

//calculate angle (in degrees)
angle = atan((float)
abs(centerl.y - center2.y) /
abs(center].x - center2.x)
)*180/pi;
if(angle > EYES_MAX ANGLE) {
it = lines.erase(it);
telse{
++it;

}

void difference(Ipllmage* imgl, Ipllmage* img2, Ipllmage* resultimage){

31

S

cvCvtColor(imgl, img1BW, CV_BGR2GRAY);
cvCvtColor(img2, img2BW, CV_BGR2GRAY);
cvAbsDIff(imgl BW, img2BW, imgRes); Il
/levSub(img1BW, img2BW, imgRes); i

/lerode image
cvErode(imgRes, imgResEroded, NULL, EYES_EROSION);

/ltreshold image
cvCmpS(imgResEroded, EYES_TRESHOLD, resultlmage, CV_CMP_GT);

b

}

/the offset will be used to set the right coordinate on the eye |
void getContourns(Ipllmage* image, CvPoint offset){

cvCopy(image, eyesContournlmgBuff);
// Find all contours (it modifies the image contents).
cvFindContours(eyesContournlmgBuff, contStore, &contourn,
sizeof(CvContour), CV_RETR_LIST,
CV_CHAIN_APPROX NONE,
offset);

//if a contourn has been found
if(contourn){
bool getCountourns = true;
while(getCountourns) {

/lcreate a bounding rectangle

CvRect arealdentified = cvBoundingRect(contourn,0); |
// put it in a vector list
objectsFound.push_back(arealdentified);

//go to the next contourn and break the loop if necessary

if(!(contourn = contourn->h_next)){
getCountourns = false;

1}

52

e

T g

/**

* Check if the eyes are still in the view of the camera
* return 0 if the eye is feasible, 1 otherwise.
i
inline int checkEyeFeasibility(CvRect* eye){
int notFeasible = 0;
if(eye->x <=0 ||
(eye->x+eye->width) >= CAMERA_WIDTH_E){
notFeasible = 1;
}
ifleye->y <=0 ||
(eye->y+eye->height) >= CAMERA_ HEIGHT E){
notFeasible = 1;

}

return notFeasible;

}

/lupdates the eyes position keeping in consideration the previous location
int updateEyesLocation(int newX, int newY,
int oldX, int oldY,
Ipllmage *outputlmage) {
int errors = 0;
int failed = 0;
int shiftNewX = positionX - newX;
int shiftiNewY = positionY - newY;
int shiftOldX = positionX - oldX;
int shiftOldY = positionY - oldY;

//shift the eyes
actualLeftEye.x = initialLeftEye->x - shiftNewX;
actualLeftEye.y = initialLeftEye->y - shiftNewY;
actualRightEye.x = initialRightEye->x - shiftNewX;
actualRightEye.y = initialRightEye->y - shiftNewY;

oldLeftEye.x = initialLeftEye->x - shiftOldX;
oldLeftEye.y = initialLeftEye->y - shiftOldY;
oldRightEye.x = initialRightEye->x - shiftOldX;
oldRightEye.y = initialRightEye->y - shiftOldY;

53

//check errors

errors += checkEyeFeasibility(&actualLeftEye);
errors += checkEyeFeasibility(&actualRightEye);
v errors += checkEyeFeasibility(&oldLeftEye);

r errors += checkEyeFeasibility(&oldRightEye);

if(errors > 0){

failed = 1;
}
if(DEBUG){
//levCopy(outputlmage, imageTempEyes);
//draw the shifted eyes
L cvRectangle(DEBUG_EYES_IMAGE, cvPoint(actualLeftEye.x , actualLeftEye.y),
/ cvPoint(actualLeftEye.x+actualLeftEye.width,

actualLeftEye.y+actualLeftEye.height),
CV_RGB(0,0,255), 2, 8,0);
cvRectangle(DEBUG_EYES_IMAGE, cvPoint(actualRightEye.x , actualRightEye.y),
cvPoint(actualRightEye.x+actualRightEye.width,
actualRightEye.y+actualRightEye.height),
CV_RGB(0,0,255),2, 8, 0);
}

return failed;

}

int detectBlink(Ipllmage *imagel, Ipllmage *image2, Iplimage *outputImage) {
static int blinkDetectionCounter = 1;
static int actionGapCounter = 0;

//difference of the image considering the left eye only il
cvResetImageROI(imagel);
cvResetImageROI(image2);
cvSetlmageROI(imagel, oldLeftEye);
cvCopy(imagel, imgOldLeftEye);

2\ cvSetlmageROI(image2, actualLeftEye);
§ cvCopy(image2, imgActualLeftEye);

54

difference(imgOldLeftEye, imgActualLeftEye, diffLeftEye);

//difference of the image considering the right eye only
cvResetImageROI(imagel);
cvResetlmageROI(image2);

—_

cvSetlmageROI(imagel, oldRightEye);

cvCopy(imagel, imgOIdRightEye);

cvSetlmageROI(image2, actualRightEye);

cvCopy(image2, imgActualRightEye);
difference(imgOldRightEye, imgActualRightEye, diffRightEye);

//if there are enough white pixel it
> if((cvCountNonZero(diffRightEye) + cvCountNonZero(diffLeftEye)) > minimumWhitePixel)
{

//get contourns for the left eye

getContourns(diffLeftEye, cvPoint(actualLeftEye.x, actualLeftEye.y));
/lget contourns for the right eye

getContourns(diffRightEye, cvPoint(actualRightEye.x, actualRightEye.y));

CvRect *tempBox1, *tempBox2;
/lcreate all the possible pair of features
for (list<CvRect>::iterator itl = objectsFound.begin(); it1!=objectsFound.end(); ++it1) {
for (list<CvRect>::iterator it2 = objectsFound.begin(); it2!=objectsFound.end(); ++it2) {
CvRect* tempLine = (CvRect*) malloc(2*sizeof(CvRect));
tempBox1 = &(*itl);
tempBox2 = &(*it2); |
if(compareRect(tempBox1, tempBox2) 1= 0){
//if the two elements are different
tempLine[0] = *itl;
tempLine[l] = *it2;
relationshipsFound.push_back(tempLine);

T

}

(//set the action and blink as not detected

55

int actionDetected = 0;
int blinkDetected = 0;

r //show eyes found if any relationship is detected
(discarding whenever there are too many of them)

if(relationshipsFound.size() > 0 && ((int)relationshipsFound.size()) <=
EYES MAX RELATIONS){

blinkDetected = 1;

if(DEBUG){
drawLines(relationshipsFound, DEBUG_EYES IMAGE); |
}

~—_

if(blinkDetected == 0){
++actionGapCounter;
if(actionGapCounter > ACTION_FRAMES){
//if no blinks has been detected and the action gap has been exceded
/lreinitialize the whole array and restart the counter
blinkDetectionCounter = 1;
actionGapCounter = 0;
}
}else if(blinkDetectionCounter < ACTION_NUM_MOVEMENTS){
//if a blink has been detected and it is not the triggering one
++blinkDetectionCounter;
actionGapCounter = 0;
telse{
//if a blink has been detected and it is the triggering one
blinkDetectionCounter = 1;
actionDetected = 1;
actionGapCounter = 0;

e T

}

for (list<CvRect*>::iterator it = relationshipsFound.begin();
\ it!=relationshipsFound.end(); ++it) {
(CvRect* tempRect = *it;

