Pror wew wifm,

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. pr%DQCaII Num:

General Guidelines:
S=leldl Luldelines:
¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action,

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource C

entre-Jyj

Ry

A project report submitted in partial fulfilment of the award of degree of
B.Tech on

. APPLICATION OF GENETIC ALGORITHM IN
| WALL FOLLOWING

GROUP NO.66

Group Members: Project Supervisor:
KunalChawla(071251) Mr.Pradeep Kumar
NileshBansal(071318)

JAYPEE UNIVERSITY OF INFORMATION AND
TECHNOLOGY
WAKNAGHAT, SOLAN (H.P)

—

Table of Contents:

1) Problem Statement

2) Definition
2.1) Wall following
2.2) Genetic Algorithm
2.3) Operators of Genetic Algorithm
2.3.1) Selection
2.3.2) Reproduction
2.3.2.1) Mutation
2.3.2.2) Crossover
2.3.3) Termination

3) Objective and Scope

4) Methodology ek
4.1) Evolving wall following behaviours

5) Algorithms

6) Risk Management
6.1) Risk Table

7) Project Schedule

5) Resources and Limitations
- 5.1) C Language
5.2) C++ Language
5.3) Limitations

6) Sample Codes
6.1) Genetic Algorithm module
6.2) Graph for wall follower
6.3) Maintain Straight

7) Results and conclusion

16
18

19

23
24

25

27
27
27
27

28
28
3l
34

48

2|Page

8) References 49
9) Bio Data 51
9.1) Kunal Chawla 51
9.2) Nilesh Bansal 53
E
E
3|Page

WAKNAGHAT
SOLAN, HIMACHAL PRADESH

Date: 2.3-5-2091|

i CERTIFICATE

This is to certify that the work titled “APPLICATION OF GENETIC ALGORITHM IN
WALL FOLLOWING” submitted by “Nilesh Bansal and Kunal Chawla™ in partial fulfilment
for the award of degree of B. Tech of Jaypee University of Information Technology;
Waknaghat has been carried out under my supervision. This work has not been submitted
partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

| - Signature in full of Supervisor: PMJ@(—)#) f‘d\m,}y

i Name in Capital block letters: P ARDE I:\E I<u M AR

Designation: |v LQCLJ—*—X’&X

4|Page

T

ACKNOWLEDGEMENT

It gives us great pleasure in presenting the project report for our project on ‘APPLICATION
OF GENETOC ALGORITHM IN WALL FOLLOWING’. We would like to take this
opportunity to thank our project guide Mr. Pardeep Kr. Gupta for giving us all the help and
guidance we needed. We are really grateful to him for his kind support throughout the
analysis and design phase. We are also grateful to Brig. S.P. Ghrera, Head of CSE/L.T
Department, Jaypee University of Information Technology and other staff members for
giving important suggestions.

Signature of the student Kﬁf :

Name of Student

Date

5|Page

SUMARY

This project demonstrates the use of genetic programming (GP) for the development of maze wall-
following behaviors. Algorithms are developed for a simulated maze that uses an array of range
finders for navigation. Navigation algorithms are tested in a variety of differently shaped
environments to encourage the development of robust solutions, and reduce the possibility of

¥ solutions based on memorization of a fixed set of movements. A brief introduction to GP is

; presented. A typical wall-following maze is analyzed, and results are presented. GP is shown to be
capable of producing maze wall-following algorithms that perform well in each of the test

environments used

Signature of Student: M Signature of Student N " ﬁ%—k

Name: MUNAL Citgnr A Name NIL ¢ ¢ H RAr 4L

Dale 3o lig | 5 o)) Date 2315 5 o,

Signature of Supervisor Pwleé,{b lm P
Name PA R EEP Ku MAR
Date 23.._05‘.__ 20”

6|Page

i PROBLEM STATEMENT

o We intend to build a wall following algorithm which will enable the
object to successfully traverse the given maze.

o The object will be able to deviate from its current path as soon as it
encounters a wall or you may say an obstruction.

o The object has to enter from a certain entrance and has to successfully
traverse the whole path and find its way out of the maze.

e We intend to do this using Genetic Algorithm to carry out the various
results possible in various generations.

e The various solutions or the successful traversal of the maze will give the
fitness function of the algorithm.

* The output or the solution will be taken as the chromosomes which will
be changed in each run or you may say in each generation.

7 | Pa ge

DEFINITION

The wall follower, the best-known rule for traversing mazes,it is also known
as either the left-hand rule or the right-hand rule.

[f the maze is simply connected, means all its walls are connected together or
to the maze's outer boundary, then by keeping one hand in contact with one
wall of the maze the player is guaranteed not to get lost and will reach a
different exit if there is one; otherwise, he or she will return to the entrance.

This strategy works best when implemented immediately upon entering the
maze.Another perspective into why wall following works is topological.If

the walls are connected, then they may be deformed into a loop or

circle. Then wall following reduces to walking around a circle from start to

finish.

If the maze is not simply connected this method will not be guaranteed to
help the goal to be reached.

8|Page

GENETIC ALGORITHM

The Genetic Algorithms a search technique that mimics the process of
natural evolution.This technique is generally used to generate useful
solutions to optimization and search problems.In GA a string of
chromosomes evolves towards better solutions. Traditionally, solutions are
represented in binary as strings of Os and 1s, but other encoding are also

possible.

A typical genetic algorithm requires:-

% A genetic representation of the solution domain.
% A fitness function to evaluate the solution domain.

The evolution usually starts from a population of randomly generated
individuals and happens in generations .In each generation the fitness of
every individual in the population is evaluated .Multiple individuals are
stochastically selected from the current population and are modified to form
a new population.

The new population is then used in the next iteration of the algorithm.The
algorithm terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached for the
population .If terminated due to maximum number of generations then the
satisfactory fitness level may or may not be achieved.

