]

fom we v

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. & Po b 6§ (call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

|

DN

SP06

N

_—ﬂ/-- R ——

SECURE COMMUNICATION CHANNEL USING
RSA ALGORITHM

BY

KAPIL SHARMA - 061249
SWADEEP SINGH - 061299
VIVEK CHAITANYA - 061311

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY -2010 (8" SEMESTER)

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING &
INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY-
WAKNAGHAT

ey

i
!
I
]
i
é

JAYPEE UNIVERSITY Of
INFORMATION TECHNOLOGY

UNDERTAKING

This is to certify that the thesis entitled “Secure Communication channel using RSA
Algorithm”, submitted by us to the Jaypee University of Information Technology, Solan for the
award of the final year project of B-tech degree by Research is a bonafide record of research
work carried out by me under the supervision of Dr.Smriti Agrawal. The contents of this thesis,

in full or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Place: JUIT
Date:

- b o
Signature of Student Signature of Student ignature of Student
Kapil Sharma Swadeep Singh Vivek Chaitanya
061249 061299 061311

e, e —c——

FOR
of WFORY,
4 i e "’i

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that the work entitled “Secure Communication channel using RSA
Algorithm” submitted by Kapil Sharma (061249) Swadeep Singh (061299) Vivek Chaitanya
(061311) For the award of Bachelor of Technology in Computer Science Engineering of Jaypee
University of information Technology has been carried out under my supervision. This work has
not been submitted partially or wholly to any other University or Institute for the award of this or

any other degree or diploma.

Dr.Smriti Agrawal
Asst. Professor

Department of Computer Science Engineering and Information Technology

Jaypee University of Information Technology
Waknaghat

e

ACKNOWLEDGEMENT

;‘Winning is not everything, but the effort to win is”

Apart from the efforts by us, the success of this project depends largely on the encouragement
and guidelines of many others. We take this opportunity to express our gratitude to the people
who have been instrumental in the successful completion of this project.

We would like to show our greatest appreciation to Dr. Smriti Agrawal . We feel motivated and
encouraged every time we get her encouragement. For her coherent guidance throughout the
tenure of the project, we feel fortunate to be taught by Dr. Smriti Agrawal, who gave us her

unwavering support. Besides being our mentor, she has taught us that there’s no substitute for

hard work.

We owe our heartiest thanks to Brig. (Retd.) S.P.Ghrera(H.0.D-CSE/I.T Department) who’ve

always inspired confidence in us to take initiative. He has always been motivating and

encouraging.

Project Group No. 7
061249,061299,061311 / AN
B.TECH (CSE)

Table of Contents

TABLE OF CONTEINTS ...ooususitrsasnsessseonsinssssas soatba00eiis msissississ s sivsisesssiss sastsbasssonssnsononetoesterssmsmmeson 1

LIST OF FIGURES .ovesioisinssssnissnsossssssssssssittiassboeetsosstsias s 101 et isabi s ihs s ssissl tonssbenssssssesmesomsssrasens 3

LIST OF ABBREVIATION .. ciiueumvavsssssis bt s o it oh v oo b s s s i b et manmsa e msmes 4

L ARS TRACT v s e I S e L 5

{

CHAPTER 1 INTRODUCTION TO CRYPTOGRAPHY ...coiviriverrineieenssenssesssessssssssessssessssssnsesssssesss 6

1] Basic Terminalogiesised in Cryplography e e it e s s 6

L2 Cryptographic. AlGorIthinS v iasmims e et o e 7

L3 Two Kinds of Iy mogrplY Syt i i e e e e 7

CHAPTER 2 SYMMETRIC AND ASYMMETRIC KEY CRYPTOGRAPHYooovvevrireressesesenns 8

2.1 Overview of Symmettio-K ey Cryplography i i e i 8

2.1, 1 Steeam Cipher and Block Ciphe i o L s O b 9

2. L2 DIES BACIYPHON ivucvicmm i e T s 10

| 2.1:.3 AES ENCIYPHION viiivmsivvrssscin i e e o e s st 11

\ 2.2 Overview of Public Key CHyptography i i e 13

CHAPTER 3 RSA- PUBLIC KEY CRYPTOGRAPHY ALGORITHMcoovviviveeserssensnsesssessssssseses 18

3.1 Introduction (0. RSA AlGOTTTHIN ...ciwui v vt sttt oy (et ks o8 P A AT b smas s e 18

3.2 BSA AITOTININ L Grmmmensminiirmeninayi O Sl R e s s 18

. 3:2:1-Key Generalionmmmmmnmrrnmrmnny e S o e s 18

i R T R e T 19

' 3:2:3 DESUBHOMN cucissraasinseniibit i AR o I e B o 19
)

1

L
g

3.2.5 Signature VErification .o e sets st eesses e eeeees o 21

3.3 ComPULALION ASPECE....iuimeiiieisiiiiriiiisercstiiie it st seseesssessressrenseeeeres s e st st esses s eese e seesesa oo 22
3.3.1 Exponentiation in Modular ATtRIMELICco.covvevvesssoesie s oese e oo 22

3.3.2 Efficient Operation using PUbIC KEYoooocveeeereriesee oo eses oo, 24

3.3.3 Efficient Operation Using Private Keycoocoocevviiisirieesiomieesseeses o es e, 24

3.3.4 Key GONEIAtiON ..couccvviciieciieitieeiiercies i constsest e s eseses e s s seee e 25

3.4 Ky MANAZEMENLucuriiiiitiitiii ittt en e essesses e s s s s st st ees e eee s eseeesoes 26
3.5 THE SECUIIY O RSA et 29
3.5.1 The Factoring ProbIemcocoiiiiiiissiiecsete e eeees st s e e s et 29

3.5 2 TIMING AUACK 1.ttt et es e sttt ee et s s sttt ee e oot 30

3.5.3 Chosen Ciphertext Attack and Optimal Asymmetric Encryption Paddingcoorvvininn, 31

3.6 Java Cryptography 31
3.6.1 Creating an RSA Key PAIr M JAVA .ociviiiisiceeieeesiere e ee oo es et oot 32

3.6.2 Saving the Public and Private Keyc...vvcvivieeiesiieeteee s ss et e, 33

3.6.3 How to set Key SIZ€ iN JAVA .o.vvivivireieiiereieie et e rest et sese et se et 34
Chapter 4 RSA Chat MesSengerccooeeoeevevicvnnennnn. et r e 35
4.1 Implemented SOIULIONciiciiieiiiiieceniiesr e en e ettt e s e s e s cretas 36
4.2 8ecUre Chat ProtOcol......ouueercrcnncinne s e ses st enssesseseses et st sosesee e se e 36
4.3 Exactly what happen when a user CONNECES 10 SEIVET ...vuevivireviieiriiriserriseeesisseeesteeetsesesssienssenss 37
4.4 Chat MesSenger ACHIECIUTEcocvvirciniiie sttt e ettt e et et ses s s ess e 38
4.4.1 What 15 8 SOCKEI? ...eiiiiiciii e e bt ee s e st s e et eeat e es e 38

44.2 TCP/IP Client SOCKEt v...vveererrs s ettt e 40

4,43 TCP/IP SEIVEr SOCKEE..eueceruieressnresanimraniesrrsrsisssisseisssesesseesesessesteestsnesesssonessrstosssnsssssesss 41

44,4 JAVA SWINZ ..eoiiiiiriiiiseiesieess et intrnns et st b e rasse s bt e 180 a1 4t ot e et sebeese s et sestasnsseres e esssssees et seeas 42

4.4.5 Overview of Swing Component Class.... oo et e senens 43

4.5 Screen Shot of TMail MESSENEETuv.vvvurrecrererneerenis sttt arsre s e seecsenesessssnssenssessssessa oo 52
CONCLUSION......ccvcrennes eeertites e e e Ee RS RN a LR AR S SRR RS e N e S ek e nee e e eneesnrererenntra 57
BIBLIOGRAPHY ..oivucnnscenensssonsrs he R EaTe e AN R NN Eeeee I AN AN SRR R4 Ere et pe e nh e beneserannennnee 58
PROJECT CODE..cccoiimsisiasssssisimsitisionssissssssisssssssssssesintssisisisssissntsasssessssiessosessessesssosesssassssssenssaene 59

R I T Y

LIST OF FIGURES

Figure 2.1 Symmetric-key cryptography.............coooveeiuverneninoeesoe 9
Figure 2.2 General Description of DES Encryption Algotithi....e..veveoseeeeeoovoooooo, 11
Figure 2.3 AES Encryption and Decryption............cooooveeiisoeeee i 12
Figure 2.4 Public Key encryption...............oeeiieroioese e 13
Figure 2.5 Public Key Decryption.............co.cuuuesveeeeee oo ee e 13
Figure 2.6 Public-Key CryptoSystem: SECIECY . .. vvurreeerenesreesiresseeesen e 15
Figure 2.7 Public-Key Cryptosystem: Authentication....................eeeerevvevenennnn 16
Figure 2.8 Publié-Kcy Cryptosystem: Authentication and Secrecy.................oooe.. 17
Figure 3.1 Creating a digital signature...............ooccooiionirios e, 20
10. Figure 3.2 Verifying a digital Signature..............ocooeiiviiiriei oo, 21
1. Figure 3.3 Public-Key Distribution SCEnarios.oovevoooosoooooooeoeo 28
12. Figure 4.1 Connection REQUESL............c.uviiiiiiiiiiieiiiee e e, 39
13. Figure 4.2 Socket Connection Established..............ccooevivivieeirnnerieiieeniiinnn, .39
14. Figure 4.3 JLabel COMPONENt.........coooiiiiiiiiiiiniii e e ee e, 44
15. Figure 4.4 JTextfield Component.o.oouveiiiiiiniii oo, 45
16. Figure 4.5 JBUttON COMPONENtvviieseriit it ee e e e aareeee e e e e e oreenn e 46
17. Figure 4.6 JCheckBox COmMPONEntiieiveiuiviiiiiiee i e ereeene s iens 46
18. Figure 4.7 JComboBox ComMPOnent........cooiiieiiniii e 48
19. Figure 4.8 Server IP and Port Connection...........c..ovuvuieiiiiiin e eiieeevrneninns 52
20. Figure 4.9 Client Login Window..........ccoiiiiiiiiiii e 53
21. Figure 4.10 Registration FOrm...........ooiiiiiiiiiiiiii e e e, 54
22. Figure 4.11 Confirm Registration............covviiiiiiiiiiiiiinee e e 54
23. Figure 4.12 Friend List WINdOW.....oo.iiiiiiiii i e 55
24, Figure 4.13 Client messaging Window.........covooiiiiiiiiiiiiiniii v 56

LIST OF ABBREVIATIONS

RSA Rivets Shamir Adelman
DES Data Encryption Standard
AES Advanced Encryption Standard
PU Public Key
PR Private Key
TCP. /TP Transmission Control Protocol/Internet Protocol
UDP User Datagram Protocol
' MIT Massachusetts Institute of Technology
\';_ (SQL Structured Query Language
GCD Greatest Common Divisor
1 HTTP Hypertext Transfer Protocol
FTP File Transfer protocol
i DBMS Database Management System

%
: 4
3
1

ABSTRACT

This Report briefly introduces the concept of RSA algorithm, and presents the flaws of other
existing cryptographic Algorithm, thereby designs our improved implementation and analyzes
the performance of our implementation. We’ve developed a piece of software for encrypting and
decrypting text files.
Using RSA we have generated key pairs (public and private key) and then encryption and
decryption of the messages is done. Establishing client server architecture using TCP/IP.
Database management system has been used to store the clients information.
In this document we have given an overview of cryptography. We have desc‘ribed the Basic
terminologies used in cryptography, Overview of symmetric and asymmetric cryptography. Later
we have explained the RSA Algorithm, The steps to generate public and private key and
Encryption and Decryption of message.
We have also tried to make it multiple client server, so that at one particular time more than one
person can connect to the main server and chat with their desired friends. We have also
researched for new techniques of implementing RSA algorithm efficiently.
Softwares which we have used are NetBeans 6.7.1 & IDEMicrosoft SQL 2005.During the year
of project work we came across with different subjects to implement the RSA algorithm, which
helped us to brush up with our previous subjects and helped us to learn new things, some of them
are as follows.

+ Network security and cryptography

« Database management system

* Data structures

+ Computer networks

+ Software engineering

* Fundamentals of algorithm

* Object Oriented Programming Language

i
|
i
|
|
|

CHAPTER 1

f Introduction to Cryptography

In the era of information technology, the possibility that the information stored in a person’s
computer or the information that are being transferred through network of computers or internet
being read by other people is very high. This causes a major concern for privacy, identity thefl,
electronic payments, corporate security, military communications and many others. We need an
efficient and simple way of securing the electronic documents from being read or used by people
other than who are authorized to do it. Cryptography is a standard way of securing the electronic

{ documents.

Basic idea of cryptography is to mumble-jumble the original message into something that is
unreadable or to something that is readable but makes no sense of what the original message is.
To retrieve the original message again, we have to transform the mumble-jumbled message back

into the original message again.

1.1 Terminologies used in Cryptography:

Data that can be read and understood without any special measures is called plaintext or
cleartext. This is the message or data that has to be secured. The method of disguising plaintext
in such a way as to hide its substance is called encryption. Encrypting plaintext results in
L unreadable gibberish called ciphertext. You use encryption to ensure that information is hidden
| from anyone for whom it is not intended, even those who can see the encrypted data. The process

of reverting ciphertext to its original plaintext is called decryption.

Cryptography is the science of mathematics to “encrypt” and “decrypt” data. Cryptography

enables us to store sensitive information or-transmit-it-across insecure networks like Internet so

that no one else other the intended recipient can read it.

AP sl 5 A o PN B VAT e s

Cryptography can be used to provide:

» Confidentiality - ensure data is read only by authorized parties,

» Data integrity - ensure data wasn't altered between sender and recipient,

» Authentication - ensure data originated from a particular party.

Cryptanalysis is the art of breaking Ciphers that is retrieving the original message without

knowing the proper key. Cryptography deals with all aspects of secure messaging,

authentication, digital signatures, electronic money, and other applications.

1.2 Cryptographic Algorithms:

Cryptographic algorithms are mathematical functions that are used in the encryption and
decryption process. A cryptographic algorithms works in combination with a kep (a number,
word or phrase), to encrypt the plain text. Same plain text encrypts to different cipher texts for

different keys. Strength of a cryptosystems depends on the strength of the algorithm and the
secrecy of the key.

1.3 Two Kinds of Cryptography Systems:

Thete are two kinds of cryptosystems: symimetric and asymmetric. Symmetric cryptosystems use
the same key (the secret key) to encrypt and decrypt a message, and asymmetric cryptosystems
use one key (the public key) to encrypt a message and a different key (the private key) to decrypt

it. Symmetric cryptosystems are also called as private key cryptosystems and asymmetric

cryptosystems are also called as public key cryptosystems,

CHAPTER 2

Symmetric and Asymmetric Key Cryptography

2.1 Overview of Symmetric-Key Cryptography

Symmetric-key cryptography (Private-key cryptography), refers to encryption methods in which

both the sender and receiver share the same key. A symmetric encryption scheme has five

ingredients:

Plaintext: This is the original intelligible message or data that is fed into the algorithm as
input,

Encryption algorithm: The encryption algorithm performs various substitutions and
transformations on the plaintext.

Secret key: The Secret key is also input to the encryption algorithm. The key is a value
independent of the plain text and of the algorithm. The algorithm will produce a different
output depending on the specific key being used at the time. The exact transformations
and substitutions performed by the algorithm depend on the key.

Ciphertext: This is the scrambled message produced as the output, It depends on the
plaintext and the secret key. For a given message, two different key will produce two
different ciphertext. The ciphertext is an apparently random stream of data and, as it
stands, is unintelligible. '

Decryption algorithm: This is essentially the encryption algorithm run in reverse. It

takes the ciphertext and the secret key and produces the original plaintext.

There are two requirements for secure use of encryption:

1.