56

e

free(tempRect);
b

relationshipsFound.clear();

cvResetImageROI(imagel);
cvResetimageROI(image2);
objectsFound.clear();
cvClearMemStorage(contStore);

return actionDetected;

Eyestracking.h

/*

* Header of \ref eyesTracking.cpp
¥/

#include <list>

#include <math.h>

#include <string.h>

using namespace std;

void eyesTrackerInit(CvRect *leftEyeln, CvRect *rightEyeln, Iplimage *frame);
/**

* Update the location of the eyes

* @return 0 if it is valid, 1 otherwise

*

int updateEyesLocation(int newX, int newY, int oldX, int oldY, Iplimage *outputImage);
/**

* Identify if a blink has occurred that may trigger an action.

* This Function needs to be called constantly

*/

int detectBlink(IplImage *imagel, Iplimage *image2, Ipllmage *outputimage

57

il

e g

4.6 Face features Initializing

Face feature initialization :

1. It contains the functions to initialize the face area
It identifies the best facial features to use with the tracking,

Generates rough location of eyes.

ol

Trim edges of faces to avoid bad features.

It does so by use of function Facefeatureinit() which finds the location of face by using a
boolean variableinitsuccessul which is set to 1 if features are identified. the coordinates of
face are stored in variable facelocation of cvpoint type.

after generating the coordinates of face it tries to find out the rough location of eyes by
storing coordinates into variable lefteye and righteye.

After that it trims the edge of he face to avoid the bad features by using opencv function
'pixelstotrim'.it also tries to remove bad eye fearures so as to have maximum of only
wanted features and remove unwanted ones.

After that it tries to find out best facial features to track by converting the saved image into
gray scale and perform subpixel refinement on the search by using opencv function

'cvFindCornerSubPix'

JaceFeatinit.cpp

/*

* Module containing the functions for initialize the face area
i

#include "TrackingLayer.h"
#include "faceFeatlnit.h"

#ldefine MIN_FEAT NUM 3

/* %
* [dentify the best facial features to use with the tracking

* uses:
* @param imgToDetect image to analyse

58

T L

* @param featuresPoints Pointer to image containing just the face
L
void identifyBestFacialFeatures(Iplimage* imgToDetect, CvPoint2D32f* featuresPoints);

/**

* Adjust the offset of the points

* @param points Pointer to an array of points to be adjusted

* @param numberOfPoints numberof points

* @param offset Pointer to a dtructure containing the offset

*/

void calculatePointsOffset(CvPoint2D32f* points, int numberOfPoints, CvPoint* offset);

/**

* Remove the features located in the eyes area

* @param[out] features face features

* @param[in] eyeLocation location of the eyes

* @param[out] number of features removed

*/

void removeEyesFeatures

(CvPoint2D32f* features, CvRect* eyeLocation, int* featuresRemovedNum :
¥

static CvMemStorage* STORAGE = 0;

/**< Internal memory storage for Object detection*/
static CvHaarClassifierCascade* CASCADE = 0;
/**< Internal training set storage */

static int pointsCount;
/**< number of features tracked */

bool faceFeaturelnit
(Iplimage* image, CvRect* faceRectanglelnitial, CvPoint2D32f* featuresPoints,
CvRect* leftEye, CvRect* rightEye){

bool initSuccessfull = true;

CvPoint faceLocation = cvPoint(-1, -1);

Iplimage* faceOutput = 0;

int-facesNum-=0;

CvSeq* faces = 0;

pointsCount = MAX_FEAT;

o9

"E;i.

'

e

1

1/
I

//printf("faceFeaturelnit - [\n");

CvRect* faceRectangle = (CvRect*) malloc(sizeof(CvRect));
memcpy(faceRectangle, faceRectanglelnitial, sizeof(CvRect));

/fprintf("faceFeaturelnit - 2\n");

//Check the number of faces found
facesNum = identifyFaces(image, &faces);

/lgenerate an image of the face
if(facesNum == 1) {
//get the eyes rough location
int eyeDim = (int)(faceRectangle->width/4);
int eyesY = (int)(faceRectangle->y + (faceRectangle->height/4));
int eyel X = (int)(faceRectangle->x + (faceRectangle->width/5));
int eye2X = (int)(faceRectangle->x + (3*(faceRectangle->width/5)));

leftEye->height = leftEye->width = rightEye->height = rightEye->width = eyeDim;
lefiEye->y = rightEye->y = eyesY;

leftEye->x = eyel X;

rightEye->x = eye2X;

//trim the edge of the face to avoid bad features

float floatingWidth = (float)faceRectangle->width;

int pixel ToTrim = (int)(floatingWidth / 100 * FACE_TRIM);
faceRectangle->width = faceRectangle->width - (pixel ToTrim*2);
faceRectangle->x = faceRectangle->x + pixelToTrim;

faceLocation.x = faceRectangle->x;
faceLocation.y = faceRectangle->y;

/fprintf("faceFeaturelnit - 3\n");
/lcreate an image to store that face
faceOutput = cvCreatelmage(cvSize(faceRectangle->width, faceRectangle->height),
image->depth, image->nChannels);
/Iretrieve that image
cvGetSubRect(image, (CvMat*) faceOutput, *faceRectangle);

60

assert(faceOutput); //check if the image is generated

/fprintf("faceFeaturelnit - 4\n");
identifyBestFacialFeatures(faceOutput, featuresPoints);

/fprintf("faceFeaturelnit - 5\n");
calculatePointsOffset(featuresPoints, pointsCount, &facel.ocation);

/lprintf("faceFeaturelnit - 6\n");

//--remove the features in the eyes area and check if there are any feature left
int featuresRemoved = 0;

removeEyesFeatures(featuresPoints, leftEye, &featuresRemoved);
removeEyesFeatures(featuresPoints, rightEye, &featuresRemoved);

\ 1/--

/fprintf("faceFeaturelnit - 7\n");
/l--check how mant usable features are left
int usableFeatures = Q;
for(int i = 0; i<pointsCount; ++i){
if(featuresPoints[i].x > 0 && featuresPoints[i].y > 0){
featuresPoints|[usableFeatures].x = featuresPoints[i].x;

featuresPoints[usableFeatures).y = featuresPoints[i].y;
+tusableFeatures;

}
}
pointsCount = usableFeatures;
% if(usableFeatures < MIN_FEAT NUM){

initSuccessfull = false;
printf("Not enough features found\n");
}else{

/fprintf("faceFeaturelnit - 8\n");