A standard representation of the solution is as an array of bits . Variable
length implementation is also possible, but crossover implementation is more
complex in this case .The fitness function is defined over the genetic
representation and measures the quality of the represented solution .The
fitness function is always problem dependent.

Initially many individual solutions are randomly generated to form an initial
population .The population size depends on the nature of the problem, but
typically contains several hundreds or thousands of possible solutions .The
population is generated randomly, covering the entire range of possible
solutions.

9|Page

OPERATORS OF GENETIC ALGORITHM

SELECTION:

-Selection is the stage of a genetic algorithm in which individual
chromosomes are chosen from a population for later breeding
(recombination or crossover).

The fitness function is evaluated for each individual, providing fitness
values, which are then normalized .Normalization means dividing the fitness
value of each individual by the sum of all fitness values, so that the sum of
all resulting fitness values equals 1.

The population is sorted by descending fitness values .Accumulated
normalized fitness values are computed .The accumulated fitness of the last
individual should of course be 1.A random number R between 0 and 1 is
chosen .The selected individual is the first one whose accumulated
normalized value is greater than R.

REPRODUCTION:

-It is of two types
-Mutation
-Crossover

Reproduction is simply the copying of an individual from the previous
generation into the next generation without any modification of its structure.

Crereratior 1 Crereratior 2
1y
e & ¢
.)
D E D E

10| Page

Mutation:

-Mutation is a genetic operator used to maintain genetic diversity from one
generation of a population of algorithm chromosomes to the next.It is
analogous to biological mutation.

A common method of implementing the mutation operator involves
generating a random variable for each bit in a sequence. This random variable
tells whether or not a particular bit will be modified.This mutation
procedure, based on the biological point mutation, is called single point
mutation.

When the gene encoding is restrictive as in permutation problems, mutations
are swaps, inversions and scrambles. Mutation should allow the algorithm to
avoid local minima by preventing the population of chromosomes from

becoming too similar to each other, thus slowing or even stopping evolution.

Mutation is performed by randomly selecting a node in an individual tree
structure, and removing that node along with any sub-tree that may exist
below it. A new sub-tree is then generated randomly and "grafted in" at the
position where the original node was removed.

Greneratior 1 Creteration, 2

& /_,— Selected Hode g

CROSSOVER:

-Crossover is a genetic operator used to vary the programming of
chromosomes from one generation to the next .1t is analogous to
reproduction and biological crossover, upon which genetic algorithms are
based.

11 |Page

Types

of Crossover

One Point Crossover

Parents: ‘ E

| crossover point

Chidran:

e Two Point Crossover

Parents

| CIOSSOVer points |

12| Page

Crossover involves selecting two individuals and selecting a node at random in
each of them. The selected nodes, along with any sub-trees that exist below
them, are exchanged between the two individuals.

TERMINATION:

This generational process is repeated until a termination condition has been
reached.

Common terminating conditions are:
* A solution is found that satisfies minimum criteria.
+ Fixed number of generations reached.
+ Allocated budget (computation time/money) reached.
* Manual inspectioﬁ.

¢ The highest ranking solution's fitness is reaching or has reached a level
such-that successive-iterations no-longer produce better results.

13| Page

OBJECTIVE AND SCOPE

The objective of our project is to successfully develop a wall following
algorithm with the help of genetic algorithm.

In present time you can see the need of wall following in various fields of
computational science. To overcome this need of wall follower we are
developing an algorithm which will traverse the maze in multiple ways so that
different solutions are available for a particular problem. Due to this we can
select a particular solution which will be suitable to us. This will be helpful in
solving various problems of robotics also.

The clean objective is to design the project in two segments.

1. Static algorithm
2. Dynamic algorithm

In static algorithm we will have a fixed defined maze and solutions will be
generated upon the fix given maze:

In dynamic algorithm we will have variable maze which will be generated
randomly by the user and various solutions will be produced based on those
different mazes.

The various solutions will help in developing the fitness function of the
algorithm.

14 |Page

METHODOLOGY

In a genetic algorithm, a population of strings (called chromosomes or the
genotype of the genome), which encode candidate solutions (called individuals,
creatures) to an optimization problem, evolves toward better solutions.
Traditionally, solutions are represented in binary as strings of 0s and 1s, but

“other encodings are also possible. The evolution usually starts from a population
of randomly generated individuals and happens in generations. In each
generation, the fitness of every individual in the population is evaluated,
multiple individuals are stochastically selected from the current population
(based on their fitness), and modified (recombined and possibly randomly
mutated) to form a new population. The new population is then used in the next
iteration of the algorithm. Commonly, the algorithm terminates when either a
maximum number of generations has been produced, or a satisfactory fitness
level has been reached for the population. If the algorithm has terminated due to
a maximum number of generations, a satisfactory solution may or may not have
been reached.

A typical genetic algorithm requires:

1. A genetic representation of the solution domain,
2. A fitness function to evaluate the solution domain,

A standard representation of the solution is as an array of bits, Arrays of other
types and structures can be used in essentially the same way. The main property
that makes these genetic representations convenient is that their parts are easily
aligned due to their fixed size, which facilitates simple crossover operations.
Variable length representations may also be used, but crossover implementation
is more complex in this case.

The fitness function is defined over the genetic representation and measures the
quality of the represented solution. The fitness function is always problem
dependent. For instance, in the Travelling Salesman Problem one wants to
maximize the total value of cities that can be put in the problem of some fixed
capacity. A representation of a solution might be an array of bits, where cach bit
represents a different object, and the value of the bit (0 or 1) represents whether
or not the city is in the problem. Not every such representation is valid, as the
number of cities may exceed the capacity of the problem. The fitness of the
solution is the sum of paths of all cities in the Travelling Salesman Problem if
the representation is valid or 0 otherwise.

