Rayesh les

Enrolment Number:	************
--------------------------	--------------

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- February 2018

B.Tech II Semester (CSE, ECE, IT)

COURSE CODE: 10B11PH211

MAX. MAKES: 15

COURSE NAME: PHYSICS-II

COURSE CREDITS: 04

MAX. TIME 1H

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Attempt all the questions in sequence.

Q1.

- a) Check the divergence theorem for the function $\vec{A} = y^2 \hat{\imath} + (2xy + x^2)\hat{\jmath} + 2yz\hat{k}$ and a cube of side 1 unit situated at origin
- b) The height of a certain tower is given as $h(x,y) = 10(2xy-3x^24y^2-18x+28y+12)$, where y is the distance north and x the distance east. (i) Where is the top of the tower located? (ii) What is the height of the tower?

Q2.

- a) Determine the electric field caused by a spherical clued of electrons with a volume charge density $\rho = -\rho_0$ for $0 \le R \le r$ and $\rho = 0$ for R rusing Gauss law. [3]
- b) Write down Laplace and Poisson's equations. Use them to find out the potential at any point between the two plates of a parallel plate capacitor separated by a distance 'd' and maintained at potentials θ and V_0 .

Q3.

Write the Maxwell's electromagnetic equations. Using these drive the wave equation for electromagnetic waves in free space. [2+3]