JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION-2024

B. Tech.-V Semester (BT)

COURSE CODE (CREDITS): 18B1WBT532 (3)

MAX. MARKS: 35

COURSE NAME: COMPARATIVE AND FUNCTIONAL GENOMICS

COURSE INSTRUCTORS: DR. JATA SHANKAR

MAX. TIME: 2 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

Q.	Questions	CO	Marks
No	Questions que		l'idi ks
Q1	Discuss the mechanisms through which RNA interference (RNAi) regulates	CO	5
	gene expression in eukaryotic cells. How has the understanding of RNAi	III	
	advanced the development of therapeutic strategies, and state challenges in	111	
02	translating RNAi-based therapies into clinical practice		
Q2	Draw and label the complete structure of a eukaryotic gene, including the	CO	3
	promoter region, exons, introns, splice donor and acceptor sites, and the	I	
	polyadenylation signal. Explain the role of each of these components in the	*	
Q3	process of transcription and RNA splicing Analyze the role of DNA microarray technology in studying the whole-genome		<u> </u>
	expression profiles of drug-resistant warms drug consitive Each wield and	CO	5
	expression profiles of drug-resistant versus drug-sensitive Escherichia coli cells. How can this technique help identify key genes involved in drug	II	İ
	resistance and assist in developing more effective treatment strategies?		
Q4	What is metagenomics, and heavy does metagenomic analysis contribute to	CO	4
	improving environmental CQ2 levels? Provide an example of how		7
	metagenomics has been used to identify microorganisms or processes that play	III	
	a role in carbon sequestration or CO2 reduction.		
Q5	Analyze and compare the genome sizes of Escherichia coli and Saccharomyces	CO	3
	cerevisiae. Discuss the concept of gene density and how it relates to the	I	
	complexity of these two organisms. How does gene density influence genome	1	
Q 6	organization and cellular functions in E. coli versus S. cerevisiae?		ļ
ζū	The effectiveness of a drug often depends on the genotype of the individual.	CO	5
	Provide examples of diseases and drugs where genetic variation plays a crucial	II	
Who.	role in selecting the appropriate drug or determining the optimal dose. Discuss how pharmacogenomics helps personalize medicine in these cases		
27 Thomas	What are the characteristics of a Biomarker, explain it with a suitable example?	CO	2
* "10/1	example?		3
		III	•
28	Design an experiment to investigate the role of tumour suppressor genes in	CO	5
	different types of cancer. Outline the methodology (sequencing), including the		5
	types of cancer to be studied, the techniques for gene expression analysis, and	II	
	how you would assess the relationship between tumour suppressor gene		
	mutations and cancer progression.		