15| Page

EVOLVING WALL FOLLOWING BEHAVIOURS

We conduct an experiment to find out what are the effects that can be seen from
the results of the GP runs when more complex wall shapes are introduced. The
experiment involves an object moving in a world that consists of a 16 x 16 cells
map. The outer cells represent the walls of the room and cannot be occupied by
the object. The inner cells adjacent to the walls signify the cells where the

object is able to pick up fitness points. The robot is free to occupy the rest of the
cells.

For each iteration within a generation, the object is randomly placed within the
allowable cells. In order to have a repeatable experiment, we may place the
object on any allowable cell at our discretion instead of being randomly placed.
The experiments were run subsequently on four different wall types. Each of the
wall type is added with an extrusion starting with none for the first wall and
ending with four extrusions for the fourth wall.

These experiments were conducted to see whether the addition of complexities
on the walls would affect the GP algorithm adversely. This may show the
scalability of the GP algorithm for this problem domain .Four different wall
types used in the experiments

= SR & T
a4 o
B =
T X7
E;,; Ei s=§ =
£
BTl
1 208 -3 | = Cf
i Eo 2
= 1= 3
3 =
T I B
£ E] £ B I i
£3 £ %
o H s £ =
£ B G
5 Cx 5
== O 22 0% 200K I 230 o o &
i Ead 22 5B S R
5 § i1;r; e i oy v lruf?ij‘!’ 5] iril’i‘i“'lh SFivjiqifapeae gé o s 1 2 A o il [|1?1T§ PRI afiFEEvEYR o il bl i el I
| 1930 £ NEDCE £ Ty Thies P T 1Y Y T T 7 ThEET TETEYE]
| o = _ 5 . =
| qE = . HN R F
1 g s, & 3 = o X
| £ 2% 1 = oS H 4028 5 &
|
| ¥ p o3 3 8 T t % 23 :ﬁ 5
| & = IS 3 2 ledebs & & = A o I T &
{ 3 Eododd e i 5 b = * i £ ldedal 21
5 oot :
150 :
T ey i 04 95 2 S L5 3 1 EREES
Esiafapatige i = THEYSFIEEST 8 H EHE{3HE
£ 23 5 H e AR
- Gl X
2 1 P B =z = 2
g ; o :
S = : 3 o :
1= . X £2 k2 23 3 1
g ¢ { firlsls ; 11 atay |
5 2 Qi
pmE 5 -t 1
T 5 i i;_ 5 <] f G o %
B 1 Bl £ 253 23 o443 | 34 €3 3 11 £ T BE g

16| Page

As you can see the complexity is increasing in each progressing maze

The centrally placed red dot is our object which has to follow the walls of the
given mazes.

We run the GE again and again and observe different results. These results will
be stored as chromosomes and will vary in each run or you may say in each
generation.

The main ait.n is to enter a given maze and trace the way out. After approaching
walls the object should deviate from its path and should go on the path which it

can. traverse. This will help in giving the solution in form of a chromosome
which can be stored in a linked list and can be modified in each generation

17 |Page

ALGORITHMS

The software implementation ol the maze s _important for the proper and

efficient sworking of the maze, as much as its hardware. As the rules of the

competition suggests it is not just solving the maze that counts. The algorithm

should solve the maze in the shortest time possible giving it the edse over the
other_compelitors participating in the competition. So a_proper_selection and

tant_for obtaining

implementation and even improvisation of algorithm is mpe
expected results.

Most of the algorithms used nowadavs in maze solvine competitions are

based on logical synthesis design rules. The algorithms which were used in the

beginning years ol this _competition _were simple logical algorithms which

became inetiicient as the maze itsell became complex. The Algorithms used for

maze solving competition are
Wall follower Algorithm

Depth fivst scarch Algorithm
| Algorithm

1 lood il
Modified Flood [Algorithin

Wall follower Algorithm

Lhe wall following algorithin is the simplest of the maze solving techniques.

ally, the mouse follows either the left or the rieht wall as a euide around the

maze. And if the mouse encounters an opening in any of the walls picked up by its

sensors, the mouse will stop and |

m_in that direction and then move forward

sensing the walls gain, Thus keeping the walls as a guide the micromouse hopes to

Solve maze rather than actually solving it. The steps involved in following the right

wall is given below
The right wall following routine:
Upon arriving in a cell:

LEthere 1s an opening 1o theright -

TR PRV o
BOLAle r1end

Lihere is an opening ahead
Do nothing

RS A W = i o o &
¢ 11 there is an opening o the icft

1 e o
RO 11t

18| Page

algg nm 1S 1n 1im nld are. Dii

Blse

Turn around

End 1t

Move _fhj‘\'\.is'd One .u__!i.;

Although this_ Algorithm was efficient_in solvine the maze of the

beginning vears it is not_used nowadays. This is _because the maze used

competitions nowadays are constructed in such a way that the wall follower

algorithm will never solve it. Such mazes bhave bottleneck reeions which will

cause the algorithm to fail.

Depth First Search Algorithm

The depth first_search is an_intuitive_method of searching a maze.

Bagically. the mouse simply starts moving. When it_comes to an intersection in

the maze. it randomly chooses one of the paths, If that path leads to a dead end.

the mousc backiracks to the intersection and chooses another path. This forces the

robot to_explore every possible path within the maze. By exploring every cell

within the maze the mouse will eventually find the center,

Even though this algorithm succeeds in solving the maze completely

-+

st_path. In addition to that the mice explores the

need not necessarily be the shot

atency, Cases have occurred in

entire maze for solving the maze leading t

t'-_‘-nf_ni.‘-f‘%iii“f‘v- where the competitors using this algorithm had to change their ba

tieries in the middle as the mice ook too much time in solving the maze. Hence

algorithm is also not used in modern competitions
Flood Fill Algorithm

Lhe introduction of flood fill algorithm in maze solving methods paved

hew wavs by which modern complex mazes can be solved .without anv

boitlenceks. This algorithm is derived from the Bellman Ford Algorithm
svithesis techniques, Other

ikstra’s Algorithm, Johnson's Algorithm ete.

coming under the ficld of logl

;‘\."‘i' féf"u' !s!'m\ ?.H(}

Lields Hike Communieation. design softwares ete,

19|Page

il algorithm imvolves assigning values to cach of the cells in

the maze where these values represent the distance from any cell on the maze to
the destination cell. The destination cell. therefore. is assigned a value of 0. If the

mouse is standing m a cell with a value of 1. it1s 1 cell away from the goal. If the

mouse is standing in a cell with a value ol 3. it is 3 cells away from the goal.
Assuming the robot cannot move diagonallyv. the values tor a 5X5 maze without

walls would look like this:

Of course for a full sized maze, vou would have 16 rows by 16 columns = 236
cell
val
complete maze.