// remove all unwanted features

for(int i = usableFeatures; i<MAX_FEAT; ++i){
featuresPoints[i].x = -999;
featuresPoints[i].y = -999;

1/--

61

telse if(facesNum > 1) {
initSuccessfull = false;
printf{("More than one face was found\n");
/ Yelse {
initSuccessfull = false;
printf("No faces were found\n");

'k

/*
/ftodo: remove
for(inti=0; i <usableFeatures; i++) {
if(featuresPoints[i].x > 0 && featuresPoints[i].y > 0){ I
cvCircle(image, cvPointFrom32f(featuresPoints][i]), 1, CV_RGB(0,255,0), -1, 8,0);
}

B ="

}

cvRectangle(image, cvPoint(faceRectangle->x, faceRectangle->y),
cvPoint(faceRectangle->x+faceRectangle->width, faceRectangle-
>y-+faceRectangle->height), cvScalar(255,0,0), 4);

cvSavelmage("faceRectangle.jpg", image);
exit(0);
*
/printf("faceFeaturelnit - 9\n");
free(faceRectangle);

/fprintf("faceFeaturelnit - 10\n");

|

return initSuccessfull; I

}

void removeEyesFeatures

(CvPoint2D32f* features, CvRect* eyeLocation, int* featuresRemovedNum){
int featuresRemoved = 0;
bool initSuccessfull = true;

for(-int-i-=0;i<pointsCount;++i){ T
/1if the feature is inside the eyeLocation tag it as an unavailable feature

62

if(features[i].x >= 0 &&
(features[i].x >= eyeLocation->x && features[i].x <= (eyeLocation->x + eyeLocation->width))

&&
(features[i].y >= eyeLocation->y && features|i].y <= (eyeLocation->y + eyeLocation->height))
)}
features[i].x =-1;
features[i].y = -1;
}
¥
featuresRemovedNum += featuresRemoved;
}

void calculatePointsOffset(CvPoint2D32f* points, int numberOfPoints, CvPoint* offset){
for(int i = 0; i<numberOfPoints; ++i) {
points[i].x = offset->x + points[i].x; iy
points[i].y = offset->y + points[i].y; l%l

} i
} mf‘:ﬂ

void initFaceArealdentifier(){
CASCADE = (CvHaarClassifierCascade*)cvlLoad(CASCADE LOCATION, 0, 0, 0);
STORAGE = cvCreateMemStorage(0);

}

k int identifyFaces(IplImage* image, CvSeq** faces){

' /lcheck if it has been identified

’ assert(CASCADE); |
assert(STORAGE);

cvClearMemStorage(STORAGE);

//Detect faces in the image
*faces = cvHaarDetectObjects(image, CASCADE, STORAGE,
~ 1.1,2,CV_HAAR DO _CANNY_PRUNING,
cvSize(40,40)); e
return (*faces)->total;

63

void identifyBestFacialFeatures(Ipllmage* imgToDetect, CvPoint2D32f* featuresPoints){
Ipllmage* imgToDetectGray = 0;
Ipllmage* imgEig = 0;
Ipllmage* imgTemp = 0;

imgToDetectGray = cvCreatelmage(cvGetSize(imgToDetect), IPL. DEPTH_8U, 1);
imgEig = cvCreatelmage(cvGetSize(imgToDetect), IPL_ DEPTH_32F, 1);
imgTemp = cvCreatelmage(cvGetSize(imgToDetect),IPL_ DEPTH 32F, 1);

cvCvtColor(imgToDetect, imgToDetectGray, CV_BGR2GRAY); //convert to grayscale

/ffind out the "GoodFeaturesToTrack"
cvGoodFeaturesToTrack (imgToDetectGray, imgEig, imgTemp, featuresPoints,
\ &pointsCount, FEAT QUALITY, MIN_FEAT DISTANCE, 0);

if FEAT REFINEMENT){
//perform subpixel refinement on the search
cvFindCornerSubPix(imgToDetectGray, featuresPoints,
pointsCount, cvSize(WIN_SIZE W,

—

WIN_SIZE H), cvSize(-1,-1),

==

FEAT_REFINEMENT_ CRITERIA);
}

cvReleaselmage(&imgToDetectGray);
cvReleaselmage(&imgEig);
cvReleaselmage(&imgTemp);

| }

void stopFaceArealdentifier(){ i
cvReleaseMemStorage(&STORAGE); '

}

64

SaceFeatinit.h
/*
* Header of \ref faceFeatInit.cpp

|

/**

* Initialize identifier. (It allocates all the memory used)
s
void initFaceArealdentifier();

/**

* Stop identifier. (It releases all the memory used) '
%
void stopFaceArealdentifier();

~—

/**

* Initialize the face detection

* @param[in] image image to analyse

* @param|[out] featuresPoints array of points representing the features

* @param[out] leftEye left eyes area

* @param[out] rightEye right eyes area

* @return true if the initialisation is successfull

¥

bool faceFeaturelnit(Iplimage* image, CvRect* faceRectangle, CvPoint2D32f* featuresPoints,
CvRect* leftEye, CvRect™* rightEye);

A——

/**

* Identify Faces
* ses:

* @param image image to analyse |
* @param faces a pointer to the contourn of thefaces identified '
* returns the number of faces found

il

int identifyFaces(Ipllmage* image, CvSeq** faces);

65

4.7 FaceTracking
[t contains the functions for tracking the face. It works similar to eyetracking.cpp but here it uses
features of particular face more to track it.

‘faceTracking.h’ it performs face tracking using the given featuresPoints.

Facetracking.cpp

/*
* Module containing the functions for track the face

f

#finclude "TrackinglLayer.h"
#include "faceTracking.h"

/fTODO: to be moved
#define MAX_ MOV 2000

CvPoint2D32f *initialPoints;

/**< array of points representing the very initial position */
Ipllmage *newlmageGrey = 0, *oldImageGrey = 0, *newlmageBuffer = 0, *oldImageBuffer = 0,
*imageSwap;

CvPoint2D32f* features[2] = {0,0};

CvPoint2D32f* featuresSwap,

char *featureStatus;

float *featureMov;

int currentFeatureTrackedNum = 0;

int trackerFlags = 0;

CvMemStorage* errorTrackingStore = 0;

CvSeq* errorTrackingCount = 0;

Ipllmage *DEBUG_FACE_IMAGE = 0;

/*¥*< 1t stores the image used to show the inner working of the algorithms */
int CAMERA HEIGHT F=0;

[¥*#< 1t stores the height of the camera resolution */

int CAMERA_WIDTH_F =0;

/#*< It stores the width of the camera resolution */

66

—

void trackerlnit(Ipllmage* imageln, CvPoint2D32f* featurePointsIn) {
//init cam resolution
CAMERA_ WIDTH_F = imageln->width;
CAMERA_HEIGHT F = imageln->height;