We need a strong encryption algorithm. At a minimum, we would like the algorithm to be
such that an opponent who knows the algorithm and has access to one or more ciphertext

would be unable to decipher the ciphertext or figure out the key. This requirement is

stated in a stronger form: The opponent should be unable to decrypt ciphertext or

discover the key even if he or she is in possession of a number of ciphertexts together
with the plaintext that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and

must keep the key secure. If someone can discover the key and knows the algorithm, all

the communication using this key is readable.

>

Cryptanalyst

>

Message X

- Decryption
Source i

Algorithm

Destination

3

, Secure Channel
Key
: - Source

Figure 2.1 Symmetric-key cryptography
2.1.1 Stream Cipher and Block Ciphers

A Block Cipher is one in which a block of plain text is treated as a whole and used to produced
a ciphertext block of equal length. Typically, a block size of 64 or 124 bit is used.

Most symmetric block encryption algorithms in current use are based on a structure referred to as
a Feistel block cipher. A block cipher operates on a plaintext block of n bits to produce a
ciphertext block of n bits. An arbitrary reversible substitution cipher for a large block size is not

practical, however, from an implementation and performance point of view. In general, for an n-

9

= g

i TP,

bit general substitution block cipher, the size of the key is » x 2". For a 64-bit block, which is a

desirable length to thwart statistical attacks, the key size is 64 x 2% =27 = 10?! bits.

Stream ciphers, in contrast to the 'block’ type, create an arbitrarily long stream of key material,
which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-
time pad. In a stream cipher, the output stream is created based on a hidden internal state which

changes as the cipher operates.

2.1.2 DES Encryption
The most widely used encryption scheme is based on the Data Encryption Standard (DES)
adopted in 1977 by the National Bureau of Standard.

The overall scheme for DES encryption is illustrated in Figure, which takes as input 64-bits of

data and of key.

- The left side shows the basic process for enciphering a 64-bit data block which consists of:

- An initial permutation (IP) which shuffles the 64-bit input block

- 16 rounds of a complex key dependent round function involving substitutions &
permutations

- A final permutation, being the inverse of [P

The right side shows the handling of the 56-bit key and consists of:

- An initial permutation of the key (PC1) which selects 56-bits out of the 64-bits input, in
two 28-bit halves

- 16 stages to generate the 48-bit subkeys using a left circular shift and a permutation of
the two 28-bit halves.

10

&4-bit plaintext

v 64-bit key
I's N m——N
YYXNYYYY W Wy v vy vy

_Leftcirculacshire,

t;ate:ﬂ ‘Cl"t.(?'lce' 1)

-1

e ——

64-bit ciphertext

Figure 2.2 General Description of DES Encryption Algorithm

’ 2.1.3 AES Encryption

The Rijndael proposal for AES defined a cipher in which the block length and the key length can
be independently specified to be 128, 192 or 256 bits. The AES specification uses the same three |
key size alternatives but limits the block length to 128 bits. A number of AES parameter depends |
on the key length. -
Rijndael was designed to have the fd llowing characteristics:

e Resistance against all known attack.

¢ Speed and code compactness on a wide range of platform,

e Design simplicity

11

Plaintext

|
\

Key Plaintext
1T ;
'K [Add rounc key Je———-— o, 3] ——] Add round key |
K ' tu te by s 1. Expand key | | 1nverse sub bytes] E
[Shift rows ; | Inverse shift rows] =
!. T '_..ﬁ._...H__._____.ﬁ____._'.M_A_;___-__f;f_ _____ ;
! : —%l | Inverse mix cols e,
; 2 — — e Wi, —_— Add round key s
; » | _Inverse sub bytes 1 E
} &] Inverse shift rows | :
: SO A v
SRR R ¥
I Shift rows »®
h—l Inverse mix cols |
- w36, 39] AN Toun Ryl
i ! Inverse shift rows y
| w40, 48] ———— [Add round key |
Ciphertext Ciphertext
. (a) Encryption (b) Decryption
i
Figure 2.3 AES Encryption and Decryption
; I The key that is provided as input is expanded into an array of forty-four 32-bit words,
' w[i]. Four distinct words (128 bits) serve as a round key for each round; these are
' indicated in Figure 2.3.
[2. Four different stages are used, one of permutation and three of substitution:

o Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the
block |
o ShiftRows: A simple permutation
o MixColumns: A substitution that makes use of arithmetic over GF(2°%)
o AddRoundKey: A simple bitwise XOR of the current block with a portion of the
expanded key
3. The structure is quite simple. For both encryption and decryption, the cipher begins with
an AddRoundKey stage, followed by nine rounds that each includes all four stages,

followed by a tenth round of three stages.

12

2.2 Overview of Public Key Cryptography

Public Key cryptography uses two keys Private key (known only by the recipient) and a Public
key (known to everybody). The public key is used to encrypt the message and then it is sent to
the recipient who can decrypt the message using the private key. The message encrypted with the
public key cannot be decrypted with any other key except for its corresponding private key, The

following Diagram illustrates the encryption process in the public key cryptography

Message to be Encryption Encrypted
encrypted or » Algorithm »' message or
plain text Cipher text

Public Key known
to everyone

Figure 2.4 Public Key Encryption

The following diagram illustrates the decryption process in the public key cryptography:

Message to be Encryption Encrypted
encrypted or » Algorithm » Mmessage or
plain text Cipher text

| Private Key known

only to receiver

Figure 2.5 Public Key Decryption

i i i, B

The public-key algorithm uses a one-way function to translate plaintext to ciphertext. Then,
without the private key, it is very difficult for anyone (including the sender) to reverse the
process (i.e., translate the ciphertext back to plaintext). A one-way function is a function that is
easy to apply, but extremely difficult to invert. The most common one-way function used in
public-key cyyptography involves factoring very large numbers. The idea is that it is relatively
easy to multiply numbers, even large ones, with a computer; however, it is very difficult to factor
large numbers. The only known algorithms basically have to do a sort of exhaustive search (Does
2 go in to? Does 3? 4? 5? 62 and so on). With numbers 128 bits long, such a search requires
performing as many tests as there are particles in the universe.

For instance, someone wishing to receive encrypted messages can multiply two very large
numbers together. He keeps the two original numbers a secret, but sends the product to anyone
who wishes to send him a message. The encryption/decryption algorithm is based upon
combining the public number with the plaintext. Because it is a one-way function, the only way
to reverse the process is to use one of the two original numbers. However, assuming the two
original numbers are very large, their product is even bigger; it would be impractical for an

adversary to try every possibility to determine what the two original numbers were.

Let us take a closer look at the essential element of a public-key encryption scheme. There is
some source A that produces s message in plaintext, X=/X, X;... X w]. The M elements of X are
some finite alphabet. The message is intended for destination B. B generates a related pair of
keys: A public key PU,, and a private key PRy, PRy is known only to B, whereas PUj is publicly

available and therefore accessible by A.

With the message X and the encryption key PUj as input, A forms the ciphertext Y=/}, Y,...
Y. '

- Y=E (PUp,X)
The intended receiver, in procession of the matching private key, is able to invert the

transformation:
X=D (PR;,, Y)

14

Cryptanalyst

| Source A Destination B

Encryption
- Algorithm |

Message
Source

Decryption
Algorithm

Destination

hx 7

PU,

Key Pair
Source

Figure 2.6 Public-Key Cryptosystem: secrecy

An adversary, observing ¥ and having access to PU,, but not having access to PR, or X, must

attempt to recover X and/or PR, It is assumed that the adversary does have knowledge of the
r encryption (E) and the decryption (D) algorithms. If the adversary is interested only in this
particular message, then the focus of effort is to recover X, by generating a plaintext estimate X,
Often, however, the adversary is interested in being able to read future message as well, in which

case an attempt is made to recover PR, by generating an estimate ~PK,,

We mentioned earlier that either of the two related keys can be used for encryption, with the
other being used for decryption. This enables a rather different cryptographic scheme to be

implemented. Whereas the scheme illustrated in figure provides confident iality.

=E (PRy,X)
X=D (PU,,Y)
15

,. |

Cryptanalyst

A
> PR,
/
Source A Destination B
f Message Encryption 3 L . | Decryption A Destintation
Source Algorithmn i Algorithm :

PR, PU,

Key Pair
Source

Figure 2.7 Public-Key Cryptosystem: Authentication

In this case, A prepares a message to B and encrypt it using A’s private key before transmitting
it. B can decrypt the message using A’s public key. Because the message was encrypted using
A’s private key, Only A could have prepared the message. Therefore, the entire encrypted
message serves as a digital signature, In addition, it is impossible to alter the message without
access to A’s private key, so the message is authenticated both in term of source and in term of
data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both
author and contents, requires a great deal of storage. Each document must be kept in plaintext to
be used for practical purpose. A copy also must be stored in ciphertext so that the origin and
contents can be verified in case of a dispute. A more efficient way of achieving the same result is
to encrypt a small block of bits that is a function of the document. Such a block, called an
authenticator, must have the property that it is infeasible to change the document without
changing the authenticator. If the authenticator is encrypted with the sender’s private key, it

serves as a signature that verifies origin, content, and sequencing.

i
_

T T T T

It is possible to provide both the authentication function and confidentiality by a double
use of the public-key scheme.

Z=E (PUs, E(PRoX))

X=D (PU,, D(PRyZ))

Source A Destination B

KeyPal

Figure 2.8 Public-Key Cryptosystem: Authentication and Secrecy

In this case, we begin as before by encrypting a message, using the sender’s private key. This
provides the digital signature. Next, we encrypt again, using the receiver’s public key. The final
ciphertext can be decrypted only by the intended receiver, who alone has the matching private
key. Thus confidentiality is-provided.

The disadvantage of this approach is that the public key algorithm, which is complex,

must be exercised four times rather than two time in each communication,

’> CHAPTER 3
5 RSA — Public Key Cryptography Algorithm

3.1 Introduction to RSA Algorithm:

| RSA is one of the most popular and successful public key cryptography algorithms. The
algorithm has been implemented in many commercial applications. It is named after its
inventor’s Ronald L. Rivest, Adi Shamir, and Leonard Adleman. They invented this algorithm in
the year 1977. They utilized the fact that when prime numbers are chosen as a modulus,
operations behave “conveniently”. They found that if we use a prime for the modulus, then

raising a number to the power (prime - 1) is 1.

RSA algorithm simply capitalizes on the fact that there is no efficient way to factor very large
integers. The security of the whole algorithm relies on that fact. If someone comes up with an
easy way of factoring a large number, then that’s the end of the RSA algorithm. Then any

message encrypted with the RSA algorithm is no more secure.

3.2RSA Algorithm
The encryption and decryption in the RSA algorithm is done as follows. Before encryption and
decryption is done, we have to generate the key pair and then those keys are used for encryption

and decryption. ‘
3.2.1 Key Generation:

The first step in RSA encryption is to generate a key pair. Two keys are generated of which one
is used as the public key and the other is used as the private key. The keys are generated with the

help of two large prime numbers. The keys are generated as follows

1. Generate two large random primes p and q.
2. Compute n which is equal to product of those two prime numbers, n = pq
3. Compute ¢(n) = (p-1)(q-1).

18

: .

4. Choose an integer e, 1 < e <@(n), such that ged(e, p(n)) = 1.
5. Compute the secret exponent d, 1 <d <q(n), such that ed = | (mod @(n)).
6. The public key is (n, €) and the private key is (n, d). The values of p, q, and @(n) should also
be kept secret.
e nis known as the modulus.
e e is known as the public exponent or encryption exponent,

e d is known as the secret exponent or decryption exponent,
3.2.2 Encryption:

Encryption is done using the public key component e and the modulus n. To whomever we need
to send the message, we encrypt the message with their public key (e,n). Encryption is done by
taking an exponentiation of the message m with the public key e and then taking a modulus of it.
The following steps are done in encryption.

1. Obtain the recipient’s public key (n,e)

2. Represent the plaintext message as a positive integer m < n

3. Compute the ciphertext ¢ = m™ mod n.

4. Send the ciphertext c to the recipient.

3.2.3 Decryption:

Decryption is done using the Private key. The person who is receiving the encrypted message
uses his own private key to decrypt the message. Decryption is similar to the encryption except

that the keys used are different.

1. Recipient uses his private key (n,d) to compute m = ¢"* mod n.

2. Extract the plaintext from the integer representative m.

The RSA algorithm has been Emplemented in many applications and it is currently one of the

most popularly used encryption algorithm.

3.2.4 Digital signing

Digital signatures are always computed with private key. This makes them easily verifiable

publicly with the public key.

The raw message m is never signed directly. Instead it is usually hashed with hash function and
the message digest is signed. This condition usually also means that the message m in fact is not
secret to the parties so that each party can compute the message digest separately. It is also
possible to use so called redundancy function instead of hash function, This function is reversible
which makes it possible to sign secret messages since the message can be retrieved by the party

verifying the signature. In practice hash function is often used.

» Message
M Hash = I\‘I‘f”“g"‘ Signature IDlg“"l
/ o R .
bl Functtion Digest ’ Message
_‘_ﬂ___m__,r/ s 3 ~

r

Figure 3.1 Creating a digital signature

Signer's Private Key

Sender A does the following:-
I Creates a message digest of the information to be sent.
2 Represents this digest as an integer m between 0 and n-1.
3 Uses her private key (n, d) to compute the signature s = m® mod n.
4

Sends this signature s to the recipient, B.

20

3.2.5 Signature verification

Same issue of authenticity of public key with public key encryption applies also to signature
verification. Since the signatures are always verified with public key the public key must be

obtained and verified before the signature can be reliably verified.

P

P ;. , If the Message
Hash Message : :
Message Ftul('ltion \“““‘" Digest » digest are
ssag 2 o = identical, The
S o

SN signature will
verify, if they are

e e
Digital : i Message different, The
Signature Slganture Digest * signature will not
verify.
Lo

Signer's Public Key

3

Figure 3.2 Verifying a digital signature

Recipient B does the following—
1. Uses sender A's public key (n, €) to compute integer v = s® mod n.
2. Extracts the message digest from this integer.
3. Independently computes the message digest of the information that has been signed.
4

If both message digests are identical, the signature is valid.

Example of RSA

1. Select two primes numbers : p=17 & g=11

2. Compute n=pg=17-x.11=187

3. Compute o(n)=(p=1)(g-1)=16 x 10=160

4, Select e such that e is relatively prime to a(n)=160 and less than a(rn): ged(e,160)=1;
we choose e=7

5. Determine d such that de=1(mod 160) and d < 160
Value is d=23 because 23*7=161= 10*16+1

oo,
s vty K23 DUE,
g ¢ Gy
3] a—u"’"“—“tth o8

21 S o
+(Acc. M—e.,;b 7
NS 7o Loko 43/

s
a

@ -
~ e Naghat,

oty ey e

Publish public key PU= {7,187}
Keep secret private key PR= {23,187}

RSA encryption/decryption:
Given message M = 88 (88<187)

1. encryption:
C=88"mod 187 =11
2. decryption:

M= 11" mod 187 = 88

3.3 Computational Aspect

We now turn to the issue of the complexity of the computation required to use RSA. There are

actually two issues to consider: encryption/decryption and key generation. Let us look first at the

| process of encryption and decryption and then consider key generation.
3.3.1 Exponentiation in Modular Arithmetic

Both encryption and decryption in RSA involve raising an integer to an integer power, mod n. If
the exponentiation is done over the integers and then reduced modulo n, the intermediate values
would be gargantuan. Fortunately, as the preceding example shows, we can make use of a

property of modular arithmetic:
[(a mod n) x (b mod n)] mod n = (a x b) mod n
Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA we are dealing with
potentially large exponents. To see how efficiency might be increased, consider that we wish to

compute x'°. A straightforward approach requires 15 multiplications:

XO=x gk xdx b xkxrx kgt xrxrx kx* x*x

22

However, we can achieve the same final result with only four multiplications if we repeatedly

take the square of each partial result, successively forming x°, x*, x, x'®. As another example,

¥ 142+8 _

suppose we wish to calculate x'' mod n for some integers x and n. Observe that x'' = x

x)A)(x%). In this case we compute x mod n, x> mod n, x* mod n, and x* mod n and then

calculate [(x mod n) x (x* mod n) x (x* mod n) mod n.

To solve this Problem efficiently we suggest procedure called—“Exponentiation by repeated

squaring and multiplication.”