Fherefore you would need 236 byvies to store the di

When it comes time o make a move, the robot must examine all adjacent

cells which are not separated by walls and choose the one with the lowest

distance value, In our example above, the mouse would ignore anv cell to the

West because there 1s a wall. and it would look at the distance values of the cells

to_the North. East and South since those are not separated by walls. The cell to

the North has a value of 2, the cell to the East has a value of 2 and the cell to the

uth has a value ol 4. The routine sorts the values to determine which cell has
the fowest distance value. It turns out that both the North and ast cells have a

North or ast and traverse

distance value ol 2. [hat mea the mouse can go_

the same number of cells on its way to the destination cell, Since tuming would

20(|Page

1) anyd
But real maz

mazo S50 WEe NeEC

S0 ;iﬂnilt-'! 200 D

are 8 bits in the by

with anothet

by two cells 0

value for its neighboi

moves dpotll

cells are alfeetec

when you update the wall

1 be more than sufficient to keep t

- i":‘i,‘!."tf d way 01

ith no walls.,

HE 4 10 W

will allect the distance values in the

e, Again, there are 236 cells in a real maze

ck of the walls. There

a cell. The first 4 bits can represent the walls leaving vou
wieuse. Remember that every interior wall is shared

value tor one cell vou can update the wall

» a way ol keeping track of the walls the mouse finds as it

the distance values of the
weav

updating those. Returning to our example,

suppose the mouse has found a wall,

21 | Page

Naghar Satan O

RISK MANAGEMENT

Risk is a possibility of loss or injury. The definition of risk in the software

engineering environment that we will use is exposure to harm or loss, as this

includes not only the possibility of risks, but their impact as well. Using risk

management techniques, we alleviate the harm or loss in a software project. All

risks cannot be avoided, but by performing risk management, we can attempt to

ensure that the right risks are taken at the right time. "...Risk taking is essential

to progress and, and failure is often a key part of learning".

Software Risk Management is an iterative process. About two iterations are

both feasible and useful. We use the risk table to identify risks and briefly

describe them.

We have classified the risks into different categories. They are:

1. Technical
Requirement
Design
Implementation

Post Release

N

Business Risks

22| Page

Risk Table

'No. | Risk Category ' Probability i
| | | 1 J ;

' 1 | Changes in Design regarding choice of| Technical — Deéién 0% =
| underlying data structure. |
2 | Lack of communication among team Project 5%

members due to clashes in schedule

3 Ambiguous Requirements that may > ”Projez:t_' 60%
‘ change |
4 Performance. (Sonﬁeihing taking too ‘ 3 Technical ‘ 40% |
1 long or too heavy on resources) | *
‘ 5 Release of a similar product by another . Business L 10% {
team
| 6 - Experience with development language/ | Project | 20%

platform/ tools

OVERVIEW_ OF RISK MITIGATION,MONITORING AND
MANAGEMENT

Project scope is vast with limited time, and disaster can be taken care of by risk
avoidance using a proactive approach. This can be done by developing a risk

~ mitigation plan.

Small staff size and staff inexperience can be taken care of in risk monitoring
stage by the project group members having a good relationship with one
another. The members jell with each other well and there must be proper co-
ordination among the team members. Also by arranging meetings with people
who are experienced in the field and have complete knowledge about the field

will help us.

23| Page

PROJECT SCHEDULE

Tsr.No | Name of task Subtask
|
1
Problem 1. Problem Definition: 16/07/2010
Identification e Collecting detailed problem definition
of the system to be implemented
and
To
Information
Gathering
31/07/2010
2. Literature Survey: 25/07/2009
e Visiting different websites.
e Studying existing system with it’s limitation &
0
e Going through Journals, magazines
e Studying the reference books
15/08/2010
2 1/08/2010
Analysis 1. Project Plan:
e Preparing for complete project plan
' To
15/08/2010
24| Page

e
2. Requirement Analysis 16/08/2010
e Software requirements
e Hardware requirements
e Databases To
30/08/2010
Design 1. Architectural design: 25/08/2010
e Describing relationships between
modules and sub modules
To
I 10/09/2010
4
Output Screen Output Screens: 22/11/2010
formats
e Preparing for detailed output screens
describing output formats
5 01/11/2010
Development 1. Coding: To
| ¢ Implementing design details Using
programming language C/C++
31/012011
25fPage

2. Adding graphics to the final output screen

01/02/2011

To .

20/04/2011

Testing

Testing the system for expected results

25/04/2011

To

05/05/2011

26| Page

RESOURCES AND LIMITATIONS

e C language
We know that it is the most efficient and the most powerful
language for coding,
The use of the ¢ language will be done to develop the genetic
algorithm module which will help in giving a new maze or you
may say graph in the subsequent stages of the project.
The genetic module that will be generated will create a maze of the
give shape and size by the user and will have a room for the
complexity from which the user can set the complexity of the maze
from a level of 1-10. Here 1 means least complexity and 10 means
highest complexity.

e C++ Language
We know that C++ is a very powerful object oriented language for
programming,
In our project we will use C++ for coding the main wall following
code which will basically decide the path of the object which it will
be guiding.
We chose C++ also because it supports graphics so the wall
following procedure will be easily demonstrated.
The maze following will give the result in terms of the
chromosomes which will be given to the genetic module developed
in C and it will be reproduced again in various forms and will
l returned giving the new solutions to the given problem or maze.
This reproduced chromosome will help us in developing the fitness
function for our problem and will describe the success we achieve
in developing the project or you may say how efficiently we have
done the project of application of genetic algorithm in wall
following .As far as the limitations are concerned our algorithm is
not flawless. It can be modified as the requirements of the
developer as and when he starts a new project.

