Jaypee University of Information Technology, Waknaghat

TEST-3 Examination - December 2024

B.Tech - VII Semester (ALL)

Course Code/Credits: 22B1WMA731/3

Max. Marks: 35

Course Title: Linear Algebra for Data Science & Machine Learning

Max. Time: 2 Hours

Course Instructor: RAD

Note: (a) ALL questions are compulsory.

(b) Scientific calculators are allowed.

(c) The candidate is allowed to make suitable numeric assumptions wherever required.

	· · · · · · · · · · · · · · · · · · ·		
Q.No	Question	CO	Marks
Q1	Which of the sets are vector (sub)spaces? Justify your answer.	CO-1	4
	(a) $\mathbf{U} = \left\{ \begin{bmatrix} a+2\\2a \end{bmatrix} : a \in \mathbb{R} \right\}$		
	(b) $\mathbf{V} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a, b, c \in \mathbb{R}, \ a - 2b = 0, \ a - 3b + 2c = 0 \right\}$	į	
Q2	Prove that $\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ is a linear combination of the vectors:	CO-1	4
	$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$		
Q3	Apply Gram-Schmidt orthogonalization process to the following vectors to obtain first two orthogonal vectors:	CO-2	5
	$\begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\3\\-1\\3 \end{pmatrix}, \begin{pmatrix} 1\\3\\5\\7 \end{pmatrix}.$		
Q4	Consider the following 3×2 rectangular matrix:	CO-2	6
	$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$		
	(a) Find the singular values of A.		
	(b) Compute the SVD factorization of A .		

Q.No	Question	CO	Marks
Q5	Perform the QR decomposition on the given the matrix:	CO-2	3
	$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$		
	The orthonormal matrix ${\bf Q}$ and the upper triangular matrix ${\bf R}$ satisfy ${\bf B}={\bf Q}{\bf R}$. What is the first column of ${\bf Q}$? Justify your answer.		37
	(a) $\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathbf{T}}$ (c) $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{\mathbf{T}}$		
	(b) $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{T}$ (d) $\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^{T}$	eri erille La te dia	
Q6	A real estate company wants to predict housing prices based on the size of the living area. The company uses historical data of house prices (in \$1000s) and living areas (in sq. ft.) to train the model. The training data is as follows:	CO-4*	5
	$ \begin{array}{c cccc} \textbf{Living Area} & (x) & \textbf{Price} & (y) \\ \hline & 1000 & 150 \\ 1500 & 200 \\ 2000 & 250 \\ \hline \end{array} $:
	The company's objective is to learn the relationship between the living area x and the price y using linear regression with gradient descent. The model being used is $\hat{y} = \theta_0 + \theta_1 x$. Take $\alpha = 0.01$.		
	(a) Define the cost function for the problem.		<u> </u>
	(b) Perform first iteration of gradient descent with $\theta_0 = 0$, $\theta_1 = 0$.		
Q7	A marketing agency collects data on monthly spending (in thousands of dollars) of two customers, on two advertising platforms: Facebook Ads and Google Ads. The data matrix is as follows:	CO-3	8
	FeaturesSpends for Customer 1Spends for Customer 2Google48Facebook105		
	The goal is to reduce the dataset to a lower-dimensional representation while retaining the majority of the variance. This helps the agency analyze spending patterns across platforms efficiently. Perform principal component analysis on this dataset to answer:		
	(a) Calculate the covariance matrix S of the centered data.		
	(b) Compute the eigenvalues & eigenvectors of S.		
	(d) Transform the data onto the first principal component (PC1)		
	(c) What proportion of the total variance is captured by PC1?		