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CHAPTER - 1

INTRODUCTION

1.1 OBJECTIVE

To develop a tool for predicting the results for various domains. The tool can take both nominal and
continuous attributes as inputs. The prediction for continuous attributes requires clustering, in order to

convert it into a nominal form. For clustering we have used DBSCAN algorithm.

1.2 GENERAL DESCRIPTION

Data analysis underlies many computing applications, either in a design phase or as part of their on-line
operations. Data analysis procedures can be dichotomized as either exploratory or confirmatory, based on
the availability of appropriate models for the data source, but a key element in both types of procedures
(whether for hypothesis formation or decision-making) is the grouping, or classification of measurements
based on either (i) goodness-of-fit to a postulated model, or

(ii) natural groupings (clustering) revealed through analysis.

It is important to understand the difference between clustering unsupervised classification) and discriminant
analysis (supervised classification). In supervised classification, we are provided with a collection of labeled
(pre classified) patterns; the problem is to label a newly encountered, yet unlabeled, pattern. Typically, the
given labeled (fraining) patterns are used to learn the descriptions of classes which in turn are used to label a
new pattern. A training set is a set of data used in various areas of information science to discover potentially
predictive relationships.  Training sets are used inartificial intelligence, machine learning,  genetic
programming, intelligent systems, and statistics. In all these fields, a training set has much the same role and is often

used in conjunction with a test set. The algorithms for unsupervised discretization make no consideration for
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the class attribute while the supervised discretization algorithms consider the interdependence between class
labels and the attribute values. Clustering is the unsupervised classification of patterns (observations, data
items) into groups (clusters). Cluster analysis is the organization of a collection of patterns into clusters
based on similarity. Intuitively, patterns within a valid cluster are more similar to each other than they are to
a pattern belonging to a different cluster, For this reason, clustering is a form of learning by observation,
cather than learning by examples. The problem is to group a given collection of unlabeled patterns into
meaningful clusters. In a sense, labels are associated with clusters also, but these category labels are data

driven; that is, they are obtained solely from the data.

The process of Knowledge Discovery in Databases (KDD) commonly involves a number of sub-processes
such as data selection, data preprocessing, data transformation, data mining, and the interpretation and
visualization of the mined patterns. Some of these sub-processes are iterative in nature and sometimes some
loop amongst themselves, Among these the data preprocessing and data transformation are steps of much
interest because these steps prepare the data according to the input specification of the data mining

algorithms.

The necessary tasks in preprocessing and transformation are data integration to create single data matrix from
data tables obtained from varions resources, creating attributes, ¢ excluding irrelevant attributes,
discretization of the values of attributes. Discretization transforms the infinitely many continuons values of
an attribute into a finite and a significantly small numbers of intervals. For continuous attributes , in order to
find degree of dependency , we first cluster them into groups of similar data objects and then treat the
clusters as nominal attributes , thus , finding their degree of dependency. The majority of the Data Mining

algorithms are applied to data described by discrete or nominal attributes. In order to apply these algorithms

effectively to any dataset the continuous attribute need to be transformed to discretized ones.
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1.3 SCOPE OF THE PROJECT

Numerous applications require the management of data. Increasingly large amounts of data are
obtained from various sources .
Therefore, automated knowledge discovery becomes more and more important.

Clustering algorithms are attractive for the task of class identification. However, due to the application

to large databases arise the following requirements for clustering algorithms:

(1) Minimal requirements of domain knowledge to determine the input parameters, because

appropriate values are often not known in advance when dealing with large databases.

(2) Discovery of clusters with arbitrary shape, because the shape of clusters in spatial databases may

be spherical, drawn-out, linear, clongated etc.

(3) Good efficiency on large databases, i.e. on databases of significantly more than just a few thousand

objects.

(4) Capability of discovery of knowledge for diverse domains.

Hence , our project i.e. “A PREDICTION TOOL BASED ON DBSCAN * aims at prediction from

information provided from different domains and producing consistent results for highly scalable data

, since the amount of information available is huge .




1

|
f

1.4 MODULES AND TIMELINE

MODULES:

Finding degree of dependency for non-continuous

MODULE - [
attributes.

MODULE - 11 The second module comprises of working on
clustering by providing indices to the clusters.

MODULE - 111 Our aim is to find the degree of dependency of
continuous attributes.

MODULE - 1V After successful completion of Module - I, II,

and 11T , the final prediction of results will take

place.




TIMELINE:
Module IV
Module 1l
Module ll
Module |
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CHAPTER -2 -

| LITERATURE SURVEY

2.1 NON — CONTINUOUS AND CONTINUOUS ATTRIBUTES

i 2.1.1 NON - CONTINUOUS ATTRIBUTES

I
| 2.1.1.1 NOMINAL VARIABLES

- Nominal variable is a variable with values whose order is insignificant (synonym :
categorical variable) i.e. a variable for which values represent the names of things, with no

order implied.

. Nominal variable is a generalization of a binary variable in that it can take on more than

two states.

- Nominal variables classify data into categories. This process involves labeling categories

and then counting frequencies of occurrence.

- TLet the number of states of a nominal variable be M. The states can be denoted by letters ,
symbols, or a set of integers, such as 1, 2, ..., M. Notice that such integers are used just for

|

! . . .

! data handling and do not represent any specific ordering.
|

- E.g., profession, ID numbers, eye color, zip codes.
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2.1.1.2 ORDINAL ATTRIBUTES
- A discrete ordinal variable resembles a nominal variable except that the M states of the
ordinal value are ordered in a certain meaningful sequence.
L - E.g., rankings (e.g., army, professions), grades, height in {tall, medium, short}
2.1.1.3 BINARY ATTRIBUTES
1 - A binary variable has only two states: 0 and 1.
- 0 shows absence of certain feature and 1 shows the presence.
- E.g., medical test (positive vs. negative)
‘i
2.1.2 CONTINUOUS ATTRIBUTES
- A continuous variable is one for which, within the limits the variable ranges, any value is
possible. Thus, they can take any value over a defined range.
i - Has real numbers as attribute values.
i - Examples: temperature, height, or weight, etc.
' - Practically, real values can only be measured and represented using a finite number of
T digits.

- Continuous attributes are typically represented as floating-point variables.




- Example:
Consider the following measurements:

e times to run a marathon

' » temperatures recorded at intervals during a day

« weight of each bunch of grapes sold at a supermarket yesterday.
Time, temperature and weight are all examples of numerical data, but there is not a restricted set of
values that they can take. Whereas you can have 2 or 3 children in a family but not 2.3, with
temperature it is possible to have not only 22 °C and 23 °C but also 22.1 °C. 22.25 °C. 22.97 °C as
well. This type of variable is restricted only by the accuracy with which the measurement can be

made. Such variables are known as “continuous variables’.

- Continuous variables often relate to measured items.

2.2 DESCRETIZATION OF ATTRIBUTES AND DEGREE OF DEPENDENCY

2.2.1 DESCRETIZATION OF ATTRIBUTES

The majority of the Data Mining algorithms are applied to data described by discrete or nominal
attributes. The large number of attribute values in database slows down the process of better
discovery of the discrete intervals thus making inductive learning ineffective. Discretization

techniques can be used to reduce the number of values for a given continuous attribute, by

dividing the range of attributes into intervals or by applying clustering techniques. Discrete

attributes have only a finite or count ably infinite set of values.