27| Page

- ‘

SAMPLE CODE

#include <iostream=>
#include <stdlib.h>
#include éconio.h>
#include <vector>

using namespace std;
#define NULL 0

#define LEFT 3
#define UP 2
#define RIGHT 1

#define DOWN 0

#define FOUND NOWAY 0
ftdefine FOUND EXIT 1

#define FOUND NOEXIT -1

int setCoord(int &nrows,int &ncols);

void fillMaze(char ** maze,int nrows,int ncols);

void printMaze(char ** maze,int nrows,int ncols);

int findEntry(char ** maze,int nrows,int ncols,int ** npos,int &num);
int findExit(char ** maze,int nrows,int ncols,int ** xpos,int &num);

void valMaze(char ** maze,int nrows,int ncols,int ** npos,int ** xpos);

28 |Page

int solveMaze(char ** maze,int ** cell_p,std::vector<int> &x,std::vector<int>
&y);
void refinePath(std::vector<int> &x,std::vector<int> &y);
void printRefine(char ** maze,int nrows,int ncols,std::vect6r<int>
&x,std::vector<int> &y);
void noSolution(void);
int main(int argc,char *argv[])
{
int nrows = 0, ncols = 0;
setCoord(nrows,ncols);
[/=mmne e
char ** maze = new char * [nrows];
1f (maze == NULL)
cout << "Couldn't allocate memory for the maze * *"
== . "press any key to-exit.,";
_getch();
exit(EXIT_FAILURE);
}
for (int 1= 0; i < nrows; i++)
maze[1] = new (nothrow) char[ncols];
e s
int ** npos = new int * [2];
if (npos == NULL) {
29 |Page
e

cout << "Couldn't allocate memory for the entry position * *"
<< "pressany key to exit..;

_getch();

exit(EXIT_FAILURE);

h

for(Ifiti =001 €2 14+)

npos|[i] = new (nothrow) int;

[[-mmmm e = e

int.*% Xpos =newint* [2]:
1E(xposi==NULL){
cout << "Couldn't allocate memory for the exit position * *"
<< "press any key to exit..";
_getch();
exit(EXIT FAILURE);
}

for (inti=0;i<2;i++)

xpos[i] = new (nothrow) int;

/- --- e e

fillMaze(maze,nrows,ncols);

valMaze(maze,nrows,ncols,npos,xpos);

cout << "Your maze has been accepted\n\n":

while(true) {

30| Page

char answer = (;

cout << "What do you want to do now?\n"
<< "\t1\xF9 Print the maze before solving\n"
<< "\t2\xF9 Solve the maze then print it\n"
<< "\t3\xF9 Exift\n"
<< "1,2,3,4 to select an option: ";

while (answer <'1' || answer > '3") {
answer = _getch();

}

cout << answer << "\n\n";

if (answer =="1") {
printMaze(maze,nrows,ncols);

} else if (answer == "2") {

e

int#%.cell . p-=néw:int*.[3];

if (cell p==NULL) {

cout << "Couldn't allocate memory for the cell
position * *"

<< "press aty keyv to exif..';
_getch();
exit(EXIT_FAILURE);
}
for (inti=0;1<3;i++)
cell_p[i] = new (nothrow) int;

e -

31|Page

*cell p[0] = *npos[0];
*eell p[l] = *nipos[1];
if (*npos[0] == ncols-1)
*eellpl2[= LEET;
else if (*npos[1] == nrows-1)
*cell-p[2]=UF;
else if (*npos[0] == 0)
*cell p[2] = RIGHT;
else if (*npos[1] == 0)
*cell p[2] = DOWN;

vector<int> x;

vector<int> y;

x.push_back(*npos|[0]);

y.push_back(*npos[1]);

solveMaze(maze,cell p,x,y);

if (x.size() < 3500) {
x.push_back(*xpos[0]);
y.push_back(*xpos[1]);

} else {
cout << "The vectors allocated have drained\n"

<< '"press any key to exit..";

_getch();

32| Page

exit(EXIT_FAILURE);

}

printMaze(maze,nrows,ncols);

cout << "Press any key now to refine the path we

found\n\n";
_getch();
refinePath(x,y);
printRefine(maze,nrows,ncols,x,y);
cout << "Press any key now to exit..";
_getch();
delete [] cell p;
break;
} else if (answer =="'3") {

break;

}

delete(maze);
delete(npos);
delete(xpos);
exit(EXIT_SUCCESS);
return 0;
]
int setCoord(int &nrows,int &ncols) {
if (ncols <= 0 || ncols > 40) {
cout << "Enter maze width: ";

33| Page

. i

cin >> ncols;

}
if (nrows <= 0 || nrows > 40) {

cout << "Enter maze height: ";

cin >> nrows;
b
if (nrows <= 0 || nrows > 40 || ncols <= 0 || ncols > 40) {
cout << "Invalid width or height detected\n\n";
setCoord(nrows,ncols);

}

return (nrows,ncols);
}
void fillMaze(char ** maze,int nrows,int ncols) {
cout << "\n\n" << "Enter maze as you would like it to appear\n"
<< "[Wall: 1] [Exit; 2] [Path: 3] [Entry: 4]\n"
| << "Example:\n\n"
s WML A
<< "433132\n"
=< "131131W"
<" 3333 1 in"
e HLLELL
Il int col =0;
char c;

for (int row = 0; row < nrows; row-+)