— Convert the exponential value into binary digit.

— Start with a "squares"” value (s) equal x and an "accumulated" value (a) equal 1.
— Reading from least significant bit to most significant,

— When there is a 1 in the binary notation, multiply a by s. square s.

— When there is a 0 in the binary notation, don’t multiply a by s. Keep squaring s.

Example:

To find x" , Write the exponent in binary notation.

. 13=1101
S a
o 1 Least significant bit of exponent
is 1, so multiplya=a *s
T I
% % Square s
R, " Next bit is 0, so don't multiply
2 T
v % Square s
: q 1 - .
5 P Next bit is 1, so multiply
7 5
X X Square s
8] j i]
X X Highest bit is 1, so multiply

23

13 _ 10! 3 4 /
x =x = x> *x Rk

3.3.2 Efficient Operation Using the Public Key

To speed up the operation of the RSA algorithm using the public key, a specific choice of e is
usually made. The most common choice is 65537 (2'° 1); two other popular choices are 3 and 17.
Each of these choices has only two 1 bits and so the number of multiplications required to

perform exponentiation is minimized.

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a simple
attack. Suppose we have three different RSA users who all use the value ¢ = 3 but have unique
values of n, namely ny, ny, n3. If user A sends the same encrypted message M to all three users,
then the three ciphertexts are C; = M? mod n;; C, = M? mod ny; C;3 = M® mod n. It is likely that
n;, m, and n3 are pair wise relatively prime. Therefore, one can use the Chinese remainder
theorem (CRT) to compute M? mod (n;nyns). By the rules of the RSA algorithm, M is less than
each of the n; therefore M> < njmn;. Accordingly, the attacker need only compute the cube root
of M’. This attack can be countered by adding a unique pseudorandom bit string as padding to

each instance of M to be encrypted. This approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm requires that during key
generation the user selects a value of e that is relatively prime to f{n). Thus, for example, if a user
has preselected e = 65537 and then generated primes p and q, it may turn out that ged(f{n),e)= 1,

Thus, the user must reject any value of p or q that is not congruent to 1 (mod 65537).
3.3.3 Efficient Operation Using the Private Key

We cannot similarly choose a small constant value of d for efficient operation. A small value of d
is vulnerable to a brute-force attack and to other forms of cryptanalysis. However, there is a way
to speed up computation using the CRT. We wish to compute the value M = C* mod n. Let us

define the following intermediate results:

24

—

V,=C* mod p Vo=C"mod q
X,=q x (q' mod p) Xq=px (p' mod q)
M = (VpXp+ VoXq) mod n

Further, we can simplify the calculation of V, and V, using Fermat's theorem, which states that
a” =1 (mod p) if p and a are relatively prime. Some thought should convince you that the

following are valid:
Ve=Clmodp=C'™® modp V,=C"mod q=C!"4 yadq

The quantities d mod (P1) and d mod (ql) can be precalculated. The end result is that the

calculation is approximately four times as fast as evaluating M = C* mod n directly.
3.3.4 Key Generation

Before the application of the public-key cryptosystem, each participant must generate a pair of

keys. This involves the following tasks:

» Determining two prime numbers, p and q

e Selecting either e or d and calculating the other
The procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a
parameter, If n fails the test, reject the value n and go to step 1.

4. Ifn has passed a sufficient number of tests, accept n; otherwise, go to step 2.
Input: » >3, an odd integer to be tested for primality.
Input: &, a parameter that determines the accuracy of the test

Output: composite if n is composite, otherwise probably prime

25

write n— 1 as 2°-d with d odd by factoring powers of 2 from »n — 1
LOOP: repeat k times:
pick a randomly in the range [2, n — 2]
x —a’mod n
ifx=1orx=n— [then do next LOOP
for#ed caenl
X« x* mod n
[fx = 1 then return composite
ifx =n — | then do next LOOP
return composite

return probably prime

This algorithm is O(k log’ n), where k is the number of different values of a we test.

3.4 Key management

One of the major roles of public-key encryption has been to address the problem of key
distribution. There are actually two distinct aspects to the use of public-key cryptography in this

regard:

o The distribution of public keys

o The use of public-key encryption to distribute secret keys

Stronger security for public-key distribution can be achieved by providing tighter control over
the distribution of public keys from the directory. A typical scenario is illustrated in Figure. The
scenario assumes that a central authority maintains a dynamic directory of public keys of all
participants. In addition, each participant reliably knows a public key for the authority, with only
the authority knowing the corresponding private key. The following steps (matched by number to
Figure) occur

1. A sends a times tamped message to the public-key authority containing a request for

the current public key of B.

26

_

2. The authority responds with a message that is encrypted using the authority's private
key, PRy Thus, A is able to decrypt the message using the authority's public key.
Therefore, A is assured that the message originated with the authority. The message
includes the following:

e B’s Public Key, PU, which A can use to encrypt messages destined for B.

o The original request, to enable A to match this response with the

cotresponding earlier request and to verify that the original request was not

altered before reception by the authority.
! e The original timestamp, so A can determine that this is not an old message

from the authority containing a key other than B's current public key.

3. A stores B's public key and also uses it to encrypt a message to B containing an
identifier of A (IDx) and a nonce (N;), which is used to identify this transaction
uniquely.

4. B retrieves A's public key from the authority in the same manner as A retrieved B's
public key.

5. At this point, public keys have been securely delivered to A and B, and they may
begin their protected exchange. However, two additional steps are desirable.

6. B sends a message to A encrypted with PU, and containing A's nonce (N;) as well as
a new nonce generated by B (N;) Because only B could have decrypted message (3),
the presence of N in message (6) assures A that the correspondent is B.

7. A returns N, encrypted using B's public key, to assure B that its correspondent is A.

27

w0
5
3
‘g
g
;é
w
85
B
33
gt
31\

=
= q
&

ojoyd 2zis jiodssog

ki e

(1) chltcsl il '”IH(’] {4] Rv:qllesl il Tr'mv;
(2) ECPR . [PULI Reguest Il Timey)
(5) E(PR,, 5. |1PU, N Reguest 1l Time])

(3 EPULTID I ND

(7) EGPU,, N
Figure 3.3 Public-Key Distribution Scenario

Thus, a total of seven messages are required. However, the initial four messages need be used
only infrequently because both A and B can save the other's public key for future use, a
schnique known as caching. Periodically, a user should request fresh copies of the public keys

“#e/Correspondents to ensure currency.

5 The Security of RSA

\ur possible approaches to attacking the RSA algorithm are as follow:

Ligdggr

-ute Force; This involves trying all possible private keys.
athematical Attacks: There are several approaches, all equivalent in effort to

| toring the product of two primes.

iming Attacks: These depend on the running time of the decryption algorithm.

osen Ciphertext Attacks: This type of attack exploits properties of the RSA

orithm.

 ‘Bujuundg
‘BurdAj sondwo)
‘jpjsojotijd

ESds) sisAjpuy nDipg
ipjsojoyd 1nojon

r

The defense against the brute-force approach is the same for RSA as for the other cryptosystem,
namely, use a large key space. Thus the larger the number of bits in d, the better. However,
because the calculation involved, both in key generation and in encryption/ decryption, are

complex, the larger the size of the key, the slower the system will run.

3.5.1 The Factoring Problem
We can identify three approaches to attacking RSA mathematically:

e Factor n into its two prime factors. This enables calculation of ¢(n) = (p 1) x (q 1), which,
in turn, enables determination of d =e' (mod ¢(n)).
e Determine ¢(n) directly, without first determining p and q. Again, this enables
determination of d =e' (mod ¢(n)).
o Determine d directly, without first determining ¢(n).
Most discussions of the cryptanalysis of RSA have focused on the task of factoring n into its two
prime factors. Determining ¢(n) given n is equivalent to factoring n. With presently known
algorithms, determining d given e and n appears to be at least as time-consuming as the factoring
problem,
For a large n with large prime factors, factoring is a hard problem, but not as hard as it used to

be. A striking illustration of this is the following.

: Number of ! Approximate Number I Date ; MIPS- i
 Decimal Digits ! of Bits E Achieved = years Algorithm
100 ; 332 C April1991 7 Quadratic sieve |
110 365 : April 1992 75 Quadratic sieve |
120 ; 398 | June 1993 = 830 Quadratic sieve |
129 § 428 ; April 1994 | 5000 Quadratic sieve |
130 ’ 431 | April1996 = 1000 = Generalized number |
: - i field sieve
140 . 465 | February | 2000 Generalized number |
! ' 1999 ' field sieve i
29

4 .Number of Approximate Number Date - MIPS-

Decimal Digits | - of Bits - Achieved years | Algorithm
: 155 | 512 | August 1999 8000 Generalized number
E field sieve
160 530 | April 2003 Lattice sieve
174 3 576 é December Lattice sieve
: {2003 !
200 663 | May 2005 Lattice sieve

The threat to larger key sizes is twofold: the continuing increase in computing power, and the
continuing refinement of factoring algorithms. Thus, we need to be careful in choosing a key size

for RSA. For the near future, a key size in the range of 1024 to 2048 bits seems reasonable
3.5.2 Timing Attack

Had a new category of attacks developed by Paul Kocher in mid-1990’s, based on observing how
long it takes to compute the cryptographic operations. Timing attacks are applicable not just to
RSA, but to other public-key cryptography systems. This attack is alarming for two reasons: It
comes from a completely unexpected direction and it is a ciphertext only attack. A timing attack
is somewhat analogous to a burglar guessing the combination of a safe by observing how long it
takes for someone to turn the dial from number to number.

Although the timing attack is a serious threat, there are simple countermeasures that can be used,

including the following:

o Constant exponentiation time: Ensure that all exponentiations take the same amount of
time before returning a result. This is a simple fix but does degrade performance.

o Random delay: Better performance could be achieved by adding a random delay to the
exponentiation algorithm to confuse the timing attack. Kocher points out that if defenders
don't add enough noise; attackers could still succeed by collecting additional
measurements to compensate for the random delays.

e Blinding: Multiply the ciphertext by a random number before performing

exponentiation. This process prevents the attacker from knowing what ciphertext bits are

30

'u. - -‘|_

being processed inside the computer and therefore prevents the bit-by-bit analysis

essential to the timing attack.
3.5.3 Chosen Ciphertext Attack and Optimal Asymmetric Encryption Padding

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is defined as
an attack in which adversary chooses a number of ciphertexts and is then given the
corresponding plaintexts, decrypted with the target's private key. Thus, the adversary could select
a plaintext, encrypt it with the target's public key and then be able to get the plaintext back by
having it decrypted with the private key. Clearly, this provides the adversary with no new
information. Instead, the adversary exploits properties of RSA and selects blocks of data that,

when processed using the target's private key, yield information needed for cryptanalysis.

3.6 Java Cryptography

Cryptography is a field looking at techniques for "encoding and verifying things securely”. As
we touched on in our cryptography introduction, encryption is the technique of encoding a
message (or series of bytes) so that it can only be read by a party that knows some "secret" about
how it's been encoded. We assume for now that they can't get the secret by directly observe the
encoding/decoding process or by having access to the code in any way. For example, imagine a
communication between a client and a server, where an attacker can freely observe any point in
the network between the two machines, but not the machines themselves: they just see the bytes

flowing to and fro.

3.6.1 Creating an RSA key pair in Java

RSA encryption and decryption are essentially mathematical operations. They are what are
termed exponentiation, modulo a particular number. Because of this, RSA keys actually consist

of numbers involved in this calculation, as follows:

e The public key consists of the modulus and a public exponent;

o The private key consists of that same modulus plus a private exponent.

31

Creating an RSA key pair essentially consists of picking a modulus, which is based on two
random primes intended to be unique to tliat key pair, picking a public exponent (in practice, the
common exponent 65537 is often used), then calculating the corresponding private exponent
given the modulus and public exponent. Java provides the KeyPairGenerator class for

performing this task. The essential idea is as follows:

o We create an instance of KeyPairGenerator suitable for generating RSA keys;
o We initialise the generator, telling it the bit length of the modulus that we require;
e We call genKeyPair(), which eventually returns a KeyPair object;

o We call getPublic() and getPrivate() on the latter to pull out the public and private keys.

The code looks as follows:

|

:, KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
i kpg.initialize(2048);

‘: KeyPair kp = kpg.genKeyPair();

I{ Key publicKey = kp.getPublic();

E Key privateKey = kp.getPrivate();

.

-

L o o = ==

Notice that we specify a key length of 2048 bits. Common values are 1024 or 2048.

Choosing an RSA key length is a tradeoff between security and performance.

3.6.2 Saving the public and private key

In practice, we need to store the public and private keys somewhere. Typically, the private key
will be placed on our server, and the public key distributed to clients. To store the key, we
simply need to pull out the modulus and the public and private exponents, then write these

numbers to some file (or put in whatever convenient place).

There also exist "key specification” classes— RSAPublicKeySpec and RSAPrivateKeySpec in

this case— with transparent methods for pulling out the parameters that make up the key. Then, a

32

KeyFactory allows us to translate between Keys and their corresponding specification. It's a bit

clumsy, but the code ends up as follows:

__

KeyFactory fact = KeyFactory.getInstance("RSA");

RSAPublicKeySpec pub = fact. getKeySpec(kp.getPublic(),
RSAPublicKeySpec.class);

RSAPrivateKeySpec priv = fact.getKeySpec(kp.getPrivate(),
RSAPrivateKeySpec.class);

saveToFile("public.key", pub.getModulus(),
pub.getPublicExponent());

saveToFile("private.key", priv.getModulus(),

..__.._-____....__-__.-__..__.-__.-__..-__,..___.._......__-__.____.___.____._-_.-__...._...__...

public void saveToFile(String fileName,
BigInteger mod, Biglnteger exp) throws [OException {
ObjectOutputStream oout = new ObjectOutputStream(
new BufferedOutputStream(new FileOutputStream(fileName)));

try {
oout.writeObject(mod);

} catch (Exception €) {

throw new IOException("Unexpected error", ¢);

} finally {

oout.close();

]
! 'r
! i
1
| I
i :
| !
|
\ 1
\ |
| |
: l
]
i 1
: :
ll |
1 oout.writeObject(exp); |
1
: 1
: |
] |
: |
' :
I 1
| |
:]
\ :
||]
]
| :
1]
| [}
] I

We end up with two files: public.key, which is distributed without clients; meanwhile,
private.key, is kept secret on our server. Of course, we needn't even bother saving the keys to a
file: they're just numbers, and we could embed them as constant strings in our code, then pass
those strings to the constructor of Biglnteger. Saving the keys to file simply makes it a bit easier

to manage keys in some cases.

3.6.3 How to set the key size in Java

If we use the KeyGenerator class, then we can set the key size in bits via the init() method. The

following example shows how to generate a 256-bit AES key:

KeyGenerator gen = KeyGenerator.getlnstance("AES/CTR/PKCS5PADDING");
gen.init(256);

SecretKey k = gen.generateKey();

Cipher ciph = Cipher.getInstance("AES");

ciph.init(Cipher. ENCRYPT_MODE, k);

34

CHAPTER 4
RSA Chat Messenger

Chat servers today are readily available and very useful in conversing with people that might be
close by or far away. Internet chat services like Gmail, Yahoo messenger, AOL provide the
convenience of conversing with people in real time. This service provides a host of possibilities
for work, school, and connectivity. Unfortunately these widely available chat services do not
provide protection/privacy of what is being sent through the chat servers.

The objective of this project is to build a secure chat server utilizing Public Key encryption to

send secure chat messages across the internet

Benefits of Chat Service
* Allows for "instant" communications between people.
* Use of the real time chat over the Internet can eliminate costly long distance charges.
* Ability to stay in contact with people who you normally never see.

* Allows for quick questions and quick responses.

Negatives of Chat Service

* Potential security/privacy problems of these Instant Messaging programs.
* Chat in most instances are routed through a server system where the service is provided and
that is a single point where all messages can be intercepted.
* Chat programs can provide an open avenue of attack for hackers, crackers, spies and
thieves.