A

2.2.2 DEGREE OF DEPENDENCY

- A set of attributes D depends totally on a set of attributes C, denoted C = D, if all attribute

values from D are uniquely determined by values of attributes from C.

- By calculating the change in dependency when an attribute is removed from the set of
considered conditional attributes, a measure of the significance of the attribute can be

obtained.

- The higher the change in dependency, the more significant the attribute is. If the
significance is 0, then the attribute is dispensable.

- By calculating the change in dependency when an attribute is removed from the set of

considered conditional attributes, a measure of the significance of the attribute can be

obtained.

- The higher the change in dependency, the more significant the attribute is. If the

significance is 0, then the attribute is dispensable.




2.2.2.1 DEGREE OF DEPENDENCY OF NON - CONTINUOUS ATTRIBUTES

Nominal variable is a variable for which values represent the names of things, with no order

implied.

For example : Attributes for weather can be clear, sunny, cloudy or rainy which are nominal and

that of temperature can vary along any range and these will be continuous.

Nominal variables classify data into categories. This process involves labeling categories and then
counting frequencies of occurrence.
The classes with maximum frequency of occurrences are then recorded and degree of

dependency is calculated based on them.

For example : A researcher might wish to compare essay grades between male and female
students. Tabulations would be compiled using the categories "male" and "female." Sex would
be a nominal variable. Note that the categories themselves are not quantified. Maleness or
femaleness are not numerical in nature, rather the frequencies of each category results in data

that is quantified -- 11 males and 9 females.

2.2.2.2 DEGREE OF DEPENDENCY OF CONTINUOUS ATTRIBUTES

The majority of the Data Mining algorithms are applied to data described by discrete or nominal
attributes. The large number of attribute values in database slows down the process of better
discovery of the discrete intervals thus making inductive learning ineffective. Therefore, one of
the main goals of any discretization process is to significantly reduce the number of intervals for
the values of the continuous attribute under consideration. In order to apply data mining
algorithms effectively to any dataset the continuous attribute need to be transformed to

discretized ones.
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A continuous variable is one for which, within the limits the variable ranges, any value is possible.

Thus, they can take any value over a defined range.

|

Thus, in order to find degree of dependency for continuous attributes , one needs to convert them

into nominal attributes and then find their degree of dependency.

ﬂ

To convert continuous attributes to nominal variables we’ve used clustering (DBSCAN) technique.

2.2.2.2.1 CLUSTERING

The process of grouping of objects into classes of similar objects is called clustering. A cluster
is a collection of data objects that are similar to one another within the same cluster and are
dissimilar to the objects in other clusters. A cluster of data objects can be treated collectively as
one group and so méy be considered as a form of data compression. Although classification is an
effective means for distinguishing groups or classes of objects, it requires the often costly
collection and labeling of a large set of training tuples or patterns, which the classifier uses to
mode! each group. It is often more desirable to proceed in the reverse direction: First partition
the set of data into groups based on data similarity(e.g. using clustering), and then assign labels

to the relatively small number of groups. Additional advantages of such a clustering-based

process are that it is adaptable to changes and helps single out useful features that distinguish

} different groups.

Cluster analysis is an important human activity. By automated clustering, we can identify dense
and sparse regions in object space and, therefore, discover overall distribution patterns and

interesting correlations among data attributes. Cluster analysis has been widely used in numerous

11 |




applications, including market research, pattern recognition, data analysis and image processing.
In business, clustering can help marketers discover distinct groups in their customer bases and
characterize customer groups based on purchasing patterns. In biology, it can be used to derive
plant and animal taxonomies, categorize genes with similar functionality, and gain insight into
structures inherent in populations. Clustering may also help in the identification of groups of
houses in a city according to house type, value, and geographic location as well as the
identification of groups of automobile insurance policy holders with a high average claim cost. It

can also be used to classify documents on the Web for information discovery.

Clustering is also called data segmentation in some applications because clustering partitions
large data sets into groups according to their similarity. Clustering can also be used for outlier
detection, where outliers (values that are “far away” from any cluster) may be more interesting
than common cases. Applications of outlier detection include the detection of credit card fraud
and the monitoring of criminal activities in electronic commerce. For example, exceptional cases
in credit card transactions, such as very expensive and frequent purchases, may be of interest as
possible fraudulent activity. As a data mining function, cluster analysis can be used as a stand-
alone tool to gain insight into the distribution of data, to observe the characteristics of each
cluster, and to focus on a particular set of clusters for further analysis. Alternatively, it may serve
as a preprocessing step for other algorithms, such as characterization, attribute subset selection,
and classification, which would then operate on selected clusters and the selected attributes or

features.

Clustering is the unsupervised classification of patterns (observations, data items) into groups
(clusters). Clustering is useful in several exploratory pattern-analysis, grouping, decision-
making, and machine-learning situations, including data mining, document retrieval, image
segmentation, and pattern classification. However, in many such problems, there is little prior
information (e.g., statistical models) available about the data, and the decision-maker must make
as few assumptions about the data as possible. It is under these restrictions that clustering
methodology is particularly appropriate for the exploration of interrelationships among the data
points to make an assessment (perhaps preliminary) of their structure. In the case of clustering,

the problem is to group a given collection of unlabeled patterns into meaningful clusters. In a
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sense, labels are associated with clusters also, but these category labels are data driven; that is,
they are obtained solely from the data.
A good clustering method will produce high quality clusters with

+ high intra-class similarity

* low inter-class similarity

The quality of a clustering result depends on both the similarity measure used by the method and
its implementation. The quality of a clustering method is also measured by its ability to discover

some or all of the hidden patterns.

Components of a Clustering Task

Typical pattern clustering activity involves the following :

(1) pattern representation (optionally including feature extraction and/or selection),
(2) definition of a pattern proximity measure appropriate to the data domain,

(3) clustering or grouping,

(4) data abstraction (if needed), and

(5) assessment of output (if needed).

Paters | TN P | erpaten Clustes
e Sectio ——=| Similarity + Groping >
Exmaction | Representations
feadback loap

Stages in Clustering
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Figure depicts a typical sequencing of the first three of these steps, including a feedback path
where the grouping process output could affect subsequent feature extraction and similarity

computations.

Pattern representation refers to the number of classes, the number of available patterns, and the
number, type, and scale of the features available to the clustering algorithm. Some of this

information may not be controllable by the practitioner.

Feature selection is the process of identifying the most effective subset of the original features to
use in clustering.

Feature extraction is the use of one or more transformations of the input features to produce new
salient features. Either both of these techniques can be used to obtain an appropriate set of

features to use in clustering.

Pattern proximity is usually measured by a distance function defined on pairs of patterns. A
variety of distance measures are in use in the various communities. A simple distance measure
like Euclidean distance can often be used to reflect dissimilarity between two patterns, whereas

other similarity measures can be used to characterize the conceptual similarity between patterns

The grouping step can be performed in a number of ways. The output clustering (or clusterings)
can be hard (a partition of the data into groups) or fuzzy (where cach pattern has a variable

degree of membership in each of the output clusters).