34|Page

";|

c=0;
while (col <= ncols) {
gis.cpeteh():
if (¢>'0" && ¢ <'S' && col < ncols) {
cout << ¢;
maze[row][col] = ¢;
Ghlt=h
} else if (¢ == 0x0d && col == ncols) {
cout << "\n";
maze[row][col] = 0;

col =0;

break;
} else 1f (¢ ==0x08) {

putchar(0x08);
putchar(0xFF);
putchar(0x08);
if (col 1=0)
col--;
}
}
}
cout << "\n";

35|Page

yoid printMaze(char ** maze,int nrows,int ncols) {
for (int i = 0; 1 < nrows; i++) {
for (int j = 0; j <ncols; j++) {

cout << mazel[i][j];

i
gontE= "
h
cout << "\n";
!
int findEntry(char ** maze,int nrows,int ncols,int ** npos,int &num) {
inti:
num = 0;

for (i=1; 1 <ncols-1; i++) {

if (maze[0][i] =='4' && num == 0) {
*npos[1] = 0;
*npos[0] =1;
num-+-+;

} else if (maze[0][i] == '4' && num !=0) {
num-+-+;

} else if (maze[nrows-1][i] == '4' && num == 0) {
*npos[1] = nrows-1;
*npos[0] = i:
num-++;

} else if (maze[nrows-1][i] =='4' && num !=0) {

36|Page

num-+-+;

}

for (i=1; i <nrows-1; i++) {

if (maze[i][0] == '4' && num == 0) {
*npos[1] =i;
*npos[0] = 0;

num-++;

} else if (maze[i][0] == '4' && num !=0) {
num-++;

} else if (maze[i][ncols-1] == '4' && num == 0) {
*npos[1] =1i;
*npos[0] = ncols-1;
num-++;

} else if (maze[i][ncols-1] == '4' && num != 0) {

num-+-+;

}

return num;

int findExit(char ** maze,int nrows,int ncols,int ** xpos,int &num) {
int i;

num = 0;

37| Page

for (i=1; 1 <ncols-1; i++) {

if (maze[0][i] == "2' && num == 0) {

*xpos|[l] =0;
*xpos[0] =i;
num-++;

} else if (maze[0][i] == 2' && num !=0) {
num++;

} else if (maze[nrows-1][i] == 2' && num == 0) {
*xpos[1] = nrows-1;
*xpos[0] = i;
num-+-+;

) else if (maze[nrows-1][i] == '2' && num !=0) {

num-++;

}
for (i=1;1 <nrows-1; i++) {

if (maze[i][0] == "2' && num == 0) {

txpos[l]=1
*xpos[0] =103
num-+-+;

) else if (maze[i][0] == '2' && num != 0) {
num--+;
) else if (maze[i][ncols-1] == 2' && num == 0) {

xpos[l]=i;

38| Page

*xpos[0] = ncols-1;

num-++;

} else if (maze[i][ncols-1] =="2' && num != 0) {

num-++;

b

return num;

}
void valMaze(char ** maze,int nrows,int ncols,int ** npos,int ** xpos) {
int—— i) wookow=0.8= 0 num;
for (i = 0; i <ncols; i++) {
if (maze[0][1] =="1")
wH+;
if (maze[nrows-1][i] =="1")

w+:

}
for (i=1; i <nrows-1; i++) {
if (maze[i][0] =="1")
W+

if (maze[i][ncols-1] =="1")

wt++:

5

}
w_ok = nrows * ncols - (nrows-2) * (ncols-2) - 2;

if (w_ok I=w) {

39| Page

cout << "\t\xF9 Ambiguous error detected with your walls\n\t"
<< "make sure you have 1 entry and 1 exit points\n\t"

<< "all other wall cells must be equal '1"\n";

et+:

j

findEntry(maze,nrows,ncols,npos,num);

if (*npos[0] == NULL && *npos[1] == NULL) {
cout << "\t\xF9 No entry point was detected and NO, parachutes
are not allowed!\n";
et
}elseif (num-1=1)
cout << "\t\xF9 Multiple entry points were detected\n\t"
<< '"maze entry, exit maze, maze exit, entry maze... I'm
lost * *n";

(S

o}

}
findExit(maze,nrows,ncols,xpos,num);
if (*xpos[0] == NULL && *xpos[1] == NULL) {
cout << "\t\xF9 No exit point was detected and NO, digging is not
allowed!\n";
e++;
}elseif (num !=1) {
cout << "\t\xF9 Multiple exit points were detected\n\t"
<< "maze entry, exit maze, maze exit, entry maze... I'm
lash™ *\p'e
et+;

40| Page

}
for (i=1; i <nrows-1; i++) {
for (j = 1; j <ncols-1; j++) {
if (maze[i][j] =='4' || maze[i][j] == "2') {

cout << "\t\xF9 Ambiguous error detected with your
maze\n\t"

<< "make sure it doesn't contain any entry or
exit points inside\n";

e+t
1= nrows;
j = ncols;

}
cout =< "\n";
if (e 1=0) {
cout << "\t\xF9 Errors were detected with your maze design\n\t"
<< "thus no further operations are allowed\n\t"
<< "press any key to exit the program..";
_getch();
exit(EXIT _FAILURE);
1 else]
coul =< "\\XF'9 No errors were detected with your maze design\n\t"

<< "GOD speed :)\n\n";

41 |Page

}
int solveMaze(char ** maze,int ** cell p,std::vector<int> &x,std::vector<int>
&y) 1

intn, i;

switch(*cell p[2])

{

case LEFT:
*cell p[0] = 1;
break;

gase LIP:
*eell p[l] =1;
break;

case RIGHT:
*cell.p[0] +=1;
break;

case DOWN:

el _pll]=1x

switch(maze[*cell p[1]][*cell p[O0]])
{

case '1";
return FOUND NOWAY;
casc_2u

42 |Page

T T

return FOUND_EXIT;

case '4":

return FOUND NOEXIT;