— Eavesdrop: intercept messages

— Actively insert messages into connection

= Removing sender-or receiver; inserting himself'in place

35

4.1 Implemented Solution

Encryption

— Utilize public key encryption to securely transmit messages between users,

— Encrypt each message with public key of target recipient.

— Since chat messages are normally not long, it requires less processing time for the program to
encrypt the message.

— Digitally sign every message

Positives
- Very secure message exchange
- Interception can happen but the interceptor can not decipher the message.

- Insertion of data can happen but the digital signature ensures that message is authentic.

Negatives

- Much slower then symmetric encryption methods, however since messages are relatively short.
The difference between the times is negligible.

- Much more hassle to encrypt and decrypt messages.

- Can be subject to man in the middle attack

4.2 Secure Chat Protocol

* 2 Clients connect to a server

* Once connected, each client generates their public and private keys locally.

* The public key sent to the server and is set so when a user clicks their name any messages sent
will be encrypted with that public key.

* The private key remains only in the client program.

* When message is sent out, the client program downloads the public key and encrypts the
intended message and then applies the digital signature which is created with the private key and

then sends the encrypted message out.

36

—

« When the packet is received by the specified person, the client program automatically applies
the private key on the text and outputs the message so that the user can see it decrypted and then
double checks the digital signature with the public key.

« Once completed with each step we have successfully transmitted a secure message.

4.3 Exactly what happens when a user connects to the server

1* user enters name and clicks connect.
Public key generated

Private key generated

Public key is sent to the server

Private key remains on client

2" user enters name and clicks connect.
Public key generated

Private Key generated

Public key is sent to the server

Private Key remains on client

I* user types a message and clicks send.
Message is displayed encrypted with 2" yser’s public key.
Message is also displayed with “Decrypted: (some garbage because the private key applied is not

the right key to apply to 2nd users public key.)”

2" users screen displays encrypted message sent by 1st user.
2™ users screen also displays “Decrypted: (message decrypted with proper key)”. Since the
message was intended for the 2nd user, the private key of the 2nd user was the correct key

applied to the decryption function. So the output is in readable plain text.

2" user types a message and clicks send.

Message is displayed encrypted with 1st users public key.

37

Message is also displayed with “Decrypted: (some garbage because the private key applied is not

the right key to apply to 1st users public key.)”

1* users screen displays encrypted message sent by 2nd user.
1% users screen also displays “Decrypted: (message decrypted with proper key)”. Since the
message was intended for the 1st user, the private key of the Ist user was the correct key applied

to the decryption function. So the output is in readable plain text.

Success!!! Secure message transaction completed successfully.

4.4 Chat Messenger Architecture

In client-server applications, the server provides some service, such as processing database
queries or creating new account. The client uses the service provided by the server, either
displaying database query results to the user or validating the user. The communication that
occurs between the client and the server must be reliable. That is, no data can be dropped and it
must arrive on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel those client-server applications
on the Internet use to communicate with each other. To communicate over TCP, a client program
and a server program establish a connection to one another. Each program binds a socket to its
end of the connection. To communicate, the client and the server each reads from and writes to

the socket bound to the connection.

4.4.1 What Is a Socket?

A socket is one end-point of a two-way communication link between two programs running on
the network. Socket classes are used to represent the connection between a client program and a
server program. The java.net package provides two classes--Socket and Server Socket-that

implement the client side of the connection and the server side of the connection, respectively.

Normally, a server runs on a specific computer and has a socket that is bound to a specific port

number. The server just waits, listening to the socket for a client to make a connection request.

38

J. — i

On the client-side: The client knows_the hostname of the machine on which the server is running
and the port number on which the server is listening. To make a connection request, the client
tries to rendezvous with the server on the server's machine and port. The client also needs to
identify itself to the server so it binds to a local port number that it will use during this

connection. This is usually assigned by the system.

p connection
iy request
server| ° H 18 E :
Pl e r | client
t "-________1

Figure 4.1 Connection Request

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a
new socket bound to the same local port and also has its remote endpoint set to the address and
port of the client. It needs a new socket so that it can continue to listen to the original socket for

connection requests while tending to the needs of the connected client.

server connection

client

~=0T

~ =0T

Figure 4.2 Socket Connection Established

On the client side, if the connection is accepted, a socket is successfully created and the client

can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their sockets.

Definition: A socket is one endpoint of a two-way communication link between two programs
running on the network. A socket is bound to a port number so that the TCP layer can identify

the application that data is destined to be sent.

39

An endpoint is a combination of an IP address and a port number. Every TCP connection can be
uniquely identified by its two endpoints. That way you can have multiple connections between

your host and the server.

The java.net package in the Java platform provides a class, Socket, that implements one side of a
two-way connection between our Java program and another program on the network. The Socket
class sits on top of a platform-dependent implementation, hiding the details of any particular
system from your Java program. By using the java.net.Socket class instead of relying on native

code, our Java programs can communicate over the network in a platform-independent fashion.

Additionally, java.net includes the ServerSocket class, which implements a socket that servers

can use to listen for and accept connections to clients.

4.4.2 TCP/IP Client Socket

There are two kinds of TCP sockets in JAVA. One is for server, and the other is for clients. The
ServerSocket class is designed to be a “listener”, which wait for client to connect before doing
anything. Thus, ServerSocket is for servers. The Socket class is for clients. It is designed to
connect to server sockets and initiate protocol exchanges. Client sockets are the most commonly

used by Java Application

The Creation of a Socket object implicitly establishes a connection between the client and
server. There are no methods or constructors that explicitly expose the details of establishing that

connection. Here are two constructor used to create client sockets.

Socket(String hostname, int port) throws Create a socket connected to the named host and

UnknownHostException, IOexception port.

'ﬁ)cket(lnetAddress IpAddress, int port) throws Creates a socket using a preexisting InetAddress
IOException object and a port.

40

Socket defines several instance methods. For example, a Socket can be examined at any time for

the address and port information associated with it, by using the following methods:

InetAddress getInetAddress() Return the InetAddress associated with the Socket

objects. It returns null if the socket is not connected

Int getPort() Returns the remote port to which the invoking
Socket objects is connected. It return 0 if the socket

is not connected.

Int getLocalPort() Return the local port to which the invoking Socket
objects is bound. It return -1 if the socket is not
bound.

We can gain access to the input and output streams associated with a socket by use of the
getInputStream() and getOutputStream() methods. Each can throws an IOException is the
socket has been invalidated by a loss of connection. These streams are used exactly like 1/0

streams to send and receive data.

InputStream getInputStream() throws IOException | Return the InputStream associated with the

invoking socket.

OutputStream getQutputStream() throws Return the OQutputStream associated with the

I0Exception invoking socket.

Several other Methods are available, including connect(), which allows you to specify a new
connection; isConnected(), which return true if the socket is connected to the server; isBound(),
which return true if the socket is bound to an address; and isClosed(), which returns true if the

socket is closed.
4.4.3 TCP/IP Server Socket

.As mentioned earlier, java has a different socket class that must be used for creating server
application. The ServerSocket class is used to create servers that listen for either local or remote
client program to connect to them on published ports. ServerSocket are quite different from

normal Socket. When we create a ServerSocket, it will register itself with the system as having

41

an interested in client connections. The constructors for ServerSocket reflect the port number
that we want to accept connections on and, optionally, how long we want the queue for said port
to be. The queue length tell the system how many client connection it can leave pending before it
should simply refuse the connections. The default is 50. The constructor might throw an

IOException under adverse condition.

ServerSocket(int port) throws IOException Creates server socket on the specific port with a

queue length of 50

SereverSocket(int port, int maxQueue) throws Creates a server socket on the specific port with a

IOException maximum queue length of maxQueue

ServerSocket(int port, int maxQueue, inetAddress | Creates a server socket on the specific port with a
localhost) throws IOException maximum queue length of maxQueue. On a multi
homed host, localaddress specifies the IP address

to which this socket binds.

ServerSocket has a method called accept(), which is a blocking call that will wait for a client to
initiate communication and then return with a normal Socket is used for communication with the

client.

4.4.4 Java Swing

Some terminology: AWT, JFC, Swing

o AWT stands for Abstract Window Toolkit. 1t refers to a collection of basic GUI
components, and other features, e.g. layout managers, component printing, etc.

e JFC stands for Java Foundation Classes. The JFC contains a much larger set of classes
than the AWT set. Mostly it adds to the functionality of the AWT, however, in some
cases it replaces the functionality of the AWT. The JFC contains accessibility functions,
2D drawing libraries, pluggable look and feel, etc.

¢ The Swing component set is part of the JFC. It contains a number of GUI components
(buttons, textfields, scrollpanes, etc.) that are intended to be direct replacements of the

corresponding AWT GUI components. Swing only replaces a subsection of the AWT

42

3
a
¥

+

(the GUI components), other aspects of the AWT (e.g. layout managers, etc.) remain
unchanged.
In AWT all components are termed heavyweight components. The reason for this is that an AWT
component relies on the underlying operating system (e.g. Windows, Solaris, etc.) to provide the
component (i.e. to paint it, redraw it, etc.). For example, an AWT button, when running on
MacOS is actually a MacOS button. The term heavyweight does not really provide a clear
indication of this dependency.
All Swing components are lightweight components. A lightweight component does not use a
corresponding peer or native component. Instead, it is drawn by the Java VM (and not the

underlying OS).

4.4.5 Overview of Swing Component class

JButton bJCheckBox JComboBox JLabel
JList JRadioButton JScrollPane JTabbedPane
JTable JTextField JToggleButton JTree

These components are all lightweight, which mean that they are all derived from

JComponenet.

Icons and Labels
In Swing, icons are encapsulated by the Imagelcon class, which paints an icon from an image.
Two of its constructors are shown here:
Imagelcon(String filename)
Imagelcon(URL url)
The first form uses the image in the file named filename. The second form uses the image in the

resource identified by u#/

The Imagelcon class implements the Icon interface that declares the methods shown here:

43

Method

Description

int getlconHeight()

Returns the height of the icon in pixels.

int getlconWidth()

Returns the width of the icon in pixels.

void paintlcon(Component comp,Graphics g,int

x, int y)

Paints the icon at position x, y on the graphics
context g. Additional information about the

paint operation can be provided in comp.

Swing labels are instances of the JLabel class, which extends JComponent. It can display text

and/or an icon. Some of its constructors are shown here:

JLabel(Icon i)
Label(String s)
JLabel(String s, Icon i, int align)

Here, s and 7 are the text and icon used for the label. The align argument is LEFT, RIGHT, or

CENTER. These constants are defined in the SwingConstants interface, along with several

others used by the Swing classes.

JLabel

Get Started With JMail

<

it name:-
Lést na;me:-”
Giniter -SELECT-
Date of Birth

|-DATE-- vl |-

Wi

v -YEAR-- N

Rt

Figure 4.3 JLabel Component

The icon and text associated with the label can be read and written by the following methods:

Icon getlcon()
String getText()
void setlcon(Icon i)

void setText(String s)

44

Text Fields
The Swing text field is encapsulated by the JTextComponent class, which extends
JComponent. It provides functionality that is common to Swing text components. One of its
subclasses is JTextField, which allows you to edit one line of text. Some of its constructors are
shown here: :

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.

Get Started With ﬁﬂfﬂw ITextfield | |
gt~ X e oo

Last name:- Mg

G e

Date of Birth [OATE-] [-MONTH- w| tEAR- v

Figure 4.4 JTextfield Component

Buttons

Swing buttons provide features that are not found in the Button class defined by the AWT. For
example, you can associate an icon with a Swing button. Swing buttons are subclasses of the
AbstractButton class, which extends JComponent. AbstractButton contains many methods
that allow you to control the behavior of buttons, check boxes, and radio buttons. For example,
we can define different icons that are displayed for the component when it is disabled, pressed,
or selected. Another icon can be used as a rollover icon, which is displayed when the mouse is

positioned over that component.

45

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an icon, a string,
or both to be associated with the push button. Some of its constructors are shown here:
JButton(Icon i)
JButton(String s)
JButton(String s, Icon i)

Here, s and 7 are the string and icon used for the button.

JButton :
Location:-

b e i L
T
i

T .
¢ Create My Account l: o,

s
e L L i ST

canceL | B Error

Figure 4.5 JButton Component
Check Boxes

The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)
Here. i is the icon for the button. The text is specified by s. If state is true, the check box is

initially selected. Otherwise, it is not.

T} stay Sign In:-

Figure 4.6 JCheckBox Component
46

The state of the check box can be changed via the following method:
void setSelected(boolean state)

Here, state is true if the check box should be checked.

Radio Buttons

Radio buttons are supported by the JRadioButton class, which is a concrete implementation of
AbstractButton. Some of its constructors are shown here:

JRadioButton(Icon i)

JRadioButton(Icon i, boolean state)

JRadioButton(String s)

JRadioButton(String s, boolean state)

JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)
Here, i is the icon for the button. The text is specified by s. If state is true, the button is initially
selected. Otherwise, it is not.
Radio buttons must be configured into a group. Only one of the buttons in that group canbe

selected at any time.

Combo Boxes

Swing provides a combo box (a combination of a text field and a drop-down list) through the
JComboBox class, which extends JComponent. A combo box normally displays one entry.
However, it can also display a drop-down list that allows a user to select a different entry. You

can also type your selection into the text field. Two of JComboBox's constructors are shown

here:
JComboBox()
JComboBox(Vector v)
\ Here, v is a vector that initializes the combo box.
(Items are added to the list of choices via the addItem() method.

47

Y

Get Started With JMail

’ JComboBox B hames 1

|
! e e 5 A A ATV £ A A 5

|--SELECT-- v

Gender:- [Pl Sl
Date of Birth < ~DATE~ | |-~MONTH-- v -YEAR- :)
Ml "'“-s—b..",__ ,__ ,__M"_ _- A __‘_m_;___,m_.._m-"*“‘"" M.-&*.”
Figure 4.7 JComboBox Component
Tabbed Panes
A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has ‘

a title. When a user selects a folder, its contents become visible. Only one of the folders may be
selected at a time. Tabbed panes are commonly used for setting configuration options.
Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We
will use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)
Here, str is the title for the tab, and comp is the component that should be added to the tab.

Typically, a JPanel or a subclass of it is added.
Scroll Panes

A scroll pane is a component that presents a rectangular area in which a component may be
viewed. Horizontal and/or vertical scroll bars may be provided if necessary. Scroll panes are
implemented in Swing by the JScrollPane class, which extends JComponent. Some of its
constructors are shown here: :

JScrollPane(Component comp)
\ JScrollPane(int vsb, int hsb)

(JScrollPane(Component comp, int vsb, int hsb)

48

Here, comp is the component to be added to the scroll pane. vsb and hsb are int constants that

define when vertical and horizontal scroll bars for this scroll pane are shown.
Tables

A table is a component that displays rows and columns of data. You can drag the cursor on
column boundaries to resize columns. You can also drag a column to a new position.
Tables are implemented by the JTable class, which extends JComponent. One of its
constructors is shown here:
JTable(Object data[][], Object colHeads[])
Here, data is a two-dimensional array of the information to be presented, and colHeads is

a one-dimensional array with the column headings.

Class ArrayList

Resizable- array implementation of the List interface. Implements all optional list
operations, and permits all elements, including null. In addition to implementing the List
interface, this class provides methods to manipulate the size of the array that is used internally to
store the list.

Each ArrayList instance has a capacity. The capacity is the size of the array used to store the
elements in the list. It is always at least as large as the list size. As elements are added to an

ArrayList, its capacity grows automatically.

Note that this implementation is not synchronized. If multiple threads access an ArrayList
instance concurrently, and at least one of the threads modifies the list structurally, it must be
synchronized externally. (A structural modification is any operation that adds or deletes one or
more elements, or explicitly resizes the backing array; merely setting the value of an element is
not a structural modification.) This is typically accomplished by synchronizing on some object
that naturally encapsulates the list. If no such object exists, the list should be "wrapped" using the
Collections.synchronizedList method. This is best done at creation time, to prevent accidental

unsynchronized access to the list:

49

List list = Collections.synchronizedList(new ArrayList(...));

Constructor Summary

[ArrayList() Constructs an empty list with an initial capacity of
ten.
ArrayList (Collection<? extends Constructs a list containing the elements of the
E> c) specified collection, in the order they are returned

by the collections iterate.