Data abstraction is the process of extracting a simple and compact representation of a data set.
Here, simplicity is either from the perspective of automatic analysis (so that a machine can
perform further processing efficiently) or it is human- oriented (so that the representation
obtained is easy to comprehend and intuitively appealing). In the clustering context, a typical
data abstraction is a compact description of each cluster, usually in terms of cluster prototypes or

representative patterns.
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Requirements of Clustering in Data Mining :

Scalability

» Ability to deal with different types of attributes

¢ Discovery of clusters with arbitrary shape

e Minimal requirements for domain knowledge to determine input parameters

e Able to deal with noise and outliers

¢ Insensitive to order of input records

s High dimensionality

¢ Incorporation of user-specified constraints

e [nterpretability and usability

Typical applications :

¢ As astand-alone tool to get insight into data distribution

o As apreprocessing step for other algorithms

15




General Applications of Clustering :

Pattern Recognition

e Spatial Data Analysis

» detect spatial clusters and explain them in spatial data mining

¢ Image Processing

e Economic Science (especially market research)

e WWW

» Document classification

Maijor Clustering Approaches

|
| } ) } )

Partitioning Hierarchy Density Grid Model

|
Algorithms Algorithms Based Based Based ‘
|
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o Partitioning algorithms: Construct various partitions and then evaluate them by some

criterion.Construct a partition of a database D of n objects into a set of k clusters, Given a &, find
a partition of k clusters that optimizes the chosen partitioning criterion. Global optimal:
exhaustively enumerate all partitions.

Heuristic methods: k-means and k-medoids algorithms

k-means: Each cluster is represented by the center of the cluster.

" (&) L T
o .
o © [ & .
5] ] -
< 52 o B O , @ & o
+ _ G o o I
4] N €. -
“ o L N o
[5] ® 4 - - e @
© . Y . ®»

Clustering of set of points using k-means method

M k-medoids or PAM (Partition around medoids): Basically, the algorithm finds the center of a
cluster and takes the element closest to the center as "the Medoid" means most centrally located
object in a cluster. Starts from an initial set of medoids and iteratively replaces one of the
medoids by one of the non-medoids if it improves the total distance of the resulting clustering. It
is performed based on the principle of minimizing the sum of the dissimilarities between each

object. PAM works effectively for small data sets, but does not scale well for large data sets.
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Clustering of set of points based on k-medoids algorithm

o Hierarchy algorithms: It creates a hierarchical decomposition of the given set of data objects.lt

can be classified into either agglomerative or divisive,

Agglomerative approach(bottom-up): set cach object as a individual cluster or group and
merges the objects or groups close to one another, until all of the groups are merged into one(the

topmost level of the hierarchy).
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Clustering of a set of points based on the “Agglomerative Nesting” method

Divisive approach(top down): starts with all objects in the same cluster. In each successive

iteration, a cluster is split up into smaller clusters, until a termination condition holds.
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DIANA({Divisive Approach)

Density-based: based on connectivity and density functions. To discover the clusters with
arbitrary shapes density based clustering methods have been proposed. Clusters are regarded as

the dense regions of the objects, separated by regions of low density.

Major features:

Discover clusters of arbitrary shape
Handle noise

Need density parameters

19
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Two parameters:

: Maximuma&adius of the neighborhood

» MinPts: Minimum number of points in an  neighborhoed of that point.

& neighborhood of that point: N_(p): {g € D|dist(p,q) <= 8}[

Example: DBSCAN Algorithm —

Clustering algorithms are attractive for the task of class identification. However, the application

to large databases rises the following requirements for clustering algorithmns:

(1) Minimal requirements of domain knowledge to determine the input parameters, because

appropriate values are often not known in advance when dealing with large databases.

(2) Discovery of clusters with arbitrary shape, because the shape of clusters in spatial databases

may be spherical, drawn-out, linear, elongated etc.

(3) Good efficiency on large databases, i.e. on databases of significantly more than just a few

thousand objects.

DBSCAN refers to Density Based Spatial Clustering of applications with Noise .It Relies on
a density-based notion of cluster: A cluster is defined as a ‘maximal set of density-connected

points. Tt was able to discovers clusters of arbitrary shape in spatial databases with noise.

When looking at the sample sets of points depicted in figure, we can easily and unambiguously

detect clusters of points and noise points not belonging to any of those clusters.

20
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The main reason why we recognize the clusters is that within each cluster we have a typical

density of points which is considerably higher than outside of the cluster. Furthermore, the

density within the areas of noise is lower than the density in any of the clusters.

In the following, we try to formalize this intuitive notion of “clusters” and “noise” in a database

D of points of some k-dimensional space S. Note that both, our notion of clusters and our

algorithm DBSCAN, apply as well to 2D or 3D Euclidean space as to some high dimensional

feature space. The key idea is that for each point of a cluster the neighborhood of a given radius

has to contain at least a minimum number of points, i.e. the density in the neighborhood has to

exceed some threshold. The shape of a neighborhood is determined by the choice of a distance

function for two points p and g, denoted by dist(p,g). For instance, when using the Manhattan

distance in 2D space, the shape of the neighborhood is rectangular. Note, that our approach

works with any distance function so that an appropriate function can be chosen for some given

application. For the purpose of proper visualization, all examples will be in 2D space using the

Euclidean distance.

Definition 1: (Eps-neighborhood of a point) The Epsneighborhood of a point p, denoted by

NEps(p), is defined by

NEps(p)= {q € D|dist(p,q) = Eps}.
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A naive approach could require for each point in a cluster that there are at least a minimum
number (MinPts) of points in an Eps-neighborhood of that point. However, this approach fails
because there are two kinds of points in a cluster, points inside of the cluster (core points) and
points on the border of the cluster (border points). In general, an Epsneighborhood of a border
point contains significantly less points than an Eps-neighborhood of a core point. Therefore, we
would have to set the minimum number of points to a relatively low value in order to include all
points belonging to the same cluster. This value, however, will not be characteristic for the
respective cluster - particularly in the presence of noise. Therefore, we require that for every
point p in a cluster C there is a point q in C so that p is inside of the Epsneighborhood of g and
Eps(q) contains at least MinPts points.

Definition 2: (directly density-reachable) A point p is directly density-reachable from a point q
wrt. Eps, MinPts if

1) p € NEps(q) and

2) INEps(q)l = MinPts (core point condition)

Obviously, directly density-reachable is symmetric for pairs of core points. In general, however,
it is not symmetric if one core point and one border point are involved. Figure shows the

asymmelric case.

| b dirccHy lensity-
v Y s reachablefrom q
pborderpoint o q e R !
| ' .,
q: ccre poit . ' *
. e o | quot directiy density-
i &
., redchablefrom p
]
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Definition 3: (density-reachable) A point p is densityreachable from a point q wrt. Eps and
MinPts if there is a chain of points pl, ..., pn, pl = q, pn = p such that pi+l is directly density-
reachable from pi. Density-reachability is a canonical extension of direct density-reachability.
This relation is transitive, but it is not symmetric. Figure depicts the relations of socine sample
points and, in particular, the asymmetric case. Although not symmetric in general, it is obvious
that density-reachability is symmetric for core points. Two border points of the same cluster C
are possibly not density reachable from each other because the core point condition might not
hold for both of them. However, there must be a core point in C from which both border points
of C are density-reachable. Therefore, we introduce the notion of density-connectivity which

covers this relation of border points.