*cell p[2]==1;
if (Fcell p[2]<0)

el ip[Z] =4

for(1=0;1<4;i++) {

if (maze[*cell_p[1]][*cell_p[0]]=="3"||
maze[*cell_p[1]][*cell _p[0]] =='@") {

//POSITION

maze[*cell_p[1]][*cell_p[0]] ='@";
printf("\n%d\t%d\n",*cell_p[1],*cell_p[0]);

if (x.size() <3500) {
x.push_back(*cell_p[0]);
y.push_back(*cell p[1]);
Yelse o
cout << "The vectors allocated have drained\n"
<< "press any key to exit..";

_getch();
exit(EXIT_FAILURE);

43 |Page

—

n = solveMaze(maze,cell_p,x,y);
if (n) {
if (n == FOUND_NOEXIT) {
maze[*cell p[1]][*cell p[0]] ="'3";
x.pop_back();
y.pop_back();
i
return n;
} else {
switch(*cell- p[2])
{
case LEFT:
*cell p[0] +=1;
break;
case UP:
*cell p[1]+=1;
break;

| case RIGHT:

| *cell p[0]-=1;
break:

case DOWN:

*cell p[1]—=1;

44 |Page

I

*cell_p[2] +=1;
if(¥eell-p[2]23)
*cell p[2] -=4;

maze[*cell_p[1]][*cell_p[0]] ='@";
T

l I
if (x.size() <3500) {

x.push_back(*cell_p[0]);
y.push_back(*cell p[1]);

} else {
cout << "The vectors allocated have drained\n"

<< '"press any key to exit..";

_geteh();
exit(EXIT_FAILURE);

return O;

45| Page

:

o

void refinePath(std::vector<int> &x,std::vector<int> &y) {
for (inti=1; 1 <x.size()-1; i++) {
for (int j = i+1; j < x.size()-1; j++) {
if (x[i] == x[J] && y[i] == y[j]) {
x.erase(x.begin()+i,x.begin()+j);

y.erase(y.begin()+i,y.begin()+j);

void printRefine(char ** maze,int nrows,int ncols,std::vector<int>
&x,std::vector<int> &y) {

it g, ke
for (i = 1; i <nrows-1; i++) {

for (j = 1; j <ncols-1; j++) {

if (maze[i][j] !='3' && maze[i][j] I="1") {
for (k = 1; k < x.size()-1; k++) {
if (x[k] == i && y[k] == j)
maze[i][j] ='3";
else

maze[i][j] ='@';

2
;
i 46| Page

;

printMaze(maze,nrows,ncols);

j

void noSolution() {

cout << "No first move is allowed unless you want to hit a solid wall\n"

<< "no solution\n"
<< . "press any key to exit..";

_getch();
exit(EXIT_SUCCESS);

47 | Page

RESULTS AND CONCLUSION

These experiments show that GP is capable of generating wall-following

algorithms using the function set provided. Although a 100% solution (passing

through all possible corridor grids) was never attained, most learning cycles

produced algorithms that exhibited the desired behaviour. The convex corners

proved to be particularly troublesome and warrant further analysis. This is

probably a sufficiency issue and resolution should enhance performance,
possibly leading to 100% solutions.

The algorithms generated are robust in that they perform well across the four
environments used in these experiments. It seems reasonable to expect that the
algorithms will also perform well in additional environments of similar
complexity, but this hypothesis remains untested. The original intent was to
test the algorithms on a physical robot equipped with ultrasonic range finders,
but such a robot was unavailable during the required time interval. Follow-on
work will focus on employing GP-developed algorithms on physical robots.

This project demonstrates the feasibility of using genetic programming to
develop mobile robot navigation algorithms. It lays the foundation for planned
follow-on projects of maze traversal, map generation and full-coverage area
traversal. The results of this project show sufficient promise to warrant further
research into these more complex tasks.

48 |Page

REFRENCES

e I.R. Koza, Genetic programming: On the programming of computers
by means of natural selection, MIT Press, Cambridge, MA, 1992.

e J.H. Holland, Adaptation In Natural And Artificial Systems, University
of Michigan Press, Ann Arbor, MI, 1975.

e C.W. Reynolds, Evolution of Obstacle Avoidance Behavior: Using
Noise to Promote Robust Solutions, Advances in Genetic
Programming, MIT Press, Cambridge, MA, pp. 221-241, 1994.

e R.A. Dain,An Overview of Genetic Programming with Machine Vision
‘ Examples, Northwest Artificial Intelligence Forum Journal, Volume 4,
i pp. 21-30, 1995.

e Bhanzaf W., Nordin P., and Olmer M., Generating Adaptive
Behaviour for a Real Robot using Function
Regression within Genetic Programming.Koza JR, Deb K, Dorigo M,
Fogel DB, Garzon M, Iba H and Riolo, Rick L., editors. 35-43 1997:
Proceedings of the 2nd Annual Conference, Stanford University,
1997.

e Daidal., Ross S., McClain J., Ampy D. and Holczer M., Challenges with
Verification, Repeatability, and Meaningful Comparisons in Genetic
Programming. Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H
et al., editors. Genetic Programming 1997: Proceedings of the Second
Annual Conference. San Francisco,CA: Morgan Kaufmann Publishers,
Inc., 1997.

e Hu H., Kostiadis K. and Liu Z., Coordination and Learning in a team of
Mobile Robots, Proceedings of the IASTED Robotics and Automation
Conference, ISBN 0-88986-265-6, pages 378-383, Santa Barbara, CA,
USA, 28-30 October 1999.

® Ross S. I., Daida J. M., Doan, C. M., Bersano-Begey and McClain, J. J.,
Variations in Evolution of Subsumption Architectures Using Genetic
Programming: The Wall Following Robot Revisited. Koza JR, Goldberg

| DE, Fogel DB, Riolo RL, editors. 191-199. 1996. Cambridge, MA, The

49 |Page

2

MIT Press. Genetic Programming 1996: Proceedings of the 1st Annual
Conference, Stanford University, July 28-31, 1996

Kostiadis K., Hunter M. and Hu H., The Use of Design Patterns for
Building Multi-Agent Systems, IEEE Int. Conf, On Systems, Man and
Cybernetics, Nashville, Tennessee, USA, 8-11 October 2000.