ArrayList (int initialCapacity) Constructs an empty list with the specified initial
capacity

Working with Java SQL Package

The java.sql package contains API for the following:

« Making a connection with a database via the DriverManager facility l
o DriverManager class -- makes a connection with a driver
o SQLPermission class -- provides permission when code running within a Security
Manager, such as an applet, attempts to set up a logging stream through the
DriverManager
o Driver interface -- provides the API for registering and connecting drivers based
on JDBC technology ("JDBC drivers"); generally used only by the
DriverManager class
o DriverPropertylnfo class -- provides properties for a JDBC driver; not used by the
general user
o Sending SQL statements to a database
o Statement -- used to send basic SQL statements
o PreparedStatement -- used to send prepared statements or basic SQL statements
(derived from Statement)
o CallableStatement -- used to call database stored procedures (derived from
PreparedStatement)
o Connection interface -- provides methods for creating statements and managing

connections and their properties

50

o Savepoint -- provides savepoints in a transaction
Retrieving and updating the results of a query
o ResultSet interface
Standard mappings for SQL types to classes and interfaces in the Java programming
language
o Array interface -- mapping for SQL ARRAY
o Blob interface -- mapping for SQL BLOB
o Clob interface -- mapping for SQL CLOB
o Date class -- mapping for SQL DATE
o Refinterface -- mapping for SQL REF
o Struct interface -- mapping for SQL STRUCT
o Time class -- mapping for SQL TIME
o Timestamp class -- mapping for SQL TIMESTAMP
o Types class -- provides constants for SQL types
Custom mapping an SQL user-defined type (UDT) to a class in the Java programming
language
o SQLData interface -- specifies the mapping of a UDT to an instance of this class
o SQLInput interface -- provides methods for reading UDT attributes from a stream
o SQLOutput interface -- provides methods for writing UDT attributes back to a
stream
Metadata
o DatabaseMetaData interface -- provides information about the database
o ResultSetMetaData interface -- provides information about the columns of a
ResultSet object
o ParameterMetaData interface -- provides information about the parameters to
PreparedStatement commands
Exceptions
o SQLException -- thrown by most methods when there is a problem accessing data
and by some methods for other reasons
o SQLWarning -- thrown to indicate a warning

o DataTruncation -~ thrown to indicate that data may have been truncated

51

o BatchUpdateException -- thrown to indicate that not all commands in a batch

update executed successfully

4.5 Screen Shot of Jmail Messenger

This section contains the screen shots of Jmail messenger.

(1) In the chat messenger first we need to start the server. IP Address and Port Number is

required, so that the client can be connected to the server.

Welcome To The SAR Servei

IP ADDRESES h
127.0.0.1
PORT NO

1,060/

START

Figure 4.8 Server IP and Port Connection

52

(2) It takes two parameters - the server IP Address and the port number to connect to the
client server. It makes a socket connection and ask for the Username and the Password to
login. If the user doesn’t have any account, then user can create a new account by

clicking on the “don’t have any account” link and register yourself.

E sar chat

Settings | Help

po
oS
e

Username; Server 1P:
127.0.01
Password: Server Port:

‘ 78
| 1,060
[| Remermber Password

Set 1

Forgot Your Password?

Dont have an account?

Figure 4.9 Client Login Window

53

(3) The user can create a Jmail account by filling up the following required field.

B Registeration Form

Create a Sar Account - Jmail

=) § % g

cial
Get Started With JMail

First name - ‘ i
Last name: -

o T
Gmd&’t- |--SELECT~‘ = 1‘ v :

[g I Euear e
Date of Birth -DATE- |¥| | .MONTH- |¥| | YEAR- ||
Desired Login Name:- | @3mail.com
Password - ‘ | &3 Error

(Minimum 8 characters in length)

Re-enter Password.-

[| Stay Sign In:-

Location:-

Create My AccoLnt || canceL

Figure 4.10 Registration Form

As the required fields are filled, the client has successfully created the account.

(1) NOWYOU REGISTERED

Lo |

Figure 4.11 Confirm Registration

54

(4) Once the client is connected to the server, the client can select friend from the friend list

to chat with.

File

|
Connect I
i

¥ Logout

| kaka

Connect ‘L

Figure 4.12 Friend List Window

(5) Once the client is selected, they can start chatting. User can also set their status as

Available or Busy.

55

Lay
E—

A AT A :
FULA Your name:- oM

Friend’s name:- kaka

Avalsble

SCTans

- Hiiii
U der???

kaka- han

kaka- kaisa ha??

Serd

Swatches | 1SB | RGB

Settings | Help

Prindow

o-
™ n Sample Text Sampla Tex

; ;
| OK] Cancel Reset

Figure 4.13 Client messaging window

56

CONCILUSION

RSA algorithm had been in use for the past 25 years and it'’s been one of the most
successful cryptography algorithms that the security world ever had. This is still widely
used in many applications even afler hundreds of public key cryptography algorithms
emerged after the invention of RSA algorithm. This algorithm is still in use because of its
security and easy implementation.

The security of the RSA algorithm lies in the fact that there is no good way of factoring
numbers. No one till now knows a way to factorize a number into its prime factors. As
long as no one finds a way RSA will be safe and will be one of the best encryption
algorithm in use. If someone comes up with a way to factorize algorithms, then that’s the
end of RSA.

RSA had a patent towards its inventors till 2000. The patent was removed on 2000 and
now it’s open to all. Anybody can use it now. This makes it still easier to study the
algorithm in a more detailed manner and it will certainly be reviewed by many other
people all over the world and there is a lot of chances that someone will come up with
another version of RSA which is lot more sophisticated than this one.

The RSA Security inc, which held the patent for RSA had announced lot of cash prizes
for the people who could come up with factors of few large numbers. The numbers are
nearly 200 digits long and it is published in their website.

Finally, a few days back the inventors of the RSA Ronald Rivest, Adi Shamir and
Leonard Adleman received the Turing Award for the year 2002 for their invention of
RSA algorithm. This is really great news and obviously these people deserve this award
for having created such a wonderful algorithm, which dominated the world of

cryptography for about 25 years and is still dominating.

57

2)

3)
4

3)

6)

7
8)

9)

BIBLIOGRAPHY

R. L. Rivest, A. Shamir and L. Adleman. 4 Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21 (2), pp. 120-126, February
1978.

Rabin, M.O., Probabilistic algorithms. In Algorithms and Complexity, J. F.Traub, Ed.,
Academic Press, New York, 1976, pp. 21-40.

Merkle, R. Secure communications over an insecure channel. Submitted to Comm.ACM.
Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. Inform. Theory
IT-22, (Nov. 1976), 644-654.

Knuth, D. E. The Art of Computer Programming, Vol 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass., 1969,

Burt Kaliski,“The Mathematics of the RSA Public-Key Cryptosystem,” RSA
Laboratories. April 9,2006

Potter,R.J.,Electronnic mail. Science 195, (4283, March 1977), 1160-1164

Rania Salah EL-Sayed, Moustafa Abd EL-Azmin, Mohammad Ali Gomaa, An Efficient
Signatute system using optimized RSA algorithm.

William Stallings, “Cryptography and Network Security Principles and practices”.
Fourth Edition. November 26,2005

10) Herbert schildt, “Java : The Complete reference” Fifth Edition.

58

PROJECT CODE

Chat Client

Mainjava
package ui;
import javax.swing.JOptionPane;
public class Main extends javax.swing.JFrame {

/** Creates new form Main */
public Main() {

initComponents();
} M
@Suppress Warnings("unchecked")
/I <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents "

private void initComponents() {

jLabell = new javax.swing.JLabel();

jLabel2 = new javax.swing.JLabel();

JPanell = new javax.swing.JPanel();
jSeparator2 = new javax.swing.JSeparator();
jButtonl = new javax.swing.JButton();
jButton2 = new javax.swing.JButton();
jButton3 = new javax.swing.JButton();
jMenuBarl = new javax.swing.JMenuBar();
jMenul = new javax.swing.JMenu();
jMenulteml = new javax.swing.JMenultem();
jMenultem2 = new javax.swing.JMenultem();
jSeparatorl = new javax.swing.JSeparator();
jMenultem3 = new javax.swing.JMenultem();

setDefaultCloseOperation(javax.swing. WindowConstants. EXIT ON_CLOSE);
setMinimumSize(new java.awt.Dimension(395, 345));
getContentPane().setLayout(null);

jLabell.setlcon(new javax.swing.Imagelcon(getClass().getResource("/images/sar
talk.jpg"))); // NOI18N

jLabell.setBorder(javax.swing.BorderFactory.createEtchedBorder(new
java.awt.Color(255, 153, 0), null));

59

getContentPane().add(jLabel1);
jLabell.setBounds(0, 0, 140, 80);

jLabel2.setlcon(new
javax.swing.Imagelcon(getClass().getResource("/images/chat1.JPG"))); // NOI18N

jLabel2.setBorder(javax.swing.BorderFactory.createEtchedBorder(new
java.awt.Color(255, 204, 51), null));

getContentPane().add(jLabel2);

jLabel2.setBounds(0, 80, 260, 208);

jPanell.setBackground(new java.awt.Color(0, 204, 141)),

jPanell.setBorder(javax.swing.BorderFactory.createEtchedBorder(new
java.awt.Color(255, 204, 51), null));

jPanell .setLayout(null);

jSeparator2.setMinimumSize(new java.awt.Dimension(135, 2));
jPanell.add(jSeparator2);
jSeparator2.setBounds(0, 135, 128, 2);

jButtonl.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N
jButtonl.setText("LOGIN FORM");
jButtonl.setBorder(new
javax.swing.border.SoftBevelBorder(javax.swing.border.BevelBorder. LOWERED));
jButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton1ActionPerformed(evt);

}
1)
jPanell.add(jButtonl);
jButton1.setBounds(20, 30, 90, 30);

jButton2.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N
jButton2.setText("REGISTER FORM");

jButton2.setBorder(javax.swing.BorderFactory.createBevelBorder(javax.swing.border.B
evelBorder.RAISED));
jButton2.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton2ActionPerformed(evt);

}

3)s
jPanell.add(jButton2);
jButton2.setBounds(17, 80, 100, 30);

jButton3.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI1 8N
jButton3.setText("EXIT");

60

jButt0n3.setBorder(}avax.swing.BorderFactory.createBevelBorder(javax.swing.border.B
evelBorder.RAISED));

jPanell.add(jButton3);

jButton3.setBounds(30, 150, 70, 40);

getContentPane().add(jPanell);
jPanell .setBounds(260, 80, 130, 208);

jMenul.setText("File"),

jMenultem].setText("Login");
jMenultem1.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
jMenultem1ActionPerformed(evt);

}
1)
jMenul.add(jMenulteml);

jMenultem2.setText("Register");
jMenultem2.add ActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
jMenultem2ActionPerformed(evt);

}
3);
jMenul.add(jMenultem2);
jMenul.add(jSeparatorl);

jMenultem3.setFont(new java.awt.Font("Segoe UI", 0, 14));
jMenultem3.setForeground(new java.awt.Color(255, 0, 51));
jMenultem3.setText("Exit");
jMenultem3.addActionListener(new java.awt.event ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
jMenultem3 ActionPerformed(evt);

}
1);
jMenul.add(jMenultem3);

jMenuBar1.add(jMenul);
setIMenuBar(jMenuBar1);

pack();
}// <leditor-fold>//GEN-END:initComponents

61

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt) {/GEN-
FIRST:event_jButtonlActionPerformed
// TODO add your handling code here:
Login | = new Login();
l.setVisible(true);
this.setVisible(false);

if (evt.getSource() == jButtonl && lLisVisible()) {
this.jButton1.setEnabled(false);

}
H/GEN-LAST:event_jButtonl ActionPerformed

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jButton2ActionPerformed
// TODO add your handling code here:
Register r = new Register(this);
r.setVisible(true);
this.setVisible(false);

if (evt.getSource() == jButton2 && r.isVisible()) {
this.jButton2.setEnabled(false);

}
}//GEN-LAST:event_jButton2ActionPerformed

private void jMenultemlActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jMenultem! ActionPerformed
// TODO add your handling code here:
Login 1 = new Login();
L.setVisible(true);
if (evt.getSource() == jMenultem]1 && lisVisible()) {
this.jButton].setEnabled(false);

JOptionPane.showMessageDialog(this, "LOGIN FORM HAS BEEN
ALREADY OPEN");

V/GEN-LAST:event_jMenultem1 ActionPerformed

private void jMenultem2ActionPerformed(java.awt.event.ActionEvent evt) {/GEN-
FIRST:event_jMenultem2ActionPerformed
// TODO add your handling code here:
Register r = new Register(this);
r.setVisible(true);

62

PEp—

if (evt.getSource() == jMenultem?2 && r.isVisible()) {
this.jButton1.setEnabled(false);
JOptionPane.showMessageDialog(this, "LOGIN FORM HAS BEEN
ALREADY OPEN");

}
H/IGEN-LAST:event_jMenultem2ActionPerformed

private void jMenultem3ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event_jMenultem3ActionPerformed
// TODO add your handling code here:
System.exit(0);
}//GEN-LAST:event_jMenultem3 ActionPerformed

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new Main().setVisible(true);
}

s
}

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton jButtonl;

private javax.swing.JButton jButton2;

private javax.swing.JButton jButton3;

private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabel2;

private javax.swing.JMenu jMenul;

private javax.swing.JMenuBar jMenuBar1;

private javax.swing.JMenultem jMenultem1;
private javax.swing.JMenultem jMenultem2;
private javax.swing.JMenultem jMenultem3;
private javax.swing.JPanel jPanell;

private javax.swing.JSeparator jSeparatorl;

private javax.swing.JSeparator jSeparator2;

// End of variables declaration//GEN-END:variables

63

Register java
package ui;

import communication.Config;
import java.awt.Color;

import java.text.SimpleDateFormat;
import javax.swing.JFrame;

import javax.swing.JOptionPane;

public class Register extends javax.swing.JDialog {

/** Creates new form Register */

public Register(JFrame parent) {
super(parent, true);
initComponents();
LErr3.setVisible(false);

@Suppress Warnings("unchecked")
/I <editor-fold defaultstate="collapsed"
BEGIN:initComponents
private void initComponents() {

Picl = new javax.swing.JLabel();

Pic2 = new javax.swing.JLabel();
MLabel = new javax.swing.JLabel();
Date = new javax.swing.JComboBox();
Month = new javax.swing.JComboBox();
Year = new javax.swing.JComboBox();
Select = new javax.swing.JComboBox();
Stay = new javax.swing.JCheckBox();
LFname = new javax.swing.JLabel();
LLname = new javax.swing.JLabel();
LGender = new javax.swing.JLabel();
LDOB = new javax.swing.JLabel();
LLogin = new javax.swing.JLabel();
LPassword = new javax.swing.JLabel();
LRPassword = new javax.swing.JLabel();
LIMail = new javax.swing.JLabel();
LMin = new javax.swing.JLabel();
LLocation = new javax.swing.JLabel();
TFname = new javax.swing.JTextField();
TLname = new javax.swing.JTextField();
TLogin = new javax.swing.JTextField();
TLocation = new javax.swing.JTextField();

64

desc="Generated

Code">//GEN-

MPassword = new javax.swing.JPasswordField();
SPassword = new javax.swing.JPasswordField();
Create = new javax.swing.JButton();

Cancel = new javax.swing.JButton();

LErr] = new javax.swing.JLabel();

LErr2 = new javax.swing.JLabel();

Sep = new javax.swing.JSeparator();

LErr3 = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing. WindowConstants. DISPOSE_ON CLOSE);
setTitle("Registeration Form");

setMinimumSize(new java.awt.Dimension(500, 570));
getContentPane().setLayout(null);

Picl.setIcon(new javax.swing.Imagelcon(getClass().getResource("/images/sar
talk.jpg"))); // NOI18N
getContentPane().add(Pic1);

Picl.setBounds(0, 0, 150, 80); i

Pic2.setlcon(new c
javax.swing.Imagelcon(getClass().getResource("/images/label.jpg"))); // NOI18N

getContentPane().add(Pic2); \

Pic2.setBounds(160, 20, 300, 40);