Definition 4: (density-connected) A point p is densityconnected to a point q wrt. Eps and MinPts !
if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts.
Density-connectivity is a symmetric relation. For density reachable points, the relation of
density-connectivity is also reflexive. |
Now, we are able to define our density-~based notion of a cluster. Intuitively, a cluster is defined
to be a set of densityconnected points which is maximal wrt. density-reachability. Noise will be |
defined relative to a given set of clusters. Noise is simply the set of points in D not belonging to

any of its clusters.

(a)

p density- .

reachable fromq « p and q density-
. connected to

qnot density - each other by o

reachable fromp e

Density-reachability and Density connectivity
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Definition 5: (cluster) Let D be a database of points. A cfuster ¢ wrt. Eps and MinPts is a non-

empty subset of D satisfying the following conditions:

1) p.q if p € C and q is density-reachable from p wrt. Eps and MinPts, then g C.
(Maximality)

2) ¥V p,q € C:pis density-connected to q wrt. EPS and MinPts. (Connectivity)

Definition 6: (noise) Let CI .. . ., Ck be the clusters of the database D wrt. parameters Epsi and
MinPtsi, i = I, . . ., k. Then we define the noise as the set of points in the database D not

belonging to any cluster Ci | i.e.

noise={p € D| V iip € ci).

Note that a cluster C wrt. Eps and MinPts contains at least MinPts points because of the
following reasons. Since C contains at least one point p, p must be density-connected to itself via
some point o (which may be equal to p). Thus, at least o has to satisfy the core point condition

and, consequently, the Eps-Neighborhood of o contains at least MinPts points.

The following lemmata are important for validating the correctness of our clustering algorithm.
Intuitively, they state the following. Given the parameters Eps and MinPts, we can discover a
cluster in a two-step approach. First, choose an arbitrary point from the database satisfying the
core point condition as a seed. Second, retrieve all points that are density- reachable from the

seed obtaining the cluster containing the seed.
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1 Lemma 1: Let p be a point in D and [NEps(p)| € MinPts. Then the set O = {o|o € Dand o is
density-reachable from p wrt. Eps and MinPts} is a cluster wrt. Eps and MinPts. It is not obvious

that a cluster C wrt. Eps and MinPts are uniquely determined by any of its core points. However,

each point in C is density-reachable from any of the core points of C and, therefore, a cluster C

\
i
|
contains exactly the points which are density-reachable from an arbitrary core point of C. J

Lemma 2: Let C be a cluster wrt. Eps and MinPts and let p be any point in C with [NEps(p)|

g MinPts. Then C equals to the set O = {0 | o is density-reachable from p wrt. Eps and MinPts}.

e Grid-based: based on a multiple-level granularity structure.

No distance computations.

# Clustering is performed on summaries and not individual objects; complexity is
usually O(#-populated-grid-cells) and not O(#objects).
Easy to determine which clusters are neighboring

» Shapes are limited to union of grid-cells

5 Basic Grid-based Algorithm:

‘ » Define a set of grid-cells
» Assign objects to the appropriate grid cell and compute the density of each cell.
» Eliminate cells, whose density is below a certain threshold t. ‘

» Form clusters from contiguous (adjacent) groups of dense cells (usually

minimizing a given objective function).

| 25
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O All the cluster boundaries are either horizontal or vertical, and no diagonal

boundary is detected.

W

3
]
L
ok
-

U
1]

Figure: STING

Model-based: A model is hypothesized for each of the clusters and the idea is to find the

best fit of that model to each other.
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2.2.2.2.2 DPEGREE OF DEPENDENCY USING CLUSTERING

For continuous attributes , in order to find degree of dependency , we first cluster them into
groups of similar data objects and then treat the clusters as nominal attributes , thus , finding
their depree of dependency. The majority of the Data Mining algorithms are applied to data
described by discrete or nominal attributes. The large number of attribute values in database
slows down the process of better discovery of the discrete intervals thus making inductive
learning ineffective. Therefore, one of the main goals of any discretization process is to
significantly reduce the number of intervals for the values of the continuous attribute under
consideration. In order to apply data mining algorithms effectively to any dataset the continuous

attribute need to be transformed to discretized ones.

This approach requires integration of two approaches i.e. clustering and finding degree of

dependency.

A continuous variable is one for which, within the limits the variable ranges, any value is
possible. Thus, they can take any value over a defined range. Thus, in order to find degree of
dependency for continuous attributes, one needs to convert them into nominal attributes and then
find their degree of dependency. To convert continuous attributes to nominal variables we’ve

used clustering (DBSCAN) technique.
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2.3 BAYE’S THEOREM

in probability theory, Bayes' theorem shows the relation between one conditional

probability and its inverse. The key idea is that the probability of event A (e.g., having breast

cancer) given event B (having a positive mammogram) depends not only on the relationship
between A and B (ie, the accuracy of manunograms) but on the absolute probability
(occurrence) of A not concerning B (i.c., the incidence of breast cancer in general), and the
absolute probability of B not concerning A (i.e. the probability of a positive mammogram). For
instance, if mammograms are known to be 95% accurate, this could be due to 5% false positives,
5% false negatives (missed cases), or a random mix of false positives and false negatives. Bayes'
theorem allows one to calculate the exact probability of having breast cancer, given a positive
mammogram for any of these three cases, because the probability of B (a positive manumogram)
will be different for each of these cases. It is worth noting that if 5% of mammograms result in a
positive result, then the probability that an individual with a positive result actually has cancer is
rather small, since the probability of cancer is closer t6 1%. The probability of a positive result is
then five times more likely than the probability of the cancer itself. This shows the value of

correctly understanding and applying Bayes' theorem.

P(B|A) P(4)
P(B)

P(A|B) =

Suppose there is a school with 60% boys and 40% girls as students. The female students wear
trousers or skirts in equal numbers; the boys all wear trousers. An observer sees a (random)
student from a distance; all the observer can see is that this student is wearing trousers. What is

the probability this student is a girl? The correct answer can be computed using Bayes' theorem.

The event A is that the student observed is a girl, and the event B is that the student observed is

wearing trousers. To compute P(AIB), we first need to know:
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P(4), or the probability that the student is a girl regardless of any other information. Since the
observers sees a random student, meaning that all students have the same probability of being
observed, and the fraction of girls among the students is 40%, this probability equa]s.0.4.

P(B|4), or the probability of the student wearing trousers given that the student is a girl. As they
are as likely to wear skirts as trousers, this is 0.5.

P(B), or the probability of a (randomly selected) student wearing trousers regardless of any other

information. Since half of the girls and all of the boys are wearing trousers, this is0.5x0.4 +
1x0.6 = 0.8.

Given all this information, the probability of the observer having spotted a gitl given that the
observed student is wearing trousers can be computed by substituting these values in the

formula:

_ P(BLAP(A) 05 %04
D= —pm = o3

P(A = 0.25.

Another, essentially equivalent way of obtaining the same result is as follows. Assume, for
concreteness, that there are 100 students, 60 boys and 40 girls.- Among these, 60 boys and 20
girls wear trousers. All together there are 80 trouser-wearers, of which 20 are girls. Therefore the
chance that a random trouser-wearer is a girl equals 20/80 = 0.25. Put in terms of Bayes’
theorem, the probability of a student being a girl is 40/100, the probability that any given girl
will wear trousers is 1/2. The product of these two is 20/100, but we know the student is wearing

trousers, so you remove the 20 non trouser wearing students and receive a probability

of (20/100)/(80/100), or 20/30.