Goldberg D.E., Genetic Algorithms in Search, Optimisation, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

S50|Page

BIO DATA

KUNAL CHAWLA

D-2/2105, Vasant Kunj

New Delhi = 110 070

Tel®: +91 11 26125198

Mobile: +91 9816 334 995 E-mail: chawlakunal@ymail.com

CAREER OBJECTIVE

To grow intellectually and enhance my skills and abilities while sharing a mutually beneficial
relationship with the organization | serve.

EDUCATION

Standard College/School Year CGPA/Percentage
JAYPEE UNIVERSITY
B.Tech OF INFORMATION 2011 5.9/66.0%
(CSE) TECHNOLOGY, (Pursuing) (Up till 7" sem)
SOLAN.
THE AIRFORCE 2007
12"(C.B.S.E) SCHOOL,NEW DELHI 72.2%

THE AIRFORCE
10" (C.B.S.E) SCHOOL,NEW DELHI 2005 77.6%

INTERNSHIP/TRAINING PROGRAM

Engineers India Limited, New Delhi. 31 May — 6" July 2010

Successfully completed summer training of six weeks at Engineers India Limited (EIL), New
Delhi. During the training period, | worked on a project “System for Storing and
Maintaining Data" at EIL’s Information Technology Services Division. Comprehensive
report was prepared and submitted to the Division.

TECHNICAL SKILLS

Jd

* Languages: C, C++

PROJECTS UNDERTAKEN:

51|Page

i R it i B

» Working on Application of Genetic Algorithms in Wall Following.
« Developed a website on “jal board management system”.

EXTRA CURRICULAR ACTIVITIES

« Good athelete and won medals at zonal and state level.

+ Passed the Certificate ‘A’ Examination of National Cadet Corps in 2004 under the
authority of Ministry of Defence, Government of India. :

+ Participated in Quiz contests like Petroleum Conservation for Economy and Environment
and also made outstanding contribution towards social welfare activities like curbing
vehicular pollution, care for the elderly (Help Age India) etc.

+ Awarded with merit scholarship for four years by Engineers India Ltd., New Delhi for
B.Tech studies.

HOBBIES

» Travelling to new places
» Listening to music.

STRENGTHS

+ Responsible and confident

* Quick in learning from mistakes
* Ability to manage demanding situation deftly & cheerfully.

PERSONAL

Date of Birth :22nd june 1989
Father's Name : Mr. R.S Chawla
Mother’'s Name : Mrs. Saroj Chawla

Permanent Address : D-2/2105, Vasant Kunj
New Delhi 110-070

52| Page

NILESH BANSAL |
Jaypee University of iInformation Technology
Waknaghat, District Solan,

Himachal Pradesh-173215.

DOB: 2" February, 1990.

Mobile: +91-9736111656

Email: nileshbansal318@gmail.com

OBJECTIVE

To achieve excellence in I.T. industry through continuous learning and innovative work. Also to
build a highly motivated team of people working in harmony, so that, set organizational goals
and objectives are not only met but also surpassed.

ACADEMIC SUMMARY

Examination | Board/University Year CGPA / Percentage

B.Tech Jaypee University of Information 2011 5.5 (62.76%) up till 7" Sem.
(C.S.E.) Technology Waknaghat, Solan
12t Vivekanand School D-Block Anand Vihar 2007 82.0%

C.B.SEE. First class with Distinction
10t Ryan International School Sect-39 Noida 2005 80.0%

C.B.SE. First class with Distinction
SKILLS

Computer Languages — C, C++, HTML,

Operating Systems — Microsoft Windows XP/Vista/7

Languages Known — English(Read & Write) Hindi (Read & Write)
Technical — Object Oriented Programming, Data Structures.

INDUSTRIAL / SUMMER TRAINING

* Summer Training on “Reliance Infra Messaging Dashboard” at Reliance Infrastructure
Limited, Noida for a period of 6 weeks. The project was basically to design a dashboard for
each division for better connectivity of the various departments of a same EPC division.

PROJECTS UNDERTAKEN

* Developed a Tic-Tac-Toe using Data Structures in C language. The code used a tree data
structure and implemented functions such as add, search and delete.

* Developed web based software using ASP.NET on ONLINE SHOPPING. The application
performed all functions required by operator to successfully handle customer requirements. An
extensive database was also maintained for data to be managed and handled for all related
queries.

53|Page

Final Year Project
« Application of Genetic Algorithm In Wall Following
Intend to build an application for wall following using genetic algorithm.
The main aim of the project is to develop an algorithm which can have various possible results in
different chromosomes so as to have genetic diversity. We have to develop an algorithm which

successfully traverses the maze and find its way out. The application of this project is in
bioinformatics, computational science and phylogenetics.

ACHIEVEMENTS | |

Secured Third position in Inter-House Extempore (English) in the year 2005.

L
o Participated in various quizzes and Olympiads on school level.
o Active member of the Event Management Club for consecutively three years (2007-2010).
e Won various Lan Gaming tournaments in various colleges.
¢ \Won debate competitions at the School level.
o Distinctive Performance in various technical competitions.
WORKSHOPS

e Attended a 48 hour workshop on Object Oriented Programming Using C++ at NIIT New
Delhi.
¢ Workshop of IBM on their database DB2 (IBM DB2).

AREAS OF INTEREST / HOBBIES

Listening Music

Sports (Cricket, Table Tennis, Chess)
Social Networking.

Lan Gaming

® o o o

Date: 2 3- © 5 . 201\
\g\\\.@/

(Nilesh Bansal)

54| Page