//initialize images buffer

newlmageGrey = cvCreatelmage(cvGetSize(imageln), 8, 1);
oldImageGrey = cvCreatelmage(cvGetSize(imageln), 8, 1);
newlmageBuffer = cvCreatelmage(cvGetSize(imageln), 8, 1);
oldImageBuffer = cvCreatelmage(cvGetSize(imageln), 8, 1);

//initialize feature buffer

features[0] = (CvPoint2D32f*)malloc(MAX_FEAT*sizeof(features[0][0]));
features[1] = (CvPoint2D32f*)malloc(MAX_FEAT*sizeof(features[0][0]));
featureStatus = (char*)malloc(MAX_FEAT*sizeof(char));

featureMov = (float*)malloc(MAX_FEAT*sizeof(char));

trackerFlags = 0;

//initialized the points used for the movements

initialPoints = (CvPoint2D32*)malloc(MAX_FEAT*sizeof(CvPoint2D321));

//initialize feature

currentFeatureTrackedNum = 0;

for(int i=0;i<MAX_FEAT;++i){

if(featurePointsIn[i].x > 0 && featurePointsIn[i].y > 0){

features[0][currentFeatureTrackedNum] = featurePointsIn[i];
initialPoints[currentFeature TrackedNum] = featurePointsIn[i];
featureStatus[currentFeatureTrackedNum] = 1;
featureMov[currentFeatureTrackedNum] = 0;
++currentFeatureTrackedNum:;

printf("x: %f, y: %f\n", featurePointsIn[i].x, featurePointsIn[i].y); /TODO:
remove

}

//-init-old-image
cvCvtColor(imageln, oldimageGrey, CV_BGR2GRAY);

/finitialize the error tracking sequences

67

&

errorTrackingStore = cvCreateMemStorage(0);

void setFaceDebugImg(Iplimage* image){
DEBUG FACE IMAGE = image;
}

void drawPoints(Iplimage* imgToDetect, CvPoint2D32f* featuresPoints, int
currentFeatureTrackedNum){
for(int i = 0; i < currentFeatureTrackedNum; i++) {
if(featuresPoints[i].x > 0 && featuresPoints[i].y > 0){
cvCircle(imgToDetect, cvPointFrom32f(featuresPoints[i]), 1, CV_RGB(0,255,0
-1,8,0);

CvPoint2D32f* faceTracking(Ipllmage* imageln){

cvCvtColor(imageln, newlmageGrey, CV_BGR2GRAY);

/*
//TODO: remove
static int aaa2 = 0;
char strFile1[255]; .
char strFile2[255]; !
sprintf(strFilel, "oldImageGrey%d-%dx%d.jpg", aaa2, cvGetlmageROI(oldImageGrey).width |
cvGetlmageROI(oldImageGrey).height);

sprintf(strFile2, "newlmageGrey%d-%dx%d.jpg", aaa2,

cvGetlmageROI(newImageGrey).width, cvGetlmageROI(newImageGrey).height);

cvSavelmage(strFilel, oldlmageGrey);
cvSavelmage(strFile2, newlmageGrey);
aaa2++; =
ot il |

int featuresNumber = currentFeatureTrackedNum;

cvCalcOptical FlowPyrLK(oldImageGrey, newlmageGrey, oldImageBuffer, newlmageBuffer,

68

features[0], features[1], featuresNumber, cvSize(WIN_SIZE W, WIN_SIZE H),
TRACKER_PYR_NUM, featureStatus, featureMoyv,

TRACKER_CRITERIA, trackerFlags);

trackerFlags [= CV_LKFLOW_PYR_A_READY; //pyramid for the first frame is precalculated
before the call

/‘*
//TODO: remove
static FILE* fOut = fopen("points2.txt", "a+");
fprintf(fOut, "--m-mmemmo- points %d:\n\n",featuresNumber);
for(int i = 0; i<featuresNumber; ++i) {
/1if(features[1][i].x >= 0){
fprintf(fOut, "x:%f \ty:%f -> x:%f \ty:%f \n", features[0][i].x,
features[0][i].y, features[1][i].x, features[1][i].y);
fprintf(fOut, "featureStatus:%d \tmovement:%f\n", featureStatus|i],

featureMov[i]);
1}
}
fflush(fOut);
*
// Check and reset bad features ‘I

CvPoint2D32f* featuresTmp = (CvPoint2D32f*) malloc(sizeof(CvPoint2D32f)*MAX_ FEAT);
currentFeatureTrackedNum = 0;
for(int i = 0; i<featuresNumber; ++i) {
if(features[1][i].x >= 0 && features[1][i].y >= 0
&& featureStatus[i] > 0 && featureMov[i] <= MAX_MOV){
featuresTmp[currentFeature TrackedNum].x = features[1][i].x;
featuresTmp[currentFeature TrackedNum].y = features[1][i].y;
++currentFeatureTrackedNum; ,
; |
} |
for(int i = 0; i<currentFeature TrackedNum; ++i) {
features[1][i].x = featuresTmp[i].x;
features[1][i].y = featuresTmp[i].y;
) Il |
free(featuresTmp);
/"

69

ifDEBUG){
drawPoints(DEBUG_FACE_IMAGE, features[1], currentFeatureTrackedNum);

//TODO: remove
//printf("good features Tracked: %d", currentFeatureTrackedNum);

/*

static int aaa = 0;

char strFile[255];

sprintf(strFile, "errorDetected%d-%d.jpg", aaa, featuresNumber);
cvSavelmage(strFile, DEBUG_FACE_IMAGE);

aaatt;

//TODO: remove
static FILE* fOut = fopen("points.txt", "a+");
fprintf{ fOut, "----------- points:\n\n");
for(int i = 0; i<featuresNumber; ++i) {

/if{ features[1][i].x >= 0){

fprintf(fOut, "x:%f \ty:%f > x:%f \ty:%f \n", features[0][i].x,
features[0][i].y, features[1][i].x, features[1][i].y);
I}

}
fflush(fOut);

it
;

CV_SWAP(oldimageGrey, newlmageGrey, imageSwap);
CV_SWAP(oldImageBuffer, newImageBuffer, imageSwap);
CV_SWAP(features[0], features[1], featuresSwap);

/lprintf("features: %d\n", featuresNumber);

return features[1];

} il

void interpretMovementsAverage(CvPoitlt2D32P“ currentFeaturesPointsln, float* x, float* y){
float totalXmovements = 0;

70

float totalY movements = 0;

if(currentFeatureTrackedNum > 0) {
for(int i = 0; i < currentFeatureTrackedNum; i++) {
totalXmovements += currentFeaturesPointsIn[i].x - initialPoints[i].x ;
totalY movements += currentFeaturesPointsIn[i].y - initialPoints[i].y ;

}

totalXmovements = (float)(total Xmovements / currentFeature TrackedNum);
total Y movements = (float)(totalY movements / currentFeatureTrackedNum);
*y = total Xmovements;
*y = totalY movements;