It is often helpful when calculating conditional probabilities to create a simple table containing

the number of occurrences of each outcome, or the retative frequencies of each outcome, for

each of the independent variables. The table below illustrates the use of this method for the

above girl-or-boy example
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Girls Boys Total
Trousers : 20 : 60 80

Skirts 20 : 0 : 20

Total 40 : 60 Q 100
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CHAPTER -3

DESIGN AND IMPLEMENTATION

3.1 DEGREE OF DEPENDENCY OF NON - CONTINUOUS ATTRIBUTES

3.1.1 MODULAR DESCRIPTION I

In the implementation part of calculating degree of dependency , we have in this module

implemented for nominal attributes . Nominal variable is a variable for which values represent

For example : Attributes for weather can be clear, sunny, cloudy or rainy which are nominal and

i
}
!
the names of things, with no order implied. III
l
]
that of temperature can vary along any range and these will be continuous. |

Nominal variables classify data into categories. This process involves labeling categories and then |

counting frequencies of occurrence. The classes with maximum frequency of occurrences are then

recorded and degree of dependency is calculated based on them.




3.2 CLUSTERING

{  3.2.1 MODULAR DESCRIPTION

First Attempt :

We first implemented clustering by means of using partitioning algorithm i.e. k-means. K-means
partitioning algorithm is a centroid-based technique. The partitioning method classifies the data into k-
groups where each partition represents a cluster and k<n. That is, it classifies data into k-groups which

together satisfy the following requirements:
1. Each group must contain atleast one object

2. Each object must belong to exactly one group

Given k, the number of partitions to construct, a partitioning method creates an initial partitioning. It
then uses iterative relocation technique that attempts to improve the partitioning by moving objects
from one group to another. The general criterion of a good partitioning is that objects in the same
cluster are “close” or related to each other, whereas objects of different clusters are “far apart” or very

different.

Final
Boundary

Final R

Boundary o I
Start m, -
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i These partitioning clustering methods work well for finding spherical shaped clusters in small to

medium partition sized databases.

Weakness :

B Applicable only when niean is defined
B Need to specify &, the number of clusters, in advance
B Unable to handle noisy data and outliers

B K mean sensitive to outliers, extremely large value may distort the data f

distribution (l

( ,
Not suitable to discover clusters with non-convex shapes
Second Attempt:
Due the limitations of k-means approach we shifted to density based approach ,ie. , we used
DBSCAN algorithm in 1-D for clustering. identification. However, the application to large databases
rises the following requirements for clustering algorithms:
(1) Minimal requirements of domain knowledge to determine the input parameters, because
| appropriate values are often not known in advance when dealing with large databases.
/
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(2) Discovery of clusters with arbitrary shape, because the shape of clusters in spatial databases

may be spherical, drawn-out, linear, elongated etc.

| (3) Good efficiency on large databases, i.e. on databases of significantly more than just a few

thousand objects.

3.2.2 ALGORITHM

First Attempt:

The implementation of k-means required various steps :

v

Number of f’
{f cluster K

-

Centroid

Y -. floo oor
Distance objects to | We;gﬁu D2 M
T

centroids =

Y

Grouping based on
TR distance i J

|

\'3
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First we take ‘n” no. of points from user

We allocate any ‘k’ no. of points as centroids

‘K’ is less then or equal to *n’

We calculate the distance of each ‘n” points from each k’ centroids

We save the distance data in a matrix

We compare the distance of a point to each centroid

And we allocate ¢1° if the distance is minimum, else ‘0° in another matrix

We again calculate the new values of centroids considering only points with value in

matrix equal to ‘17 in respective rows
We repeat the process till the value of coordinates of centroid become constant

The final groups of points are the required clusters
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Clustering of set of points using k-means method

Second Attempt:

In order to implement DBSCAN, the following algorithm was used:

Ideally, we would have to know the appropriate parameters Eps and MinPts of each cluster and
at least one point from the respective cluster. Then, we could retrieve all points that are density-
reachable from the given point using the correct parameters. But there is no easy way to get this

information in advance for all clusters of the database. However, there is simple and effective

37




heuristic to determine the parameters Eps and MinPts of the "thinnest", i.e. least dense, cluster in
the database. Therefore, DBSCAN uses global values for Eps and MinPts, i.e. the same values
for all clusters. The density parameters of the “thinnest” cluster are good candidates for these

global parameter values specifying the lowest density which is not considered to be noise.

To find a cluster, DBSCAN starts with an arbitrary point p and retrieves all points density-
reachable from p wrt. Eps and MinPts. DBSCAN needs two parameters, Eps and MinPts.
However, experiments indicate that the k-dist graphs for k > 4 do not significantly differ from
the 4-dist graph and, furthermore, they need considerably more computation. Therefore, we
eliminate the parameter MinPts by setting it to 4 for all databases (for 1-dimensional data). If p is
a core point, this procedure yields a cluster wrt. Eps and MinPts (see Lemma 2). If p is a border
point, no points are density-reachable from p and DBSCAN visits the next point of the database.
Since we use global values for Eps and MinPts, DBSCAN may merge two clusters according to
definition 5 into one cluster, if two clusters of different density are “close” to each other. Let the

distance between two sets of points S1 and S2 be defined as

dist (S1, $2) = min {dist(p,q)|p € Sl.q € S2}

Then, two sets of points having at least the density of the thinnest cluster will be separated from
each other only if the distance between the two sets is larger than Eps. Consequently, a recursive
call of DBSCAN may be necessary for the detected clusters with a higher value for MinPts. This
is, however, no disadvantage because the recursive application

of DBSCAN yields an elegant and very efficient basic algotithm. Furthermore, the recursive
clustering of the points of

a cluster is only necessary under conditions that can be easily detected.
«  Arbitrary select a point p

+ Retrieve all points density-reachable from p wrt Eps and MinPts.
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» Ifpis a core point(points inside of the cluster), a cluster is formed.

\ « If p is not a core point, no points are density-reachable from p and DBSCAN visits the

next point of the database.

«  Continue the process unti! all of the points have been processed

3.3 DEGREE OF DEPENDENCY FOR CONTINUOUS ATTRIBUTES

3.3.1 MODULAR DESIGN

A continuous variable is one for which, within the limits the variable ranges, any value is
possible. Thus, they can take any value over a defined range. Thus, in order to find degree of
dependency for continuous attributes , one needs to convert them into nominal attributes and
then find their degree of dependency. To convert continucus attributes to nominal variables

we’ve used clustering,

3.3.2 ALGORITHM

s Take continuous values as input

e Pass these continuous values to the clustering algorithm

e The clusters of continuous values are formed

e (Create indices of these clusters

e Use these indices as non — continuous values
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o Pass these indices to the algorithm for calculating the degree of dependency for non —

continuous attributes

e The degree of dependency for continuous attributes takes place.