MLabel.setFont(new java.awt.Font("Tahoma", 0, 18));
MLabel.setForeground(new java.awt.Color(255, 51, 51));
MLabel.setText("Get Started With JMail");
getContentPane().add(MLabel);

MLabel.setBounds(30, 90, 200, 25);

Date.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "--DATE-
S (LIS L R M A S L U 0 AR el 2 i I e L A [
"18" 9SO TR | L 2 bulio St iad . YN 1eY, Y2 1Y, VA", 20T, 30", V31" X

getContentPane().add(Date);

Date.setBounds(180, 235, 80, 25);

Month.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "--
MONTH--", "JANUARY", "FEBRUARY", "MARCH", "APRIL", "MAY", "JUNE",
"JULY", "AUGUST", "SEPTEMBER", "OCTOBER", "NOVEMBER", "DECEMBER"
)5

getContentPane().add(Month),

Month.setBounds(270, 235, 100, 25);

Year.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "--YEAR-
", "1980", "1981", "1982", "1983", "1984", "1985", "1986", "1987", "1988", "1989",
TIG00", 1901y HI090" T 1903", I19ga""T005", "T905", "1997% 71199810908,

65

"2000", "2001", "2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009",
"FO10Y, "2011Y, 20128 120131190141 12015", 12016", "2017", “2018", "2019°
n2020", . "2021%, 12022% -"20231L < 120240502025, 2026"; "2027", “2028"; "2029",
30" 20317, 120320, Mag3aiatngaqh 90351, 12036, "2037", "2038", “2039",
"2040", "2041", "2042", "2043", "2044", "2045", "2046", "2047", "2048", "2049", "2050"
)
Year.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
YearActionPerformed(evt);

}
})s
getContentPane().add(Year);
Year.setBounds(380, 235, 80, 25);

Select.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "--
SELECT--", "MALE", "FEMALE" }));
Select.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) { 4
SelectActionPerformed(evt);

}

3 i
getContentPane().add(Select); |
Select.setBounds(180, 200, 180, 25),

Stay.setFont(new java.awt.Font("Tahoma", 0, 12));
Stay.setText("Stay Sign In:-");
getContentPane().add(Stay);

Stay.setBounds(180, 400, 180, 25);

LFname.setFont(new java.awt.Font("Times New Roman", 0, 14));
LFname.setForeground(new java.awt.Color(0, 0, 255));
LFname.setText("First name:-");

getContentPane().add(LFname);

LFname.setBounds(30, 130, 68, 25);

LLname.setFont(new java.awt.Font("Times New Roman", 0, 14));
LLname.setForeground(new java.awt.Color(0, 0, 255));
LLname.setText("Last name:-");

getContentPane().add(LLname);

LLname.setBounds(30, 165, 66, 25);

LGender.setFont(new java.awt.Font("Times New Roman", 0, 14));
LGender.setForeground(new java.awt.Color(0, 0, 255));
LGender.setText("Gender:-");

getContentPane().add(LGender);

LGender.setBounds(30, 205, 70, 30);

66

LDOB.setFont(new java.awt.Font("Times New Roman", 0, 14));
LDOB.setForeground(new java.awt.Color(0, 0, 255));
LDOB.setText("Date of Birth");

getContentPane().add(LDOB);

LDOB.setBounds(30, 240, 73, 25);

LLogin.setFont(new java.awt.Font("Times New Roman", 0, 14));
LLogin.setForeground(new java.awt.Color(0, 0, 255));
LLogin.setText("Desired Login Name:-");
getContentPane().add(LLogin);

LLogin.setBounds(30, 265, 124, 40);

LPassword.setFont(new java.awt.Font("Times New Roman", 0, 14));
LPassword.setForeground(new java.awt.Color(0, 0, 255));
LPassword.setText('"Password:- ");
getContentPane().add(LPassword),

LPassword.setBounds(30, 310, 68, 40); [
LRPassword.setFont(new java.awt.Font("Times New Roman", 0, 14)); ;
LRPassword.setForeground(new java.awt.Color(0, 0, 255));

LRPassword.setText("Re-enter Password:-"); |

getContentPane().add(LRPassword);
LRPassword.setBounds(30, 370, 116, 30);

LIMail.setFont(new java.awt.Font("Tahoma", 0, 12));
LIMail.setForeground(new java.awt.Color(0, 0, 255));
LIMail.setText("@Jmail.com");
getContentPane().add(LJMail);
LJMail.setBounds(370, 270, 63, 30);

LMin.setText("(Minimum 8 characters in length)");
getContentPane().add(LMin);
LMin.setBounds(180, 345, 190, 20);

LLocation.setFont(new java.awt.Font("Times New Roman", 0, 14));
LLocation.setForeground(new java.awt.Color(0, 0, 255));

] LLocation.setText("Location:-");
getContentPane().add(LLocation);

LLocation.setBounds(30, 430, 57, 40);

TFname.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border.E
tchedBorder.RAISED, null, new java.awt.Color(102, 153, 255)));

: getContentPane().add(TFname);

TFname.setBounds(180, 125, 180, 30);

67

TLname.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border.E
tchedBorder.RAISED, null, new java.awt.Color(102, 153, 255)));
getContentPane().add(TLname);
TLname.setBounds(180, 160, 180, 30);

TLogin.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border.Et
chedBorder.RAISED, null, new java.awt.Color(102, 153, 255)));
getContentPane().add(TLogin);
TLogin.setBounds(180, 270, 180, 30);

TLocation.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border.
EtchedBorder.RAISED, null, new java.awt.Color(102, 153, 255))),
getContentPane().add(TLocation);
TLocation.setBounds(180, 430, 180, 30);

MPassword.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.borde
r.EtchedBorder.RAISED, null, new java.awt.Color(102, 153, 255)));
MPassword.addKeyListener(new java.awt.event.KeyAdapter() {
public void keyReleased(java.awt.event.KeyEvent evt) {
MPasswordKeyReleased(evt);

}
35
getContentPane().add(MPassword);
MPassword.setBounds(180, 315, 180, 30);

SPassword.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border
EtchedBorder.RAISED, null, new java.awt.Color(102, 153, 255)));
SPassword.addKeyListener(new java.awt.event.KeyAdapter() {
public void keyReleased(java.awt.event.KeyEvent evt) {
SPasswordKeyReleased(evt);

}
135
getContentPane().add(SPassword);
SPassword.setBounds(180, 370, 180, 30);

Create.setFont(new java.awt.Font("Tahoma", 0, 14));
Create.setForeground(new java.awt.Color(0, 0, 255));
Create.setText("Create My Account");
Create.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event. MouseEvent evt) {

68

CreateMouseClicked(evt);

}

public void mouseEntered(java.awt.event.MouseEvent evt) {
CreateMouseEntered(evt);

public void mouseExited(java.awt.event. MouseEvent evt) {
CreateMouseExited(evt);

}
i

Create.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
CreateActionPerformed(evt);

}
1)
getContentPane().add(Create);
Create.setBounds(60, 480, 210, 40);

Cancel.setFont(new java.awt.Font("Tahoma", 0, 12)); |
Cancel.setForeground(new java.awt.Color(0, 0, 255)); .
Cancel.setText("CANCEL"); : f
Cancel.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) { {
CancelMouseClicked(evt);

public void mouseEntered(java.awt.event.MouseEvent evt) {
CancelMouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
CancelMouseExited(evt);

}
1)
Cancel.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
CancelActionPerformed(evt);

}

s
getContentPane().add(Cancel);

Cancel.setBounds(290, 480, 80, 40);

LErr1.setFont(new java.awt.Font("Times New Roman", 0, 14));
LErr1.setForeground(new java.awt.Color(255, 0, 0));
LErr].setlcon(new
javax.swing.Imagelcon(getClass().getResource("/images/alert.gif"))); // NOI18N
LErr1.setText("Error");
{ getContentPane().add(LErr1);
' LErr1.setBounds(380, 320, 70, 25);

69

LEn2.setFont(new java.awt.Font("Times New Roman", 0, 14));
LErr2.setForeground(new java.awt.Color(255, 0, 0));
LErr2.setlcon(new
javax.swing.Imagelcon(getClass().getResource("/images/alert.gif™))); // NOI18N

LEr2.setText("Error");
LErr2.addKeyListener(new java.awt.event.KeyAdapter() {

public void keyReleased(java.awt.event.KeyEvent evt) {

LErr2KeyReleased(evt);

}
1)
getContentPane().add(LErt2);
LErr2.setBounds(380, 370, 70, 25);
getContentPane().add(Sep);
Sep.setBounds(0, 80, 480, 2);

LErr3.setFont(new java.awt.Font("Times New Roman", 0, 14));
LErr3.setForeground(new java.awt.Color(255, 0, 0));
LErr3.setlcon(new
javax.swing.Imagelcon(getClass().getResource("/images/alert.gif"))); // NOI18N |
LErr3.setText("Error"); |
getContentPane().add(LErr3); _
LErr3.setBounds(380, 480, 60, 30); !

pack();
}/ </editor-fold>//GEN-END:initComponents

private void SelectActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event SelectActionPerformed
}//GEN-LAST:event_SelectActionPerformed

private void YearActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_YearActionPerformed
}//GEN-LAST:event_YearActionPerformed

private void CancelMouseEntered(java.awt.event.MouseEvent ~ evt) {//GEN-
FIRST:event_CancelMouseEntered

this.Cancel.setForeground(Color.red);
}//GEN-LAST:event_CancelMouseEntered

private — void —MPasswordKeyReleased(java.awt.event.KeyEvent evt) {//GEN-
FIRST:event_MPasswordKeyReleased
String s1 = new String();
s1 = this.MPassword.getText();
if (s1.length() >= 8) {
this.LErr1.setVisible(false);

70

} else {
this.LErr1.setVisible(true);

}
}//GEN-LAST:event_MPasswordKeyReleased

private void LErr2KeyReleased(java.awt.event.KeyE vent evt) {//GEN-
FIRST:event LErr2KeyReleased
}//GEN-LAST:event_LErr2KeyReleased

private void SPasswordKeyReleased(java.awt.event. KeyEvent evt) {//GEN-
FIRST:event SPasswordKeyReleased

String s1 = new String();

String s2 = new String();

s2 = this.SPassword.getText();

s1 = this.MPassword.getText();

if (s2.length() >= 8 & sl.equals(s2)) {
this.LErr2.setVisible(false);

} else { |
this.LErr2.setVisible(true);

}
}//GEN-LAST:event_SPasswordKeyReleased

private void CancelActionPerformed(java.awt.cvent.ActionEvent evt) {//GEN-
FIRST:event_CancelActionPerformed
this.setVisible(false);
Main m = new Main();
m.setVisible(true);
}//GEN-LAST:event_CancelActionPerformed

private void CreateActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_CreateActionPerformed
if (this.LErr1.isVisible() || this.LErr2.isVisible()) {
this.LErr3.setVisible(true);
} else {
this.LErr3.setVisible(false);
try {
SimpleDateFormat df = new SimpleDateFormat("ddMMMMyyyy");
String username = this. TLogin.getText();
String password = this.MPassword.getText();
String name = this. TFname.getText() + " " + this. TLname.getText();
String gender = (String) this.Select.getSelectedItem();
String date_of birth = (String) this.Date. getSelectedltem() + (String)
this.Month.getSelectedItem() + (String) this.Year.getSelectedItem();
java.util. Date date = df.parse(date_of birth);
String location = this.TLocation.getText();

71

String s = Config.current.relay.registerUser(username, password, name,
gender, date, location);
if (s.equals("")) {
JOptionPane.showMessageDialog(this, "NOW YOU REGISTERED");
this.setVisible(false);
} else {
JOptionPane.showMessageDialog(this, s);

} catch (Exception e) {
JOptionPane.showMessageDialog(this, €);
}

}
}//GEN-LAST:event_CreateActionPerformed

private void CreateMouseClicked(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_CreateMouseClicked
}//IGEN-LAST:event_CreateMouseClicked

private void CreateMouseEntered(java.awt.event. MouseEvent evt) {//GEN-]
FIRST:event_CreateMouseEntered /
}//GEN-LAST:event_CreateMouseEntered |
private void CreateMouseExited(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_CreateMouseExited

}//IGEN-LAST:event_CreateMouseExited

private void CancelMouseExited(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_CancelMouseExited

this.Cancel.setForeground(Color.blue);
}//GEN-LAST:event_CancelMouseExited

private void CancelMouseClicked(java.awt.event.MouseEvent — evt) {//GEN-
FIRST:event_CancelMouseClicked
Login obj = new Login();
this.setVisible(false);
obj.setVisible(true);

}//GEN-LAST:event_CancelMouseClicked

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new Register(null).setVisible(true);
}

)i

72

}

// Variables declaration - do not modify/GEN-BEGIN:variables
private javax.swing.JButton Cancel;

private javax.swing.JButton Create;

private javax.swing.JComboBox Date;

private javax.swing.JLabel LDOB;

private javax.swing.JLabel LErr1;

private javax.swing.JLabel LErr2; |
private javax.swing.JLabel LErr3;
private javax.swing.JLabel LFname; i
private javax.swing.JLabel LGender;
private javax.swing.JLabel LIMail;
private javax.swing.JLabel LLname;
private javax.swing.JLabel LLocation;
private javax.swing.JLabel LLogin;
private javax.swing.JLabel LMin;
private javax.swing.JLabel LPassword,;
private javax.swing.JLabel LRPassword;

private javax.swing.JLabel MLabel; ?‘
private javax.swing.JPasswordField MPassword; ¢
private javax.swing.JComboBox Month; qg
private javax.swing.JLabel Picl; Hll

private javax.swing.JLabel Pic2;

private javax.swing.JPasswordField SPassword;
private javax.swing.JComboBox Select;

private javax.swing.JSeparator Sep;

private javax.swing.JCheckBox Stay;

private javax.swing.JTextField TFname;

private javax.swing.JTextField TLname;

private javax.swing.JTextField TLocation;
private javax.swing.JTextField TLogin;

private javax.swing.JComboBox Year;

// End of variables declaration//GEN-END:variables

73

Login.java
package ui;

import communication.*;

import java.awt.Color;

import java.net.Socket;

import java.security.KeyPair;

import javax.swing.JOptionPane;

import javax.swing.JColorChooser;

public class Login extends javax.swing.JFrame {

/** Creates new form Login */
public Login() {
initComponents();
this.txtPort.setValue(1060);
this.jButton1.setEnabled(false);

@Suppress Warnings("unchecked")

/I <editor-fold defaultstate="collapsed" desc="Generated
BEGIN:initComponents

private void initComponents() {

jLabel6 = new javax.swing.JLabel();
jSeparator] = new javax.swing.JSeparator();
username = new javax.swing.JLabel();
password = new javax.swing.JLabel();

forgot = new javax.swing.JLabel();

picture = new javax.swing.JLabel();

create = new javax.swing.JLabel();

settings = new javax.swing.JLabel();

help = new javax.swing.JLabel();

jusername = new javax.swing.JTextField();
jPassword = new javax.swing.JPasswordField();
jCheckBox1 = new javax.swing.JCheckBox();
jButton] = new javax.swing.JButton();
usernamel = new javax.swing.JLabel();
username2 = new javax.swing.JLabel();
txtIP-=new javax.swing.JTextField();

txtPort = new javax.swing.JSpinner();
jButton2 = new javax.swing.JButton();
jLabell = new javax.swing.JLabel();

jLabel6.setText("jLabel6");

74

Code">//GEN-

#

setDefaultCloseOperation(javax.swing. WindowConstants. EXIT_ON_CLOSE);
setTitle("sar chat");
setBackground(new java.awt.Color(255, 255, 255));
setCursor(new java.awt.Cursor(java.awt.Cursor. HAND_ CURSOR));
setForeground(new java.awt.Color(51, 0, 255));
addPropertyChangeListener(new java.beans.PropertyChangeListener() {

public void propertyChange(java.beans.PropertyChangeEvent evt) {

formPropertyChange(evt);