}

}
int checkTrackingErrors(CvPoint2D32f* featuresPointsIn, CvRect* initialFace,

Iplimage* templmage, Iplimage* debuglmage){
’.’*
static FILE* fOut = fopen("points.txt", "a+");
fprintf(fOut, "-----=-=--- rect: %d x %d, w: %d, h: %d\n\n", initialFace->x, initialFace->y,
initialFace->width, initialFace->height);
fprintf(fOut, "---=-snn--- points:\n\n");
for(inti=0; i<MAX_FEAT; ++i) {
/fif(features[1][i].x >=0){ fprintf(fOut, "x:%f \ty:%f\n", featuresPointsIn[i].x,
featuresPointsIn[i].y);
1}
}

fflush(fOut);
*
/fcalculate the rectangle of the points tracked
errorTrackingCount = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_328C2,
sizeof(CvContour),
sizeof(CvPoint), errorTrackingStore);

J/CyMat* featTracked = cvCreateMat(currentFeatureTrackedNum, 2, CV_32FCl);

CvPoint pt0;
int highX = -1;
int highY =-1;

71

int lowX = 999;

int lowY = 999;

for(int i = 0; i < currentFeatureTrackedNum; i++) {
pt0 = cvPointFrom32f(featuresPointsIn[i]);
cvSeqPush(errorTrackingCount, &pt0);
//determine the location of the face of the user
if(pt0.x > highX){

highX = pt0.x;
}
if(pt0.x < lowX){
lowX = pt0.x;
}
if(pt0.y > highY){
highY = pt0.y;
}
if(pt0.y <lowY){
lowY = pt0.y;
}

Mprintf("x: %d, y: %d\n", pt0.x, pt0.y);
}

//CvBox2D trackedPointsBox = cvMinAreaRect2(errorTrackingCount, 0); //original
//CvRect trackedPointsRect = cvBoundingRect(errorTrackingCount, 0);

static CvPoint2D32f center;
static CvPoint icenter;
static float radius;
if(currentFeatureTrackedNum > 1){
int res = cvMinEnclosingCircle(errorTrackingC

if(res 1= 0){
icenter.x = cvRound(center.x);
icenter.y = cvRound(center.y);

cvCircle(debuglmage, icenter, cvRound(radius), CV_RGB(255, 255, 0), 1, CV_AA, 0);

printf("cvMinEnclosingCircle found\n");
}else{ TR

printf("cvMinEnclosingCircle not-found\n"); il

for(int i = 0; i < currentFeatureTrackedNum; i++) {
pt0 = cvPointFrom32f(featuresPointsIn[i]);

72

ount, ¢er, &radius);

f'*

*/
/¥

o

/*

printf("x: %d, y: %d\n", pt0.x, pt0.y);
}

cvWaitKey(0);

CvPoint tl;

tl.x = trackedPointsBox.center.x - (trackedPointsBox.size.width/2);
tl.y = trackedPointsBox.center.y - (trackedPointsBox.size.height/2);
CvPoint br;

br.x = trackedPointsBox.center.x + (trackedPointsBox.size.width/2);
br.y = trackedPointsBox.center.y + (trackedPointsBox.size.height/2);

CvPoint tl;

CvPoint br;

tl.x = trackedPointsRect.x;

tl.y = trackedPointsRect.y;

br.x = trackedPointsRect.x + trackedPointsRect.width;
br.y = trackedPointsRect.y + trackedPointsRect.height;

cvDrawRect(debuglmage, tl, br, cvScalar(255,0,0), 1);

//track a possible unfeasible set of features
int errorTracked = 0;

int boxWidth, boxHeight;

if(trackedPointsBox.size.height > trackedPointsBox.size.width){
boxWidth = (int)trackedPointsBox.size.width;
boxHeight = (int)trackedPointsBox.size.height;

else{
boxWidth = (int)trackedPointsBox.size.height;
boxHeight = (int)trackedPointsBox.size.width;

73

if(boxWidth > (initialFace->width +TRACKER_ERROR)){ '
errorTracked = 1;

3 } ;

! if(boxHeight > (initialFace->height + TRACKER _ERROR)){

errorTracked = 1;

} |

/fcheck if the user is going away 1

if(highX >= CAMERA_ WIDTH F || lowX <=0 || ' Il
highY >= CAMERA_HEIGHT F || lowY <=0){ ‘
errorTracked = 1;

}
*f
cvClearMemStorage(errorTrackingStore);

/I check to have at a feature to track
if(currentFeatureTrackedNum < 1){
errorTracked = 1;

}

return errorTracked;

void stopTracker(){
free(features[0]);
; free(features[1]);
free(featureMov);
free(featureStatus);
cvReleaseMemStorage(&errorTrackingStore);

74

Facetracking.h

/*

* Header of \ref faceTracking.cpp

*/

,n"**

* Perform face tracking using the given featuresPoints

* @param image image to analyse

* (@param featuresPoints array of points representing the features
B

void trackerInit(Ipllmage* image, CvPoint2D32f* featuresPoints);

JE*

* Perform face tracking using the internal features buffer
* trackerlnit has to be called before this one.

* @return the new features position

* @param image image to analyse

*

CvPoint2D32f* faceTracking(Ipllmage* image);

/**

* Convert the feature detection in movements using a simple averaging method

* the faceTracking function must be called before this one

* @param[in] currentFeaturesPointsIn the current feature position

* @param[out] x the relative movement on the x axis

* @param[out] y the relative movement on the y axis

* @return 0 if the features movements are feasible, -1 if there is the need of reinitialize them
¥

void interpretMovementsAverage(CvPoint2D32f* currentFeaturesPointsIn, float* x, float* y);

/**

7t

* Check if the tracker is still reliable
* @param[in] featuresPointsIn the current feature position

3 * @param[in] initialFace the relative movement on the x axis

\ * @param[in] tempImage the relative movement on the y axis

* @param[in] debuglmage
* @return 1 if an error has been tracked, 0 othewise
£
int checkTrackingErrors(CvPoint2D32* featuresPointsln, CvRect* initialFace,
Ipllmage* templmage, Iplimage* debuglmage);

/**

ed

! * Deallocate all the memory used by the tracker j \ -
| §
void stopTracker(); ! 1‘

[E%

|
* Set the uotput image used for the debug process I
* @param image image used '
¥
void setFaceDebugIimg(Ipllmage* image); !

76

4.8 Tracking Layer

It is one of the most IMP modules in the project. It contains the functions externally exposed by

the library to the client layer. All the header files are included in this module.

It does following things:-

Start the tracker and initialize the camera return CAMERA_NOT_FOUND if no cameras
are found.

Stop the tracker and dispose all the memory used.

Retrieve the next frame produced by the camera return FRAME_RETRIEVED if the
frame has been retrieved correctly.

Try to locate human faces in front of the camera return the number of faces identified.
Initialize the face area and the eyes location.