3.4 FLOWCHART

"NON- ~ CALCULATE FINAL
“CONTINUOUS — DEGREECF PREDICTION
- ATTRIBUTES DEPENDENCY OF RESULTS

TYPE OF
ATTRIBUTE

z ASSIGN
—CLUSTERING | _INDICESTO
- CLUSTERS
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3.5 CODE

3,51 DEGREE OF DEPENDENCY FOR NON - CONTINUOUS
ATTRIBUTES '

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<iostream.h>
#include<malloc.h>
#include<fstream.h>

#include<string.h>

int n=0,i=0,j=0,flag=0,=0,dod=0;
int **fin;

char **cond;

char **deci;

char **temp;

char condition{ 10],decision[10];
FILE *infile3,*infiled;

void main{)

{

) infile3 = fopen("dod.in","r");
infile4 = fopen("dependency.in”,"r");
fscanf(infile3,"%d",&n),
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fscanf(infile3,"%s", &condition);

fscanf(infile3,"%s".&decision);

cond=(char **)malloc(n * sizeof(char *));
for(j=0:1<n;j++)
cond[j]=(char *)malloc(10 * sizeof(char));

deci=(char **)malloc(n * sizeof(char *));
for(j=0si<nij++)
deci[j]=(char *)malloc(10 * sizeof(char));

for(i=0;i<n;i++)

{
fscanf(infiled,"%s",&cond([i]);
fscanf(inﬁIe4,"%s",&deci[i]);

cout<<"\n\\M\tTABLEW";
cout<<"\t"<<condition<<"(cond. attr.)";
cout<<"N\t" <<decision<<"(deci. attr.)";
for(i=0;i<n;it+)
{

cout<<"mt\t"<<cond[il;

cout<<"nnan"<<decilil;

}

temp=(char **)malloc(n * sizeof{char *});
for(j=0:<n;j++)
temp(j]=(char *)malloc(10 * sizeof(char));

for(i=0;i<n;it+)
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strepy(temp[il," "),

for(i=0;i<n;i++)

{
for(j=0;j<n:j++)
{
if(stremp(cond[i] temp[j})==0)
flag=1;
}
if{flag==0)
{
strepy(temp(t],cond([il);
t++
}
flag=0;
}

fin=(int **)malloc(n * sizeof(int *));
for(j=0:j<n;j++) |
fin[j]=(int *)malloc(2 * sizeof(int));

for(i=0;i<n;i++)
{
for(j=0;j<2;j++)
fin(i]}=0;

for(i=0;i<t;i++)

{
for(j=0;j<nij++)
{
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if(stremp(templi],condfj])==0)

{
5 if{stremp(deci[j],"yes")==0)
| fin[i][0]++;
else if(stremp(decifj],"no")==0}
fin[i][1]++;
b
}
j
for(i=0;i<t;i++)
{
Heout<<"n"<<dod;
fleout<<"\n"<<fin[i][0]<<"w"<<fin[i][1]; f
H(fin[11[0)>=fin{i][1]) 1

dod=dod+finfi][0];
else if(fin[i][01<fin[i]{}])
dod=dod+in{i][1];

cout<<"\n\nDegree of dependency of decision attribute("<<decision<<") over conditional

attribute("<<condition<<"):\t"<<dod<<"/"<<n;

}
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3.5.2 CLUSTERING

k — Means:

#include <iostream.h>
#include <stdio.h>

#include <math.h>

void enter_data(};

void distance(float z1[],float z2[],float z3[],float z41]);

int i=0,j=0,k=0,n=0,a=0,flag=0;

float x[4]={0.0},y[4]={0.0} ,xy[41{4]={0.0} ,xy1{4][4]={0.0} temp=0.0;

void main()

{
enter_data();
cout<<"\nEnter the no. of centroids:\t";
cin>>a;
{/float cenx[]={0.0},ceny[]:{0.0},cenx_temp[]:{0.0},ceny_temp[]:{0.0};
float *cenx,*ceny,*cenx_temp,*ceny_temp;
cenx=new float[a];
ceny=new float[a];
cenx_temp=new float[a];
ceny_temp=new f{loat[a];

for(i=0;i<a;i++)

——

cenx(i]=x[i];

ceny[ij=ylil;
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}

distance(cenx,ceny,cenx_temp,ceny_temp);

void enter_data()

{
i=0;
//cout<<"Enter the no of points you want to enter:\t";
flein>>n;
while(i<4)
{
cout<<"\nEnter the co-ordinates of the point.";
cout<<"\nEnter the x co-ordinate:\t";
* cin>>x[i];
cout<<"\nEnter the y co-ordinate:\t";
cin>>y[i];
i+t
}
}

void distance(float cenx[],float ceny[],float cenx_temp([],float ceny_temp(])

/ffinding the distance from centroid 1 & 2 from all 4 points
for(i=0;i<a;i++)

for(j=0;j<4;j++)

xy[i][j]=sqrt(((cenx[i]-x[j])*(cenx[i]-x [ +((ceny[i]-y[JD)* (cenylil-yiD));

/fassignment of 1 if minimum distance from resp. centroid else 0
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for(j=0j<4;j++)

——

temp=xy[0][j];
for(i=0;i<a;i++)
{
if{temp>=xylil[j))
temp=xy[il{jl;
}
for(i=0;1<a;i++)
{
if(xylil[j]—temp)
xy Hillj=1;
else
xyl[i][j]=0;
}
'

Hfor new centroid

for(i=0;i<a;i++)

{
cenx_templi]=cenx[i];
ceny_temp[i]=cenylil;
cenx[i]=0;
cenylil=0;

i
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for(i=0;i<ai++)

\ {
1 k=0;
for(j=0:j<4j++)
{
iftxy1[11(j1==1)
{
k++;
cenx[i]=cenx[i]+x[i];
ceny[i]=ceny[i]+y[jl; l
} 1
}
if(k!=0)
{
cenx[i]=cenx[i}/k;
ceny[i]=ceny[i]/k;
}
}

/fchecking if centroids coordinates have changed or not

for(i=0;i<a;i++)

/ if((cenxﬁtemp[i]=:cenx[i])&&(cenyﬂtemp[i]:=ceny[i]))
flag=1;
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else
flag=0;

—

if(flag==1)

for{i=0;i<a;t++)

cout<<"\nwnThe coordinate of centroid

are:M{"<<cenx[i] << Me<geny[ij<<" ",

cout<<"\nThe points in cluster no."<<i+1<<" is/are:\t";

for(int j=0;j<4;j++)

iftxy tijh1=="1

cout<<"{"<<x([j]<<", ey j<<" M

Else

distance(cenx,ceny,cenx_temp,ceny_temp);
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DBBSCAN:

ginclude<stdio.h>
#include<stdlib.h>
ginclude<iostream.h>

#include<malloc.h>

void main{()

{
int n:(),i=0,j:0.k:0,10w:().highzo\minptS:O-p:O:

float eps=0.0;

cout<<™nPlease enter the value of eps(float value):\t";

cin>>eps;

cout<<"\nPlease enter the value of minpoints(integer value):\t™;
cin>>minpts;

cout<<™nPlease enter the number of data points in the dataset:\t";

cin>>n;

float *arr;
arr=new float[n];

for(i=0;i<n;it++)

cout<<"\nEnter the data for "<<i+1<<" location:\";

cinz>ar{if;

for(i=0;i<n;i++) ‘

50




ifthigh<arr[i})
high=arrli];

if(low>arr[i])

low=arrli];

p=((high-low)/eps)+1:
int *count;

count=new int[p];

float **clus;
clus=(float **)malloc(p * sizeof{float *}),
for(i=0;i<p;i++)

clus[i]=(float *)malloc(p * sizeof(float));

for(i=0;i<p;i++)