}
})s
getContentPane().setLayout(new org.netbeans.lib.awtextra. AbsoluteLayout());
getContentPane().add(jSeparatorl, new
org.netbeans.lib.awtextra.AbsoluteConstraints(0, 102, 270, -1));

username.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N

username.set Text("Server Port:");

getContentPane().add(username, new
org.netbeans. lib.awtextra.AbsoluteConstraints(250, 210, 90, 30)); !

password.setFont(new java.awt.Font("Tahoma", 0, 12)); {

password.setText("Password:"); L

getContentPane().add(password, new !
org.netbeans.lib.awtextra.AbsoluteConstraints(40, 214, 90, 20));

forgot.setFont(new java.awt.Font("Tahoma", 0, 12));
forgot.setForeground(new java.awt.Color(0, 102, 204));
forgot.setText("Forgot Your Password?");
forgot.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseEntered(java.awt.event.MouseEvent evt) {
forgotMouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
forgotMouseExited(evt);

}

3)s
getContentPane().add(forgot, new
org.netbeans.lib.awtextra. AbsoluteConstraints(60, 370, 130, 20));

picture.setlcon(new. javax.swing.lmagelcon(getClass().getResource("/images/sar
talk.jpg™))); // NOI18N

getContentPane().add(picture,
org.netbeans.lib.awtextra. AbsoluteConstraints(10, 20, -1, 70));

néw

create.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N
create.setForeground(new java.awt.Color(0, 102, 204));
create.setText("Dont have an account?");

7]

create.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event. MouseEvent evt) {
createMouseClicked(evt);

}

public void mouseEntered(java.awt.event.MouseEvent evt) {
createMouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
createMouseExited(evt);
}
1)
getContentPane().add(create,
org.netbeans. lib.awtextra. AbsoluteConstraints(60, 400, 130, 20));

settings.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N
settings.set Text("Settings");
settings.addMouseListener(new java.awt.event. MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {
settingsMouseClicked(evt);

public void mouseEntered(java.awt.event.MouseEvent evt) {
settingsMouseEntered(evt);

}

public void mouseExited(java.awt.event. MouseEvent evt) {
settingsMouseExited(evt);

}

getContentPane().add(settings,
org.netbeans.lib.awtextra. AbsoluteConstraints(170, 10, 50, 20));

help.setFont(new java.awt.Font("Tahoma", 0, 12));
help.setText("| Help");
help.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {
helpMouseClicked(evt);

public void mouseEntered(java.awt.event.MouseEvent evt) {
helpMouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
helpMouseExited(evt);

}

ge,tContentPane().add(hclp, new org.netbeans.lib.awtextra.Abso luteConstraints(220,

10, 40, 20));

76

new

new

. ———

B

jusername.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border
.EtchedBorder. RAISED, null, new java.awt.Color(153, 204, 255)));
jusername.addKeyListener(new java.awt.event.KeyAdapter() {
public void keyReleased(java.awt.event. KeyEvent evt) {
jusernameKeyReleased(evt);

}
)5
getContentPane().add(jusername, new
org.netbeans, lib.awtextra. AbsoluteConstraints(40, 180, 190, 30));

jPassword.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border
.EtchedBorder.RAISED, null, new java.awt.Color(153, 204, 255)));
jPassword.addKeyListener(new java.awt.event.KeyAdapter() {
public void keyPressed(java.awt.event.KeyEvent evt) {
jPasswordKeyPressed(evt);

public void keyReleased(java.awt.event.KeyEvent evt) { :\
jPasswordKeyReleased(evt); ‘
}
D 4
getContentPane().add(jPassword, new

org.netbeans.lib.awtextra, AbsoluteConstraints(40, 250, 190, 30));

jCheckBox1.setFont(new java.awt.Font{"Tahoma", 0, 12)); // NOI18N

jCheckBox! .setLabel("Remember Password");

getContentPane().add(jCheckBox1, new
org.netbeans, lib.awtextra. AbsoluteConstraints(40, 290, 150, -1));

jButton1.setForeground(new java.awt.Color(0, 51, 255));
jButtonl setText("Sign in");
jButtonl.addMousel.istener(new java.awt.event. MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {
jButton1MouseClicked{evt);

}

jButtonl.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt} {
jButtonl ActionPerformed(evt);
}
1
getContentPane().add(jButtonl, new
org.netbeans. lib.awtextra. AbsoluteConstraints(60, 330, 130, 30));

usernamel .setFont(new java.awt.Font("Tahoma", 0, 12)); //NOI 8N

77

username].setText("Username:");
getContentPane().add(usernamel, new
org.netbeans.lib.awtextra.AbsoluteConstraints(40, 140, 90, 30));

username2.setFont(new java.awt.Font("Tahoma", 0, 12)); // NOI18N

username?2.setText("Server [P:");

getContentPane().add(username?2, new
org.netbeans.lib.awtextra.AbsoluteConstraints(250, 140, 90, 30));

txtIP.setText("127.0.0.1");

txtIP.setBorder(javax.swing.BorderFactory.createEtchedBorder(javax.swing.border.Etch
edBorder.RAISED, null, new java.awt.Color(153, 204, 255)));
txtIP.addKeyListener(new java.awt.event.KeyAdapter() {
public void keyReleased(java.awt.event. KeyEvent evt) {
txtIPKeyReleased(evt);

}
1)
getContentPane().add(txtIP, new
org.netbeans.lib.awtextra. AbsoluteConstraints(250, 180, 190, 30));
getContentPane().add(txtPort, new

org.netbeans.lib.awtextra. AbsoluteConstraints(250, 250, 190, 30));

jButton2.setForeground(new java.awt.Color(0, 51, 255));
jButton2.setText("Set");
jButton2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton2 ActionPerformed(evt);

}
1)
getContentPane().add(jButton2, new
org.netbeans.lib.awtextra. AbsoluteConstraints(250, 330, 130, 30));
getContentPane().add(jLabell, new

org.netbeans. lib.awtextra.AbsoluteConstraints(440, 400, 20, 30));

pack();
}// </editor-fold>//GEN-END:initComponents

private void formPropertyChange(java.beans.PropertyChangeEvent evt) {//GEN-
FIRST:event_formPropertyChange
// TODO add your handling code here:
}/GEN-LAST:event_formPropertyChange

private void createMouseEntered(java.awt.event. MouseEvent evt) {//GEN-

FIRST:event_createMouseEntered
this.create.setForeground(Color.red);

78

e

}//GEN-LAST:event_createMouseEntered

private void forgotMouseExited(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_forgotMouseExited
this.forgot.setForeground(Color.black); // TODO add your handling code
here:
}//GEN-LAST:event_forgotMouseExited

private void forgotMouseEntered(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_forgotMouseEntered
this.forgot.setForeground(Color.RED); // TODO add your handling code
here:
}//GEN-LAST:event_forgotMouseEntered

private void createMouseExited(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_createMouseExited
this.create.setForeground(Color.black); // TODO add your handling code
here:
}//GEN-LAST:event_createMouseExited A

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt) {//GEN- i
FIRST:event_jButton]ActionPerformed -
try {
Sttingee Mg+ Config.current.relay.doLogin(this.jusername.get Text(),
this.jPassword.getText());
if (msg.equals("")) {
Config.current.username = this.jusername.getText();

SelectFriend f= new SelectFriend();
f.setVisible(true);
this.setVisible(false);
} else {
JOptionPane.showMessageDialog(this, msg);

} catch (Exception ex) {
JOptionPane.showMessageDialog(rootPane, ex);

}
}//GEN-LAST:event_jButton1ActionPerformed

private void createMouseClicked(java.awt.event. MouseEvent ~ evt) {//GEN-
FIRST:event createMouseClicked
Register = new Register(this);
this.setVisible(false);
f.setVisible(true);

}//GEN-LAST:event_createMouseClicked

79

private void jPasswordKeyPressed(java.awt.event.KeyEvent evt) {//GEN-
FIRST:event_jPasswordKeyPressed
}//GEN-LAST:event_jPasswordKeyPressed

private void jPasswordKeyReleased(java.awt.event. KeyEvent evt) {//GEN-
FIRST:event_jPasswordKeyReleased
String n2 = new String();
String n = new String();
n = jusername.getText();
n2 = jPassword.getText();
if (n2.length() > 0 && n.length() > 0) {
this.jButton].setEnabled(true);
} else {
this.jButton].setEnabled(false);

}
}//GEN-LAST:event_jPasswordKeyReleased

private void jButton1MouseClicked(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_jButtonlMouseClicked

this.setVisible(false);
}//GEN-LAST:event_jButtonlMouseClicked

private void settingsMouseClicked(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_settingsMouseClicked
Color ¢ = JColorChooser.showDialog(this, "Change Text Background Color",
Color.yellow);
this.jusername.setBackground(c);
}//GEN-LAST:event_settingsMouseClicked

private void helpMouseClicked(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_helpMouseClicked
JOptionPane.showMessageDialog(null, "This is a simple Chat application built
using Java.",
"About Help",
JOptionPane.INFORMATION_MESSAGE);
}//GEN-LAST:event_helpMouseC]icked

private void - settingsMouseEntered(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_settingsMouseEntered

this.setForeground(Color.red);
}//GEN-LAST:event_settingsMouseEntered

private void settingsMouseExited(java.awt.event. MouseEvent evt) {//GEN-

FIRST:event_settingsMouseExited
// TODO add your handling code here:

80

this.setForeground(Color.blue);
}//GEN-LAST:event_settingsMouseExited

private void helpMouseEntered(java.awt.event. MouseEvent evt)
FIRST:event_helpMouseEntered
// TODO add your handling code here:
this.setForeground(Color.red);
}//GEN-LAST:event_helpMouseEntered

private void helpMouseExited(java.awt.event.MouseEvent evt)
FIRST:event_helpMouseExited
// TODO add your handling code here:
this.setForeground(Color.blue);
}//GEN-LAST:event_helpMouseExited

private void jusernameKeyReleased(java.awt.event.KeyEvent evt)
FIRST:event_jusernameKeyReleased
// TODO add your handling code here:
}//GEN-LAST:event_jusernameKeyReleased

private void txtIPKeyReleased(java.awt.event.KeyEvent evt)
FIRST:event_txtIPKeyReleased
// TODO add your handling code here:
}//IGEN-LAST:event_txtIPKeyReleased

private void jButton2ActionPerformed(java.awt.event. ActionEvent evt) {/GEN-

FIRST:event_jButton2ActionPerformed
try {

{//GEN-

{//GEN-

{//GEN-

{//GEN-

Socket s = new Socket(this.txtIP.getText(), (Integer) this.txtPort.get Value());

Config.current = new ConnectionInfo();
Config.current.relay = new ClientRelay(s);

KeyPair k = RSAEncryptUtil.generateKey();

Config.priKey = k.getPrivate();

Config.current.pubKey = k.getPublic();
Conﬁg.current.relay.sendKey(Conﬁg.cun‘ent.pubKey.getEncoded());

this.jButton2.setEnabled(false);
} catch (Exception ex) {
JOptionPane.showMessageDialog(nu11, ex);
}
}//GEN-LAST:event_jButton2ActionPerformed

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

81

public void run() {
new Login().setVisible(true);
}

3R

}

/ Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JLabel create;

private javax.swing.JLabel forgot;

private javax.swing.JLabel help;

private javax.swing.JButton jButtonl;

private javax.swing.JButton jButton2;

private javax.swing.JCheckBox jCheckBox1;

private javax.swing.JLabel jLabell;

_ private javax.swing.JLabel jLabel6;

private javax.swing.JPasswordField jPassword;
private javax.swing.JSeparator jSeparator1;
private javax.swing.JTextField jusernaime;
private javax.swing.JLabel password;

private javax.swing.JLabel picture;

private javax.swing.JLabel settings;

private javax.swing.JTextField txtIP;

private javax.swing.JSpinner txtPort;

private javax.swing.JLabel username;

private javax.swing.JLabel usernamel;

private javax.swing.JLabel username?;

// End of variables declaration//GEN-END:variables

32

- -

Chat. java

package ui;

import communication.Config;
import ui.Login;

import java.awt.*;

import java.net.*;

import javax.swing.JColorChooser;
import javax.swing.JDialog;

import javax.swing.JOptionPane;

public class Chat extends javax.swing.JDialog {
public String withUser;

/** Creates new form Chat */

public Chat(JDialog patent, String withUser) { %
super(parent, true);
this.withUser = withUser;

initComponents();
this.jLabeld.setVisible(false);
this.jLabel8.setVisible(false);

this.lblY ourName.setText("Your name:- " + Config.current.username);
this.IbIFriendName.setText("Friend's name:- " + withUser);

}

@Suppress Warnings("unchecked")

// <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents

private void initComponents() {

jLabell = new javax.swing.JLabel();

jLabel2 = new javax.swing.JLabel();
jComboBox1 = new javax.swing.JComboBox();
jButtonl = new javax.swing.JButton();
jButton2 = new javax.swing.JButton();
jScrollPanel = new javax.swing.JScrollPane();
txtChat = new javax.swing.JTextArea();
jScrollPane2 = new javax.swing.JScrollPane();
txtMessage = new javax.swing.JTextPane();
jLabel5 = new javax.swing.JLabel();

83

jLabel6 = new javax.swing.JLabel();
jButton3 = new javax.swing.JButton();
JSeparatorl = new javax.swing.JSeparator();
jLabel4 = new javax.swing.JLabel();
jLabel8 = new javax.swing.JLabel();
IblYourName = new javax.swing.JLabel();
IblFriendName = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing. WindowConstants. DISPOSE_ON_CLOSE);
addWindowListener(new java.awt.event. WindowAdapter() {

public void windowClosing(java.awt.event. WindowEvent evt) {
formWindowClosing(evt);
}

1)

getContentPane().setLayout(new org.netbeans. lib.awtextra. AbsoluteLayout());

jLabell.setlcon(new javax.swing.Imagelcon(getClass().getResource("/images/sar
talk.jpg™))); // NOI18N

getContentPane().add(jLabell, new
org.netbeans. lib.awtextra.AbsoluteConstraints(0, 0, 140, 70)):

jLabel2.setFont(new java.awt.Font("Tahoma", 0, 12));
jLabel2.setForeground(new java.awt.Color(0, 0, 255));
jLabel2.setText("Settings");
jLabel2.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {
jLabel2MouseClicked(evt);

public void mouseEntered(java.awt.event.MouseEvent evt) {
jLabel2MouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
jLabel2MouseExited(evt);
}

1
getContentPane().add(jLabel2, new

org.netbeans. lib.awtextra.AbsoluteConstraints(260, 20, 50, 30));

jComboBox1.setFont(new java.awt.Font("Tahoma", 0, 14)); // NOI18N
jComboBox1 .setForeground(new java.awt.Color(0, 51, 255));
jComboBox1.setModel(new javax.swing.DefaultComboBoxModel(new String[] {
"Set your status message here", "Available", "Busy", "Logout" }));
jComboBox1.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseEntered(java.awt.event.MouseEvent evt) {
jComboBox1MouseEntered(evt);

}

84

public void mouseExited(java.awt.event.MouseEvent evt) {
jComboBox1MouseExited(evt);

}
});
jComboBox1.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jComboBox 1 ActionPerformed(evt);

}
1) '
getContentPane().add(jComboBoxl1, new
org.netbeans. lib.awtextra. AbsoluteConstraints(50, 130, 210, 30));

jButtonl.setFont(new java.awt.Font("Tahoma", 0, 14));
jButton].setForeground(new java.awt.Color(0, 0, 255));
jButtonl.setText("Send");
jButtonl.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event. ActionEvent evt) {

jButtonl ActionPerformed(evt);

} : . |'1.|
1
getContentPane().add(jButtonl, new y

org.netbeans. lib.awtextra.AbsoluteConstraints(70, 400, 90, 30)); f

jButton2.setFont(new java.awt.Font("Tahoma", 0, 14));
jButton2.setForeground(new java.awt.Color(255, 0, 51));
jButton2.setText("Delete");
jButton2.addMouseListener(new java.awt.event.MouseAdapter() {

public void mouseClicked(java.awt.event.MouseEvent evt) {

jButton2MouseClicked(evt);

}
3)i
getContentPane().add(jButton2, new

org.netbeans. lib.awtextra.AbsoluteConstraints(190, 180, 90, 30));

txtChat.setColumns(20);
txtChat.setEditable(false);
txtChat.setLine Wrap(true);
txtChat.setRows(5);
jScrollPanel.setViewportView(txtChat);

getContentPane().add(jScroliPanel, new
org.netbeans.lib.awtextra.AbsoluteConstraints(50, 220, 270, 80));

jScrollPane2.setViewportView(txtMessage);

85

getContentPane().add(jScrollPane2, new
org.netbeans, lib.awtextra.AbsoluteConstraints(50, 340, 270, 50));

jLabel5.setFont(new java.awt.Font("Tahoma", 0, 18));

jLabel5.setForeground(new java.awt.Color(255, 51, 51));

jLabel5.setHorizontal Alignment(javax.swing.SwingConstants. CENTER);

jLabel5.setText("Message:-");

getContentPane().add(jLabels, new
org.netbeans. lib.awtextra.AbsoluteConstraints(50, 310, 90, 20));

jLabel6.setFont(new java.awt.Font("Tahoma", 0, 12));
jLabel6.setForeground(new java.awt.Color(0, 51, 255));
jLabel6.setText("| Help™);
jLabel6.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event. MouseEvent evt) {
jLabel6MouseClicked(evt);

public void mouseEntered(java.awt.event.MouseEvent evt) {
jLabel6MouseEntered(evt); k

public void mouseExited(java.awt.event.MouseEvent evt) { f
jLabel6MouseExited(evt); .

