JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-I Semester (CE)

COURSE CODE (CREDITS): 18B11CE531 (3)

MAX. MARKS: 35

COURSE NAME: Construction Technology and Management

COURSE INSTRUCTORS:Mr. Kaushal Kumar

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory. For questions 5 to 9, attempt only one part.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

O No	7		Question				
Q.No	For a project the C-11	CO	Marks				
Q1	For a project, the foll						
	(t _p):						
	Activity Optimis	$stic(t_o)$	Most Likely (a	t_m	Pessimistic (t_p)	· [
	A 2		4		10		1
	B 3	}	5		9	}	
	C 1		2	- A.	3	CO-	
	D 4		6		8	2	5
	• Calculate the expec	ted time	(t_e) and variance	e fo	r each activity.		
	• Assume that the cri						
	expected project dur	ration an	d standard devi	atio	n.	ĺ	
	Determine the prob-	ability th	at the project w	ill b	e completed		,
	within 16 days using						ĺ
Q2	A project has the follo					 	
_		85 73890	×**				
	Activity	Dura	tion (Days)	F	Predecessor(s)		
	A A	7.00	4				
j	B		6		A		İ
	D	ļ	3		A		
	E		5		B		
ŀ	P'		4		B, C	CO-	
]:	G	2			D, E	1,	_
16 26	F		3	<u> </u>	F, G	CO-	5
19	• Draw the network di	agram			<u>r, u</u>	2	1
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Calculate EST, EFT,		ET total float	المرا		ļ	
1.4	activities.	, 101, 11	T, wai noai, a	ana i	iree float for all	ŀ	
-		1 .1	1	_			
	• Determine the critical						
	• Suggest how the floa	t values	can be used to	optii	mize resource		
	allocation				į		
02	Define project crashing	g and ex	plain the proce	ess i	nvolved. Using a		
	hypothetical example,	calculate	e the optimal	proj	ect duration and	CO-	5
] •	cost after crashing activ	rities.		Ī		3	

	requirements Activity	Duration	Resource	Resource	Predecessor		
	11001,103	2 324 11 11 11	A	В	(s)	ļ	
	A	4	2	3	-		
	В	5	3 2	2 2	A A		
	C					•	
	D	6	3	4	B, C	CO-	_
	Resource ava	ilability per c	lay: Resource	A: 4 units &	Resource B: 5	4	5
	units				·	2000	
	• Draw	the network	diagram.				V
				ure the const	raints on both		
	resou	rces are not e	xceeded.		• .		
		the revised a	ctivity schedu	ale and the ne	ew project	/ 1/	
	durati	ion.	00.1	1	d		
				roject duran	on and resource	<i>*</i>	
	const	raints in this s	scenario.		ah mlant and list		
5.	(a). Explain	CO-					
	its main o	5	3				
	(b) What 18	vacuum co	ncrete? Disc	uss its adva	antages and the		
	technique	used for vac	uum dewaten	offecting th	ne selection of		
5.	(a). What a	CO-	_				
	excavation (b). Different	5	3				
	their appl						
	(a) What i	e the nurnos	e of using m	obile scaffo	lding, and what		
7.	(a). What i precautions	CO-	_				
	(b). Explain	the differer	nce between	tube-and-cou	pler scaffolding	5	3
	and frame	scaffolding.				<u></u>	
	(a). What	are the dis	advantages (of improper	compaction of		
8.	concrete?		<i>"</i>	* *	- -	CO-	3
	(b). Describ	e the process	s of vibration	with pressu	re and jolting in	5	3
	concrete	compaction.					
9.	(a). What	are the key	requiremen	ts for good	d formwork in		
1.	construct	ion?				CO-	
	200 2600				0 4 4 144 . 4	1 00	1 2
	(b). Compare	e timber and	steel formwo	rk in terms o	of durability and	5	3

End of the Paper