Track the face movements and convert them into relative coordinates.

Track an action given by the blinking motion of the eye lids.

In order to do all this functions it connects with respective JAVA programs.

“TrackingLayer,h’ is header file for TrackingLayer.cpp it contains call for various OpenCV

header file like highgui.h, CV.h, Tracker.h, configuration.h.

Trackinglayer.cpp

,,"*

* [t contains the functions externally exposed by the library
* to the client layer.

)

#include "TrackingLayer.h"
#include "configurator.h"
#include "camera.h"
#include "faceFeatlnit.h"
#include "faceTracking:h"
ftinclude "eyesTracking.h"

Iplimage *CURR_FRAME;
/%< |t stores the frame retrieved from the camera */

77

Ipllmage *TEMP_IMAGE;

[**< It stores a copy of the frame retrieved from the camera.

* It is used as the image passed to the various functions */

Ipllmage *NEW_IMAGE;

/**< It stores a copy of the frame retrieved from the camera at the time X.
* It is used together with OLD IMAGE to detect a blink */

Iplimage *OLD_IMAGE;

/**< [t stores a copy of the frame retrieved from the camera at the time X - n.
* It is used together with NEW _IMAGE to detect a blink */

Iplimage *DEBUG_IMAGE,;

/**< It stores the image used to show the inner working of the algorithms */
CvPoint2D32f *FEATURES_IDENTIFIED;

/**< [t stores the face features retrieved */

CvRect LEFT EYE = cvRect(0,0,0,0);

/**< It stores the current location of the left eye */

CvRect RIGHT EYE = cvRect(0,0,0,0);

/**< It stores the current location of the right eye */

CvRect *INITIAL FACE =0;

/**< 1t stores the initial face dimension */

int CURRENT _MOV_X =0;

/#*< It stores the current face movements on the X axis */

int CURRENT MOV_Y =0;

/*¥*< It stores the current face movements on the Y axis */

/**
* Start the tracker and initialize the camera.
* @return CAMERA_NOT_FOUND if no cameras are found
%/
JNIEXPORT jint JNICALL Java_clientlayer Tracker_startTracker
(JNIEnv*, jobject) {
/lprintf("Java_clientlayer_Tracker_startTracker\n");

int successfulllnit = 0;

successfulllnit = initCamera();

if(successfulllnit) { //this test will fail if no camera is connected

/finit global variabes

CURR_FRAME = getlmage();

TEMP._IMAGE = cvCreatelmage(cvSize(CURR_F RAME->width, CURR FRAME->height),
CURR_FRAME->depth, CURR_FRAME->nChannels);

NEW _IMAGE = cvCreatelmage(cvSize(CURR_FRAME->width, CURR_FRAME->height),

78

PE———

CURR_FRAME->depth, CURR_FRAME->nChannels);

OLD IMAGE = cvCreatelmage(cvSize(CURR_FRAME->width, CURR_FRAME->height),
CURR_FRAME->depth, CURR_FRAME->nChannels);

FEATURES IDENTIFIED = 0;
/{init other modules
initFaceArealdentifier();

//create the output window and image for the debug
if(DEBUG) {
cvNamedWindow(WINDOWS NAME, CV_WINDOW_AUTOSIZE);
DEBUG_IMAGE = cvCreatelmage(cvSize(CURR_FRAME->Width,CURRiFRAMEJhei ght),
CURR_FRAME->depth, CURR_FRAME->nChannels);
}
}

return successfulllnit;

}

'/**
* Stop the tracker and dispose all the memory used.
2/
JNIEXPORT void JNICALL Java_clientlayer Tracker_stopTrackerLayer
(JNIEnv *, jobject){
//printf("Java_cIientlayer_Tl‘acker_stopTrackerLayer\n“);

//stop other modules
stopTracker();
stopFaceArealdentifier();
closeCamera();

//deallocate global variables
cvReleaselmage(&TEMP_IMAGE);
cvReleaselmage(&OLD_IMAGE);
cvReleaselmage(&NEW_IMAGE);
free(FEATURES_IDENTIFIED);
FEATURES_IDENTIFIED = 0;

//deallocate debug resources

iff DEBUG){
cvDestroyWindow(WINDOWS_NAME);

74

I

'/**
i * Retrieve the next frame produced by the camera
] * @return FRAME_RETRIEVED if the frame has been retrieved correctly
S ’
; JNIEXPORT jint INICALL Java_clientlayer_Tracker_ captureNextFrame
‘. (JNIEnv *, jobject){
! /fprintf("Java_clientlayer Tracker_captureNextFrame\n");

int error = clientlayer Tracker FRAME_RETRIEVED - 1; //set the frame as not retrieved
CURR_FRAME = getlmage();

iff CURR_FRAME){

/fevFlip(CURR_FRAME, TEMP_IMAGE, 0);

/flip around y axis and copy the frame to the temp image
cvCopy(CURR_FRAME, TEMP_IMAGE);

//flip around y axis and copy the frame to the temp image
error = clientlayer Tracker FRAME RETRIEVED;

if(DEBUG){
; //show the old image created
cvShowlmage(WINDOWS_NAME, DEBUG_IMAGE);
‘ /lcreate a copy of the original image for the debug
‘i cvCopy(TEMP_IMAGE, DEBUG_IMAGE);

cvWaitKey(1);
}
}

return error;

}

/**

* Try to locate human faces in front of the camera
* @return the number of faces identified
Ll
JNIEXPORT jint INICALL Java_clientlayer_Tracker_identifyFaces
(JNIEnv *, jobject) {
/lprintf("Java_clientlayer Tracker_identifyFaces\n");

CvSeq* faces = 0;
int numFaces = 0;
numFaces = identifyFaces(TEMP_IMAGE, &faces);

80

int idxGoodFace = -1;
int maxSize = 0;
for(int i=0;i<numFaces;++i){
CvRect* tmpFaceRect = (CvRect*)cvGetSeqElem(faces, i);
if(maxSize < tmpFaceRect->height*tmpFaceRect->width){
maxSize = tmpFaceRect->height*tmpFaceRect->width;
idxGoodFace = i;

}

if(idxGoodFace >= 0){
INITIAL_FACE = (CvRect*)cvGetSeqElem(faces, idxGoodFace);
numFaces = 1;

}
/’I‘
if(DEBUG){
/TODO: remove
cvRectangle(TEMP_IMAGE, cvPoint(INITIAL_FACE->x, INITIAL_FACE->y),
cvPoint(INITIAL_FACE->x + INITIAL_FACE->width , INITIAL_FACE-
>y+INITIAL_FACE->height),

cvScalar(255,0,0), 2);

static int aaa = 0;

char strFile[255];

sprintf{ strFile, "face%d.jpg", aaa);
cvSavelmage(strFile, TEMP_IMAGE);

aaat+t;
*/
return numFaces;
/‘* 3

* Tnitialise the face area and the eyes location.