}

1);
getContentPane().add(jLabelo, new
org.netbeans.lib.awtextra.AbsoluteConstraints(310, 24, 40, 20));

jButton3.setFont(new java.awt.Font("Tahoma", 0, 14));
jButton3.setForeground(new java.awt.Color(204, 0, 255));
jButton3.setText("Scraps");
jButton3.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event. MouseEvent evt) {
jButton3MouseClicked(evt);

}
s
getContentPane().add(jButton3, new
org.netbeans. lib.awtextra. AbsoluteConstraints(50, 180, 90, 30));
getContentPane().add(jSeparatorl, new

org.netbeans.lib.awtextra. AbsoluteConstraints(0, 80, 350, -1));
~ jLabel4.setlcon(new .
javax.swing.Imagelcon(getClass().getResource("/images/green.jpg"))); / NOI8N
getContentPane().add(jLabel4, new
org.netbeans. lib.awtextra.AbsoluteConstraints(30, 90, -1, -1));

jLabel8.setFont(new java.awt.Font("Tahoma", 0, 12));

86

jLabel8.setForeground(new java.awt.Color(204, 0, 255));
jLabel8.setText("Available");

getContentPane().add(jLabel8, new
org.netbeans.lib.awtextra. AbsoluteConstraints(50, 80, 60, 30));

getContentPane().add(IblY ourName, new
org.netbeans. lib.awtextra. AbsoluteConstraints(110, 90, -1, -1));

getContentPane().add(IblFriendName, new

org.netbeans. lib.awtextra. AbsoluteConstraints(110, 110, -1, -1));

pack();
}// </editor-fold>//GEN-END:initComponents

private void jComboBoxIMouseEntered(java.awt.event.MouseEvent evt) {/GEN-
FIRST:event_jComboBox1MouseEntered
this,jComboBox1.setBackground(Color. WHITE);
}//GEN-LAST:event_jComboBox|MouseEntered

private void jButton3MouseClicked(java.awt.event.MouseEvent evt) {//GEN-

FIRST:event_jButton3MouseClicked L
/lthis.jscrap.setVisible(true);

}//GEN-LAST:event_jButton3MouseClicked

private void jComboBoxIMouseExited(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_jComboBox1MouseExited
this,jComboBox1.setBackground(Color.lightGray);
}//IGEN-LAST:event_jComboBox1MouseExited

private void jLabel2MouseClicked(java.awt.event.MouseEvent evt) {/GEN-
FIRST:event_jLabel2MouseClicked

Color c=JColorChooser.showDialog(this,"SET ~ FOREGROUND COLOR",
Color.yellow);

this.txtChat.setForeground(c);

}//GEN-LAST:event_jLabel2MouseClicked

private void jLabel2MouseEntered(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_jLabel2MouseEntered

this.jLabel2.setForeground(Color.red);
}//GEN-LAST:event_jLabel2MouseEntered

private void jLabel2MouseExited(java.awt.event.MouseEvent ~ evt) {//GEN-
FIRST:event_jLabel2MouseExited

this.jLabel2.setForeground(Color.blue);
}//GEN-LAST:event_jLabel2MouseExited

private void jComboBoxlActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jComboBox1ActionPerformed

87

switch (this.jComboBox1.getSelectedIndex()) {
case 1:
this.jLabeld.setVisible(true);
this.jLabel8.setVisible(true);
jLabel4.setlcon(new
javax.swing.Image[con(getC[ass().getResource("/images/green.jpg")));
this.jLabel8.setText("AVAILABLE");
break;
case 2: .
this.jLabel4.setVisible(true);
this.jLabel8.setVisible(true);
jLabel4.setlcon(new
javax.swing.Imagelcon(getClass().getResource("/images/red.jpg")));
this.jLabel8.setText("BUSY");
break;
case 3:
this.setVisible(false);
Login f= new Login();
f.setVisible(true); {
break;
default: [
this.jLabel8.setVisible(false); f
this.jLabel4.setText("");

}
}/GEN-LAST:event_jComboBox1 ActionPerformed

private void jButton2MouseClicked(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_jButton2MouseClicked

//this.jscrap.setText(null);
H/IGEN-LAST:event_jButton2MouseClicked

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt) {/GEN-
FIRST:event_jButtonl ActionPerformed

try {
Config.current.relay.sendChatMessage(this.withUser,

this.txtMessage.getText());
this.txtChat.setText(this.txtChat.getText() + Config.current.username + ":- " +

this.txtMessage.getText() + "\n");
this.txtMessage.setText("");
this.txtChat.setSelectionStart(this.txtChat.getText().length() - 1);

} catch (Exception ex) {
JOptionPane.showMessageDialog(this, ex);

}
}//GEN-LAST:event_jButtonl ActionPerformed

88

private void formWindowClosing(java.awt.event. WindowEvent evt) {/GEN-
FIRST:event_formWindowClosing

Config.windows.remove(this);
}//GEN-LAST:event_formWindowClosing

private void jLabel6MouseClicked(java.awt.event.MouseEvent evt) {/GEN- !
FIRST:event_jLabel6MouseClicked
// TODO add your handling code here:
JOptionPane.showMessageDialog(null, "This is a simple Chatting Frame built using
Java.",
"About Help",
JOptionPane INFORMATION_MESSAGE);
}//GEN-LAST:event_jLabel6MouseClicked

private void jLabel6MouseEntered(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_jLabel6MouseEntered
// TODO add your handling code here:
this.setForeground(Color.red);
}//GEN-LAST:event_jLabel6MouseEntered

private void jLabel6MouseExited(java.awt.event.MouseEvent evt) {//GEN- |
FIRST:event_jLabel6MouseExited
// TODO add your handling code here:
this.setForeground(Color.blue);
}/GEN-LAST:event_jLabel6MouseExited

public void receiveMessage(String msg) {
this.txtChat.setText(this.txtChat.getText() + this.withUser + ":- " + msg + "\n");
this.txtChat.setSelectionStart(this.txtChat.getText().length() - 1);

}

/l Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton jButtonl;

private javax.swing.JButton jButton2;

private javax.swing.JButton jButton3;

private javax.swing.JComboBox jComboBoxl;
private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabel2;

private javax.swing.JLabel jLabeld;

private javax.swing.JLabel jLabel5;

private javax.swing.JLabel jLabel6;

private javax.swing.JLabel jLabel8;

private javax.swing.JScrollPane jScrollPanel;
private javax.swing.JScrollPane jScrollPane2;
private javax.swing.JSeparator jSeparatorl;
private javax.swing.JLabel IbIFriendName;
private javax.swing.JLabel IblYourName;

89

private javax.swing.JTextArea txtChat;
private javax.swing.JTextPane txtMessage;
/I End of variables declaration//GEN-END:variables

}

Chat Server
ServerForm.java
package ui;

import communication.ServerRelay;
import javax.swing.*;
import java.net.*;

public class ServerForm extends javax.swing.JFrame {
ServerSocket server;

/** Creates new form ServerForm */
public ServerForm() {
initComponents();
this. TPort.setValue(1060);

}

@Suppress Warnings("unchecked")

// <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents

private void initComponents() {

Start = new javax.swing.JButton();
Stop = new javax.swing.JButton();

TIP = new javax.swing.JTextField();
LIP = new javax.swing.JLabel();

LPort = new javax.swing.JLabel();
Progress = new javax.swing.JProgressBar();
Sep = new javax.swing.JSeparator();
Pic = new javax.swing.JLabel();
LWelcome = new javax.swing.JLabel();
TPort = new javax.swing.JSpinner();
Hack = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing. WindowConstants. EXIT_ON_CLOSE);
setTitle("SAR Server");

90

addWindowListener(new java.awt.event. WindowAdapter() {
public void windowClosing(java.awt.event. WindowEvent evt) {
formWindowClosing(evt);
}
1

getContentPane().setLayout(new org.netbeans.lib.awtextra. AbsoluteLayout());

Start.setFont(new java.awt.Font("Times New Roman", 0, 14));
Start.setForeground(new java.awt.Color(51, 0, 255));
Start.setText("START");
Start.setBorder(null);
Start.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseEntered(java.awt.event. MouseEvent evt) {
StartMouseEntered(evt);

public void mouseExited(java.awt.event. MouseEvent evt) {
StartMouseExited(evt);

}
i

Start.addActionListener(new java.awt.event.ActionListener() { §
public void actionPerformed(java.awt.event.ActionEvent evt) {
StartActionPerformed(evt);

}

s
getContentPane().add(Start, new org.netbeans. lib.awtextra. AbsoluteConstraints(30,

300, 80, 40));

Stop.setFont(new java.awt.Font("Times New Roman", 0, 14));

Stop.setForeground(new java.awt.Color(255, 51, 51));

Stop.setText("STOP");

Stop.setBorder(null);

Stop.setEnabled(false);

Stop.addMouseListener(new java.awt.event. MouseAdapter() {
public void mouseEntered(java.awt.event.MouseEvent evt) {

StopMouseEntered(evt);

public void mouseExited(java.awt.event.MouseEvent evt) {
StopMouseExited(evt);
} 2

s

Stop.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
StopActionPerformed(evt);

}
Hs

91

getContentPane().add(Stop, new
org.netbeans.lib.awtextra. AbsoluteConstraints(150, 300, 80, 40));

TIP.setEditable(false);
TIP.setFont(new java.awt.Font("Times New Roman", 0, 14));
TIP.setText("127.0.0.1");

TIP.setBorder(javax.swing.BorderFactory.createEtched Border(javax.swing.border.Etche
dBorder.RAISED, null, new java.awt.Color(153, 204, 255)));

getContentPane().add(TIP, new org.netbeans.lib.awtextra.Abso]uteConstraints(SO,
180, 170, 30));

LIP.setFont(new java.awt.Font("Times New Roman", 0, 14));

LIP.setForeground(new java.awt.Color(0, 51, 255));

LIP.setText("IP ADDRESS");

getContentPane().add(LIP, new org.netbeans. lib.awtextra. Abso luteConstraints(50,
150, 90, 20));

LPort.setFont(new java.awt.Font("Times New Roman", 0, 14));
LPort.setForeground(new java.awt.Color(0, 0, 255));
LPort.setText("PORT NO");

getContentPane().add(LPort, new
org.netbeans.lib.awtextra.AbsoluteConstraints(50, 220, 80, 20));
getContentPane().add(Progress, new

org.netbeans. lib.awtextra. AbsoluteConstraints(60, 360, -1, 20));
getContentPane().add(Sep, new org.netbeans.lib.awtextra.AbsoluteConstraints(0,
84, 270, -1));

Pic.setlcon(new
javax.swing.Imagelcon(getC]ass().getResource("/images/server.jpg"))); // NOI18N

getContentPane().add(Pic, new org.netbeans.lib.awtextra.AbsoluteConstraints(O, 0,
']s 70));

LWelcome.setFont(new java.awt.Font("Times New Roman", 0, 18));

LWelcome.setForeground(new java.awt.Color(255, 51, 102));

LWelcome.setText("Welcome To The SAR Server");

getContentPane().add(L Welcome, new
org.netbeans. lib.awtextra. AbsoluteConstraints(10, 100, 250, 30));

TPort.setFont(hew java.awt.Font("Times New Roman", 0, 14)); // NOI18N

TPort.setBorder(javax.swing.BorderFactory.createEtched Border(null, new
java.awt.Color(153, 204, 255)));
getContentPane().add(TPort, new

org.netbeans. lib.awtextra. AbsoluteConstraints(50, 250, 170, 30)):

Hack.setFont(new java.awt.Font("Times New Roman", 0, 14));

92

Hack.setForeground(new java.awt.Color(0, 255, 0)):
getContentPane().add(Hack, new org.netbeans. lib.awtextra. AbsoluteConstraints(75,
390, 120, 20));

pack();
3// </editor-fold>//GEN-END:initComponents

private void formWindowClosing(java.awt.event. WindowEvent evt) {//GEN-
FIRST:event_formWindowClosing

this.stopServer();
}//GEN-LAST:event_formWindowClosing

private void StopActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_StopActionPerformed

this.stopServer();
}//GEN-LAST:event_StopActionPerformed

private void StartActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_StartActionPerformed
Runnable r = new Runnable() {

public void run() {

startServer();
}
1
Thread t = new Thread(r);
t.start();

}//GEN-LAST:event_StartActionPerformed

private void StartMouseExited(java.awt.event. MouseEvent evt) {//GEN-
FIRST:event_StartMouseExited
this.Start.setBorder(null);
}/IGEN-LAST:event_StartMouseExited

private void StartMouseEntered(java.awt.event.MouseEvent evt) {//GEN-

FIRST:event_StartMouseEntered
this.Start.setBorder(javax.swing.BorderFactory.createEtchedBorder(null, new

java.awt.Color(153, 204, 255)));
}/GEN-LAST:event_StartMouseEntered

private void StopMouseEntered(java.awt.event.MouseEvent evt) {//GEN-

FIRST:event_StopMouseEntered
this.Stop.setBorder(javax.swing.BorderFactory.createEtchedBorder(null, new

java.awt.Color(153, 204, 255)));
}/GEN-LAST:event_StopMouseEntered

93

private void StopMouseExited(java.awt.event.MouseEvent evt) {//GEN-
FIRST:event_StopMouseExited
this.Stop.setBorder(null);
}/GEN-LAST:event_StopMouseExited

private void startServer() {
int port = (Integer) this.TPort. getValue();

try {
server = new ServerSocket(port);

this.Progress.setIndeterminate(true);
this.Start.setEnabled(false);
this.Stop.setEnabled(true);
this.Hack.setText("Server Running");

while (true) {
final Socket client = server.accept();
Runnable r = new Runnable() {

public void run() {
new ServerRelay(client).handleCommunicat ion();
}

5

Thread t = new Thread(r);
t.start();

} catch (Exception e) {
JOptionPane.showMessageDialog(this, e.getMessage());

}
}
private void stopServer() {
try {
if (this.server != null) {
this.Start.setEnabled(true);
this.Stop.setEnabled(false);
this.Progress.setIndeterminate(false);
this.Hack.setText("Server stoped");
this.server.close();
}
} catch (Exception e) {
JOptionPane.showMessageDialog(this, e.getMessage());
1
}

94

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new ServerForm().setVisible(true);
}

D
}

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JLabel Hack;

private javax.swing.JLabel LIP;

private javax.swing.JLabel LPort;

private javax.swing.JLabel LWelcome;

private javax.swing.JLabel Pic;

private javax.swing.JProgressBar Progress;

private javax.swing.JSeparator Sep;

private javax.swing.JButton Start;

private javax.swing.JButton Stop;

private javax.swing.JTextField TIP;

private javax.swing.JSpinner TPort;

// End of variables declaration//GEN-END:variables

95