{
count[i]=0;
for(j=0j<p;j*+")
clus[i][j]=0.0;
}

for(i=0;i<n;i++)

for(7=0:j<pijt+)
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if((artli|>=(low+(j*eps))) & & (arr[i]<=(low+((j+1)*eps))))

chus[j])[countfj]]=art[i];

countfj]++;

for(i=0;i<p;i++)

cout<<"nThe no of elements in partition "<<i+1<<" is/are:\t"<<count[i];

=1

for(i=0;i<p;i++)

{
if{count{i]>=minpts)
{
cout<<"n\nNumber of elements in cluster "<<j<<" are:\t"<<count[i];
cout<<"\nWhich are:\t"; .
for(k=0:k<count[i];k++)
cout<<clus[i][k]<<"t",
jHts
}
}

cout<<"\n\m\nNumber of clusters formed according to eps & minpoints values are:

52

A" << F<<"\n\n";




cout<<"\n\nNumber of elements part of Noise isfare’M":

for(i=0;i<p;i++)

{
if((count[i]<minpts)&&(count[i]>0))
1
for(k=0;k<count[i];k++)
cout<<clus[i][k]<<"\t";
}
} u
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3.5.3 DEGREE OF DEPENDENCY

FILE *infilel,*infile2;
infile! = fopen("userdatadod.in","r")'

2

infile2 = fopen(“datadod.in","r“);

fscanf{infilel %1, &eps);
fscanf(infile} J%%d", &minpts);
fscanf(infilel "%d" &maxpls);
fscanf{infilel "%d" &maxlth);
fscanf(infile! Sd",&n);
fscanf(infilel ,"%s",&condition):
fscanf(infilel "%s", &decision);

eps=eps*2;
float *arr;

arr=new float|n];

char *output;

output=new char{nl;

for(i=0;i<n;i++)
{ .
fscanf(inﬁleZ,"%f“,&arr[i]);

fscanf(infile2," %" &output]i]);

for(i=0:i<niit+)
{
if(high<arr[i])
high=arr{i};

FOR CONTINUOUS ATTRIBUTES
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if{low>arr[i]}

low=arr[i];

p=((high-low)/eps)+1;

int *count;

count=new int[p];

float **clus;

clus=(float **)malloc(p * sizeof(float *));

for(i=0;i<p;i++)

clus[i]=(float *)malloc(p * sizeof{float));

for(i=0;i<p;i++t)

{

count(i]=0;
for(j=0j<p;)++)
clus[i]{j]=0.0;

for(i=0;i<n;it+)

{

for(=0sj<pij++)

{
if(art{i]>=(low+(j* eps))& & (artlil <= (low H( 1) *eps))
{ .
clus[jj[count(j]]=arrli];
countfjj++;
}
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float **inter;

inter=(float **)malloc((p+10) * sizeof(float *));
for(i=0;i<(p+10);i++)

inter[i]=(float *)malloc({p+10) * sizcof(float));

for(i=0;1<(p+10);i++)

{
for(j=0:j<(p+10);j++)
inter{i]{j]}=0.0;
)
int t0=0;
1=0;

for(i=0;i<p;it+)

{

if(count[i]>=minpts)

{
for(k=0:k<count|i];k++)
{

inter[1][k]=clus[i][k];

}
if(count[i]>10)

out of any row i.e. t0

t0=count[i];
I++;

>
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=N
for(i=0;i<p;i++)

4 {
if(count{i]>=minpts)
{
/eout<<"\n\nNumber of elements in cluster "<<j<<" are:\t"<<count[i];
Heout<<"\nWhich are:\t";
{for(k=0;k<count[i];k++)
Hfcout<<clus[i][k]<<"\";
jH
1
)

interval=j-1;
cout<<"No, of intervals are:\t"<<interval;

cout<<™\n";

int no_of_elements=0;
float temp_low=0;

float temp_high=0,

float range=0;

int no_of elements_1=0,
int no_of elements_2=0;
int g;

float temp_low1=0;

float temp_high1=0;

float temp_low2=0;

float temp_high2=0;
float max=0;

float min=0;
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float h;
float d1;
float d2;

float temp_min=0;

int t1=0;

float *d;

d=new float[interval];

for(j=0;j<interval;j++)
d[j]=10000;

{/large value

float *in;

in=new float[t0]:

float *in2;

in2=new float[t0];

for(i=0;i<t0;i++)

{
in[1)=0.0;
in2[i]=0.0;

int temp_interval=interval;
do
{
temp_interval=interval;
for(i=0;i<interval;i++)
{
for(j=0;j<t0;)++)
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infj{=inter[i][i];

no_of elements=0;
for(j=0:j<t0;j++)

{

if(in[j]!=0.0)

no_of_elements++;

temp_low=in[0];
temp_high=in[0];
for(j=0;j<t0;j++)

{
if(temp_low>in[j])
temp_low=in[j];
if(temp_high<in[j])
temp high=in[j];
}

range=temp_high-temp_low;

{

int mid=no of elements/2;

if(no_of_elements%2)==0) feven
{
for(j=0;j<mid;j++)

inter[interval][j]=inter[i}[mid-+j];

for(7=mid;j<t0;j++)
inter[i]{j]=0.0;
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if((nomof_eIements>=(2*minpts))”(range>maxlth)) //split condition



—

else /fodd

for(j=0;j<mid;j++)

inter[interval][j]=inter[i][mid+j+1];

for(j=mid;j<t0;j++)
inter[i][j+1]=0.0;

—

interval++;

else if(no of elements<minpts)
{
for(k=0;k<interval;k++)
{
if(k!=i)
{
for(j=0;j<t0;j++)
in2[j]=inter[k][j];

no_of elements_1=0;
no_of elements_2=0;
for(j=0:j<t0;j++)
{
if(in[j]!=0)
4 no_of clements_1+4;
if(inter[k][j]!=0)

no_of elements 2++;
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temp_low1=0;
temp_high1=0;
temp_low2=0;
temp_high2=0;
max=0;
min=0;
for(j=0;j<no_of _elements_1;j++)
{
ifttemp_lowl>in[j])

temp_lowl=injl;

if(temp_highl<in[j])
temp _highl=in{j];

for(j=0yj<no_of_elements_2;j++)
{
ifttemp_low2>inter[k][1])
temp_low2=inter[k][j];

if{temp_high2<inter[K][j])
temp_high2=inter[k](j];

d1=temp_highl-temp_low2;
d2=tem p_lowl-temp_high2;
if(di1<0)

di=di*(-1);
if(d2<0)
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d2=d2*(-1);

if(d1<d2)
E /fsmaller distance
dik]=d1;
else
d{kl=dz2;
} ffend if
} {lend for
if(i1=0)
temp_min=d{0];
else
temp_min=d[1];
- for(k=0;k<interval;k++} /ito find minimum distance pair
{
if(k!=i)
{
if(temp_min>d[k])
{
temp_min=d[k];
fl=k;
i }
! }
)

no_of_elénxents_] =0,
no_of _elements_2=0;
For(j=0;j<t0;++)