* This procedure is required by faceTracking and eyesTracking.
*

* @return 0 if it is successfull
%/

81

Lt — e

JNIEXPORT jint INICALL Java clientlayer Tracker initFaceFeatures
(JNIEnv *, jobject){
int initNotSuccefull = 0;

/fprintf("Java_clientlayer Tracker initFaceFeatures\n");

/fallocate the memory required by the features point
I free((void**)&FEATURES IDENTIFIED); |
if(FEATURES IDENTIFIED == 0){ ‘
FEATURES IDENTIFIED = (CvPoint2D32f*) 1
malloc(sizeof(CvPoint2D32f)*MAX FEAT);

}

bool initialised = faceFeaturelnit({ TEMP_IMAGE, INITIAL FACE,
FEATURES IDENTIFIED, &LEFT _EYE, &RIGHT EYE);
/lprintf("initialised\n");
if(initialised){
Hprintf("bI\n");
trackerInit(TEMP_IMAGE, FEATURES IDENTIFIED),
/lprintf("b2\n");
/" eyesTrackerlnit(&LEFT_EYE, &RIGHT EYE, TEMP_ IMAGE);

e

e

/fprintf("initialised\n");
}elsef

initNotSuccefull = 1;

/fprintf("not initialised\n");
}

return initNotSuccefull;

}

f**
* Track the face movements and convert them into relative coordinates
* @param the coordinates found, or FACE_FEAT_LOST.
*/
JNIEXPORT void INICALL Java_clientlayer Tracker faceTracking (JNIEnv *env, jobject obj,
jfloatArray coordinates){
static jfloat coordFloat[2] = {0,0};

//printf("Java_clientlayer_Tracker_faceTracking\n");
bool errorDetected = false;

82

//set the debug resources
4 if(DEBUG){ |

setFaceDebuglmg(DEBUG _IMAGE); |
\
1

//perform the feature tracking
CvPoint2D32f* newFeatures = faceTracking(TEMP_IMAGE);

1/ /* TODO: put back

//check errors due to wrong face configuration

if(checkTrackingErrors

(newFeatures, INITIAL_FACE, TEMP_IMAGE, DEBUG _IMAGE) == 1){
errorDetected = true;
printf("check TrackingErrors: errorDetected\n");

}

\ I)

if(lerrorDetected){
//calculate the movements

interpretMovementsAverage(newFeatures, &coordFloat[0], &coordFloat[1]);
env->SetFloatArrayRegion(coordinates, 0, 2, coordFloat);

//update current coordinates (in order to help the eye tracking)
CURRENT MOV _X = (int)coordFloat[0];
CURRENT MOV _Y = (int)coordFloat[1];

//printf("calculate mov\n");

\ |

if(errorDetected){
] //set the error flag
‘ coordFloat[0] = clientlayer Tracker FACE _FEAT LOST;
! coordFloat[1] = clientlayer Tracker FACE FEAT LOST;
\ env->SetFloatArrayRegion(coordinates, 0, 2, coordFloat);
| b

83

/**

* Track an action given by the blinking motion of the eye lids
| * @return ACTION_DETECTED, or ACTION NOT DETECTED.
1 o b i
. %/
1 JNIEXPORT jint INICALL Java_clientlayer Tracker eyesTracking(JNIEnv *, jobject){
| /lprintf("Java_clientlayer Tracker_eyesTracking\n");

/fcounter used to store two different frames

static int framesSpent = 0;

//flag that detects if it is the first call

static bool firstRunTracking = true;

//storage for the old and new movements

static int oldFaceMovementsX = 0;

static int oldFaceMovementsY = 0;

static int newFaceMovementsX = 0;
\ static int newFaceMovementsY = 0;
| //return flag (
;: Jjint actionDetected = clientlayer_Tracker ACTION _NOT DETECTED; ‘

//set the debug resources
if(DEBUG){

setEyesDebugimg(DEBUG IMAGE);
}

//store the image in the buffer to be analysed by the eye tracker .
++framesSpent; i
if(firstRunTracking){ '
cvCopy(TEMP_IMAGE, OLD IMAGE); I
cvCopy(TEMP_IMAGE, NEW_IMAGE); |
newFaceMovementsX = oldFaceMovementsX = CURRENT MOV _X; ‘

’

newFaceMovementsY = oldFaceMovementsY = CURRENT MOV _Y;
firstRunTracking = false;
telse if(framesSpent >= EYES_FRAMES GAP){
//ICV_SWAP(oldlmage, newlmage, tempImage);
cvCopy(NEW_IMAGE, OLD_IMAGE);
cvCopy(TEMP_IMAGE, NEW_IMAGE);
//store the new (and old) face movements
oldFaceMovementsX = newFaceMovementsX;
oldFaceMovementsY = newFaceMovementsY
newFaceMovementsX = CURRENT_MOV _X;

84

newFaceMovementsY = CURRENT MOV _Y;

//follow the eyes

int failed = updateEyesLocation(newFaceMovementsX, newFaceMovementsY,
oldFaceMovementsX, oldFaceMovementsY,
TEMP IMAGE);

//track blinking
if(!failed && detectBlink(OLD _IMAGE, NEW_IMAGE, TEMP IMAGE)){
actionDetected = clientlayer_Tracker ACTION DETECTED;

}
framesSpent = 0;
}
return actionDetected;
}
JLE

* Set the configuration of the tracker.
* The tracker must be stopped before call this method.
* (@param configuration a java object containing the new configuration
*
JNIEXPORT void JNICALL Java_clientlayer Tracker setConfiguration
(JNIEnv *env, jobject obj, jobject configuration){
/fprintf("Java_clientlayer Tracker setConfiguration\n");

setConfiguration(env, configuration);

}

/**

* Get the actual configuration

* @return the actual configuration

*

IJNIEXPORT jobject INICALL Java_clientlayer_Tracker_getConfiguration

(JNIEnv *env, jobject obj){
/lprintf("Java_clientlayer Tracker getConfiguration\n");

return getConfiguration(env);}

85

#_— r

Trackinglayer.h
// Header of \ref TrackingLayer.cpp

#include <stdio.h>
#include <ctype.h>
#include "highgui.h"
tfinclude "cv.h"

#include "Tracker.h"
#include "configuration.h"

86

4.9 System SnapShots
1.Initial startup Window

> Fopyr1ght 1?85 2081 chroaoft Forp

unents and Settings\Rickey>cd C:\Documents and Settings\Rickey\Desktop\Fac|

eTracking_new\clientlayer

:\Documents and Settings\Rickey\Desktop~Facelracking_newnclientlayer>java clien
tlayer.ClientLayer :

E Face Tracking

Main | Exit

Options
Mouse Absohte
Mouse Absolute (no click)

2.Camera initiated and locating Faces starts

face ident

feature removed: B85, max feat: 28feature removed:

on set

face identified

feature renoved: 92, max feat: 2B8feature removed: B, max feat: 2Binitial positio
n set

face identified

face identified

face identified ocating faces. .,

feature remnoved: B85, Jed: 33, max feat: 28initial positi

=d
,d: sed: 59, max feat: 2Binitial positi

ied
od: 2 sed: B, max feat: 2Binitial positio

identified
feature removed: , max feat: 28feature removed: A, max feat: 2Binitial positi
on set
face identified
feature removed: 57, max feat: Z@feature removed: 26, max feat: ZBinitial positi

3.Face Located: Tracker being Initialized .

icrosoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-20B1 Microsoft Corp.

