JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-I Semester (BT/BI)

COURSE CODE (CREDITS): 24B11MA112 (4)

COURSE NAME: MATHEMATICS FOR LIFÉ SCIENCES-I

COURSE INSTRUCTORS: MDS

MAX. MARKS: 35

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required

		6.4	1 376
Q.No	Question	€O _€	Marks
Q1	For what values of λ and μ the system of linear equation has	Call Spirit	K. ja
	x + y + z = 6		
	x + 2y + 5z = 10		
	$2x + 3y + \lambda z = \mu$	CO-1	4
	I. a unique solution		
	II. No solution		
	III. Infinite many solution		
Q2	(a) Expand $\log(1 + e^x)$ by Taylor's series about the point $x = 0$, up		
	to third degree terms.		
	(b) Find $\frac{dy}{dx}$, if $y = \frac{2-3\cos x}{\sin x} + e^{(5x-9)}\log(x^2 + 7x - 5)$.	CO-2	3+3
Q3	(a) If $\frac{(1+i)^2}{(2-i)} = x + iy$, the value of $x + y$.		
	(2-1)	CO-3	2.5+2.5
	(b) Evaluate $(i^{37} + \frac{1}{i^{67}})^9$	00-3	2.572.5
Q4	If $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$, then find $\vec{a} \times \vec{b}$. Verify		
	that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.	CO-4	4
	Find the shortest distance between the following pair of lines whose		
Q5.	vector equations are $\vec{r} = 3\hat{\imath} + 8\hat{\jmath} + 3\hat{k} + \lambda (3\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = -3\hat{\imath} - 7\hat{\jmath} + 6\hat{k} + \mu (-3\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$.	00.4	
Q5.	$\vec{r} = -3\hat{i} - 7\hat{j} + 6\hat{k} + \mu \left(-3\hat{i} + 2\hat{j} + 4\hat{k} \right).$	CO-4	5
Q6.	Evaluate $\int_{-3}^{3} x+1 dx$	CO 5	2
		CO-5	3
Q7.	(a) Evaluate		**
	$(\cos(\tan^{-1}x) / - 1)^2$		
	$\int \left(\frac{\cos(\tan^{-1}x)}{1+x^2} + \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2\right) dx$		
		CO-5	4+4
-	(b) Using partial fraction technique solve		• • •
	$\int \frac{x^2}{(x-1)(x^2+1)} dx$		
	$\int (x-1)(x^2+1)^{-4x}$		