{

62




if(in{j]!=0)
no_of elements_1++;
if(inter{t!]{;]=0)

no of elements_2++,

——

g=no_of elements_l+no_of elements_2;

temp_low1=0;
temp_high1=0:
temp_low2=0;
temp_high2=0;
max=0,
min=0;
for(j=0;i<no_of_elements_1;j++)
{
if(temp_low[>in[j])

temp_lowl1=in[j};

if(temp_highl<in[j])
temp_highl=in[il;

for(j=0;j<no_of_elements_2;j++)

{
ifttemp_low2>inter[t1][j])

temp_low2=inter([t1][j];

if(temp_high2<inter{t1][}])
temp_high2=inter[t1][j];
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if(temp_high1>temp_high2)
. max=temp_high!;
4 else

max=temp_high2;

if(temp_lowl <temp_low2)
min=temp_lowl;
else

min=temp_low2;
h=max-min;

int t2=0;
if((g<minpts)&&(h<maxlth)) limerge

condition

for(j=no_of elements;j<t0;j-++)
{
inter[i][j]=inter{t1][t2];

t2++;

for(k=tl:k<interval-1;k++)

{
i for(j=0:j<t0;j+1)
;‘ {
J[ inter[k](j]=inter[k+1][1;
| }
' }
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interval--;

J }
y }
' flend else if
H {fend for
}
while(intervall=temp_interval); /fno change in no. of intervals

for(i=0;i<interval;i++)

{
for(k=0;k<t0;k++)
cout<<inter{i][kj<<"\t";
cout<<"\n";
}

cout<<"\n\\tMMTABLEW";
cout<<"\{"<<condition<<"(cond. attr.}";
cout<<"\t\t\t"<<decision<<"(deci. attr.)";
for(i=0;i<n;i++)
{

cout<<"\nit\t"<<arr[i];

cout<<"N\t\t"<<outputfi]; -

fin=(int **)malloe(n * sizeof(int *));
for(j=0;j<n;i++)
fin[j]=(int *)malloc(2 * sizeof{(int));

for(i=0;i<n;i+t)
{
for(j=0;j<2;j++)
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finfi)[y}=0;

int x=0;

for(i=0;i<interval;i++)

{
for(j=0;j<t0;j++)
{
for(k=0;k<n;k++)
{
if(inter[i][j]==arr[k])
{
if{output[k]=="y")
fin[i]{0]++;
else if(output{k]=="n")
fin[i][1]++;
X+,
}
}
}
}

for(i=0;i<interval;i++)
{
if(fin[i][01>=fin[i]{1])
dod=dod+fin[i][0];
else if{fin[i][0]<fin[i][1])
dod=dod+fin[i][1];

cout<<"\n\nDegree of dependency of decision attribute("<<decision<<")n
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<<"gver conditional attribute("<<condition<<"):\t"<<dod<<"/"<<x;

return 0,

1
J
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CHAPTER -4

RESULTS

4.1 DEGREE OF DEPENDENCY OF NON-CONTINOUS ATTRIBUTES

Enter the decision data for 2 location: yes

Enter the conditional data for 3 location: rainy

Enter the decision data for 3 location: no

Enter the conditional data for 4 location: rainy

Enter the decision data for 4 location: yes

Enter the conditional data for 5 location: sunny

Enter the decision data for S location: yes

TABLE
outlook{cond. attr.) play(deci. attr.)

over yes
over yes
rainy no
rainy yes
sunny yes

|

Degree of dependency of decision attribute(play) over conditional attribute(outl..
ook): /5 M

[T
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4.2 CLUSTERING

k — Means:

Enter the y co-ordinate: 1 N

Enter the co-ordinates of the point.
Enter the % co-ordinate: 1

Enter the y co-ordinate: 2

Enter the co-ordinates of the point.
Enter the x co-ordinate: 3

Enter the y co-ordinate: 4

Enter the co-ordinates of the point.
Enter the x co-ordinate: 5

Enter the y co-ordinate: 4

Enter the no. of centroids: 2

The coordinate of centroid no.1 are:  {1,1.5)

The points in cluster no.1 isjare: {(1,1y 1,2}

The coordinate of centroid no.2 are:  {4,4
The points in cluster no.2 isfare: 3,4y {5,4)

T R AT T Y SR A R W R R -

RN
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DBSCAN:

Enter the data for 16 location: 99

Enter the data for 17 location: 169 I
Enter the data for 18 location: 49

Enter the data For 19 location: 185

Enter the data for 20 location: 144 |

Nunber of elements in cluster 1 are: 5
Which are: 1 5 1.8 8.4 3

Nunber of elements in cluster 2 are: 4
Uhich are: 82 83 §5.5 88

Nunber of clusters forned according to eps & minpoints values are: 2
Nunber of elements part of Noise is/are: 15 26 Y BI
49

63 08 99 109 1w 185 - bk

s 0 ﬂ\_‘.h.w .*‘}_-‘._"_.'_“-_'_!"“r“;::"*;.:‘.‘ .
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4.3 DEGREE OF DEPENDENCY OF CONTINUOUS ATTRIBUTES

:2 Unacﬁve‘ZﬂFlNALE~1\EPSDOD,EX£) | '_ -%Eﬂjﬂ
No. of intervals are: 2 | 4

Which are: 1.3 52 9. -
Uhich are: 56,7 5848 %2

THBLE
Humidity(cond. attr.) Outcome(deci. attr.)
1.3 n
5.2
9.4
99.6
65.7
58.8
52
22
84
1

™ TR —I— T A - B

Degree of dependency of decision attribute(Outcone)
over conditional attribute(Humidity): /6
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4.4 TECHNOLOGY AND RESOURCES USED

Hardware :

+  1(+)GB RAM

Software :

+  Compiler — Turbo C++4.5

Operating System ;

» "Windows Operating System
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CHAPTER -5

FUTURE WORK AND CONCLUSION

The prediction tool we’ve created is for 1-D applications. Due it’s flexibility, high — scalability,
and less dependence on domain knowledge, it can be used for prediction in various domains. For
example: stock analysis, weather prediction and many such kind of domains. This project can be
further extended to 2-D and 3-D applications like image segmentation, object recognition etc..
DBSCAN, the clustering technique we’ve used, is a model basically constructed for spatial data

and hence, permits such extension.

There are several applications where decision making and exploratory pattern analysis
have to be performed on large data sets. For example, in document retrieval, a set of relevant
documents has to be found among several millions of documents of dimensionality of more than
1000. It is possible to handle these problems if some useful abstraction of the data is obtained
and is used in decision making, rather than directly using the entire data set. By data abstraction,
we can a simple and compact representation of the data. This simplicity helps the machine in
efficient processing or a human in comprehending the structure in data easily. Clustering

algorithms are ideally suited for achieving data abstraction.

“The Prediction Tool Based on Clustering” is a tool designed to predict data in | - D, considering

some limitations of data mining techniques and thus, merging them in a order which helps in

overcoming the constraints. The following constraints have been taken care of:

Scalability Issues
Domain specificity

Difficulties in Non — Convex shaped cluster formation

In summary, clustering is an interesting, useful, and challenging problem. It has great potential in
applications like object recognition, image segmentation, and information filtering and retrieval.
However, it is possible to exploit this potential only after making several design choices

carefully. Such an attempt was made by us.
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