C:\Documents and Settings:\Rickey>cd C:\Docunments and Settings\Rickey\Desktop\Fac
eTracking_newnclientlayer

C:\Documents and Settings\Rickey\Desktop\FaceTracking newsclientlayer>java clien
tlayer.ClientLayer :
TV T I B -t s O B ace found, stay steady in order to allow

Tracker started he initialisation of the tracker

Plugin started

face identified

feature removed: 30, sed: B, max feat: 2@initial positio
n set

4.Relocation of face features in case its lost

BEE

face identified AI
foature removed: 114, nax feat: 2B8feature removed: 18, max feat: 28initial posit g
ion set
face identified
feature renoved: 35, max feat: 28feature removed: 7, nax feat: 2B8initial positio ‘
n set -
face identified
feature renoved: 61, nax feat: 2@feature renoved: B, max feat: 2Binitial positio

: he face features have been lost,

identified seconds the tracker will be
feature removed: jtialised again 2 d - , max feat: 2@initial positi
on set
face identified
feature renoved: sed: 19, max feat: 2Minitial positi
on set
face identified

feature renoved: nax teat: ZWreature renoved: B, max feat: 2ZBinitial positio

n set

face identified

Feature removed: 98, max feat: 2Bfeature removed: 13, nax feat: 2Binitial positi
set

face identified

feature removed: 85, max feat: 2@feature removed: 15, nax feat: 28initial positi

88

5.Face features retracked

oy C:\WINDOWS\system32\cmd.exe - java clientlayer.ClientLayer

Microsoft Windows AP [Uersion 5.1.26801
(C> Copyright 1985-208@1 Microsoft Corp.

| C:\Docunents and Settings\Rickey>cd C:\Documents and Settings\Rickey\Desktop Faclg
eTracking_neuwsclientlayer

C:\Documents and Settings\Rickey\Desktop\?aceIracking,new\clientlayer)jaua clien
tlayer.ClientLayer ;
Starting Tracker Thread

Tracker started

Plugin started

face identified

face identified

feature removed: @, max feat: 2@8feature renoved: B, max feat: 2@initial position
set

6.Click Initiated

89

7.Tracker Stopped

ficrosoft Windows RKP [Uersion 5.1.2600]
(C)> Copyright 1985-20081 Microsoft Corp.

C:“\Docunents and Settings:\Rickey>cd C:\Docunents and Settings:\Rickey\Desktop:\Fac}
eTracking_neusclientlayer

C:\Documents and Settings Ritkey\DeSktop\FaceTracking_ncu\clientlayer>jaud'clien
tlayer.ClientLayer y

Face Tracking

Main Exit

Options

[Mcuse Absalute i [

Mouse Absohte {no click)

8. Tracker stopped, Memory Cleared

cv C:\WINDOWS\system32\cmd.exe - java clienl!ayer.(ﬁlié tLayer

Microsoft Windows KP [Uersion 5.1.26001]
(C) Copyright 1985-2881 Microsoft Corp.

C: \Documents and Settings\Rickeyrcd C::\Documents and Settings\RickeysDesktopsFacl
eTracking_newsclientlayer

C:\Documents and Sﬂttinﬂﬂ\ﬂiﬁkﬁu‘DHLkLDp\FﬂCRIP&Ckng?HeU‘C}iEHLlﬂyEP}J va clien
tlayer.ClientLayer
Starting Tracker Thread

identif
feature removed: 55, max
n set
Tracker stopped

feat: 2@feature removed: B, max feat: 2@initial positio

Chapter 5
Future Work

As a part of the future work we intend to make the clicking by this system more efficient.
Mouse clicking is proposed to be performed on the basis of facial expression or some
voice. Nikolaus Bee et al investigated the usability of an eye controlled writing interface
that matches the nature of human eye gaze, which always moves and is not immediately
able to trigger the selection of a button. A similar interface (termed Dwell Select in this
proposal) is an assistive program for head tracking systems that enables the user to
perform mouse click and “drag-lock™ functions. When the cursor is stationary for a pre-
defined time the Dwell Select then performs an assigned mouse function. One possible
way of obtaining this is to set a time freeze moment for the mouse pointer, which implies
that we set a time limit in whose time frame if there is no movement in the position
coordinates of the pointer, open operation is performed for the icon in the vicinity of the
pointer. But this feature would involve a lot of complexity since the algorithm for the
time frame calculation would have to run iteratively after the change in the position of the
mouse. Moreover a special algorithm would be needed to determine the priority of the

icon to be opened in case the pointer is not on the correct location.

Audin Stream

Acoustic
Recognitio
n Engine Lexicon
Language

Y

Command Processing

Y

Mouse-Button Control

Figure 10: The proposed speech-recognition components of our head-tracking system.

ol

Moreover since the system currently employs a single came, we intend to improve the
tracking efficiency by introducing more cameras and entering the 3D domain, so that the

features locked cannot be lost even if the face is out of frame from the 1 camera.

02

Bibliography

[1] Bruce D. Lucas, Takeo Kanade, “An Iterative Image Registration Technique with an

Application to Stereo Vision”, In the Proceedings of Imaging Understanding Workshop,
Washington, DC, pp. 121-130 (1981).

[2] J. Wolberg, “Data Analysis Using the Least-Squares Method: How to Extract the
Most Information from Experiments”, Springer-Verlag New York, Dec. 2005.

[3] Jurriaan D. Mulder, Jack Jansen, and Arjen van Rhijn , “An Affordable Optical Head
Tracking System for Desktop “,VR/AR Systems Center for Mathematics and Computer

Science, CWI Amsterdam, the Netherlands fmullie,jack,arjenvrg@cwi.nl

[4] Nikolaus Bee, Elisabeth Andre, “Writing with Your Eye: A Dwell Time Free Writing
System Adapted to the Nature of Human Eye Gaze”, Perception in Multimodal Dialogue
Systems, pp.111-122, Lecture Notes in Computer Science, Springer Berlin 1981,

[5] Frank Loewenich, Frederic Maire Motion, “Tracking and Speech Recognition for
Hands-Free Mouse-Pointer Manipulation”, Queensland University of Technology,

Australia.

[6]S. De Backer, P. Scheunders, “A Competitive Elliptical Clustering Algorithm”, Vision
Lab, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020

Antwerpen, Belgium.

93

