fowr T RS

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.LPoVoXf Call Num:
General Guidelines:

¢ Library books should be used with great care.

Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

|

[

0‘ 04

_ DEVELOPMENT OF MOBILE APPLICATIONS USING WEB
b - SERVICES (JSR172)

Pooja Singh 071263
Ketan Gulati 071275
Aditya Chandel 071294

Under the Supervision of

‘Mr. Pradeep Kumar Gupta
Senior Lecturer, CSE& IT

Submitted in partial fulfilment of the degree of

| BACHELOR OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND
INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
| = WAKNAGHAT

y Table of Contents
|
; CERTIFICATE 4
ACKNOWLEDGEMENTS <5
| SUMMARY 6
f LIST OF FIGURES 7
| LIST OF TABLES 8
CHAPTER 1
? Introduction 9
i’ 1.1 Objective 9
} 1.2 Scope 9
i
' CHAPTER 2
Methodology & Summary 11
CHAPTER 3
| Resources & Limitations 12
: 3.1 Resources 12
i 3.1.1 Java 2 MicroEdition 12
[\ 3.1.2 J2ME Configurations 13
' 3:1.2.1 CLDC 13
3.1.2.2 CDC 15
3.1.3 J2ME Profiles 15
; 3.1.3.1 KJava 16
| 3.1.3.2 MIDP 16
1 3.2 Limitations 18
CHAPTER 4
Process Description 19
4.1 Description 19
4.1.1 Functional Requirements 19
' 4.1.2 Non Functional Requirements 23
|
‘ CHAPTER 5
Module Structure & Explanation 24
5.1 Module Structure 24
5.2 Module Explanation 24
5.2.1 Access SHAR — EX Home Page 24
5.2.2 Admin/F _User/P_user Login & Home Page 25
5.2.3 Checking / Updating Information 26
5.2.4 Detailed Nonfunctional requirements 28

E

|

i

\ CHAPTER 6

i Sample Code 29
1

| CHAPTER 7

| Testing Techniques 31
j 7.1 Software Testing . 31
i 7.2 Hardware Testing 31
| CHAPTER 8

; RESULTS & CONCLUSION 32
1

: Appendices

!

! Appendix A Project Contribution 33
§ References 33
j Appendix B Additional System Information 34
? Appendix C Sample Code 38

.,,.

L 3|~Page

CERTIFICATE

This is to certify that the work titled “Development of Mobile Application using Web
Services (JSR 172)” submitted by “Pooja Singh (071263), Ketan Gulati (071275) and
Aditya Chandel (071294)” in partial fulfillment for the award of degree of B.Tech in
Computer Science and Engineering of Jaypee University of Information Technology,
Waknaghat has been carried out under my supervision. This work has not been submitted
partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

Signature of Supervisor:

Name of Supervisor: PfQ AD ceP Komag, GLuPTA

Designation: Sov o cbyron

Date: 24 {oy] 0

Acknowledgement

We would like to take this oppurtinity to express our sincere indebtness and sense of
graditude to all those who have contributed greatly towards the successful partial completion
of our project “DEVELOPMENT OF MOBILE APPLICATIONS USING WEB
SERVICES”.

It would not have been possible to see through the undertaken project without the guidance
and constant support of our local guide Mr. Pradeep Kr. Gupta. For his coherent guidance we
feel fortunate to be taught by him, who gave us his unwavering support. We owe our
heartiest thanks to Brig. (Retd.) S.P.Ghrera(H.O.D.-CSE/IT Department) who’ve always

inspired confidence in us to take initiative.

As a final note, we are grateful to CSE Department of Jaypee University of Information
and Technology ,who inspired us to undertake difficult tasks by their strength of
understanding our calibre and our requirements and taught us to work with patience and

provided constant encouragement to successfully complete the project.

AT

KETAN GULAT) D;Tyﬂ CHF)NDEL Poojﬂ QNI
OH295 O 29y OT1262

| 5|Page

S

Summary

While mentioning ‘developing mobile applications using web services (JSR172)’, the first
and foremost concept that evolved was the implementation of one such product which was
previously undeveloped and could be of much use to general public. SHAR — EX, making
use of various network technologies, databases, complex security measures, OLAP and
online transactional abilities for banking enabled environment, has been built and coded on
JZME and allows the user to connect to the stock market and do ‘every possible thing’ one

can do in the real stock market.

We have developed this application which will run on mobile phones due to its hardware or
processing constraints. It will take the Company’s name as an input (taken on mobile,
referred to as client) to laptop connected via a Bluetooth (referred to as a work station) for
processing, will search the name of the company in the database present in the laptop and
will finally give back the Company’s price as output on the same mobile through which input

was sent.

GIPage

List of Figures
y
|
% Figures Description Page no.
1 Fig.1 J2ME Architecture 14
a
Fig.2 Configuration Libraries 16
Fig.3 Mobile Information Device Architecture 17
Fig.4 Enterprise Diagram 19
Fig.5 Level 0 DFD 20
Fig.6 Level 1 DFD 20
Fig.7 Level 2 DFD 21
i
| Fig.8 Use Case Diagram 22
? Fig.9 Activity Diagram 24 |
i Fig.10 Sample Run — application initialization 29
|
; Fig.11 Sample Run — adding new entries 30
J Fig.12 Sample Run — sorting entries 30
i
; Fig.13 Entity Relationship Diagram 34
E Fig.14 State Chart Diagram 34
|
: Fig.15 Class Diagram 35
| Fig.16 Deployment Diagram 35
i Fig.17 Functional Dependency Diagram 36
| Fig18 Sequence Diagram 36
L 7|Page
f

List of Tables

p.
Table No. Description Page No.
Table 1. Functional Req. — 1: Access SHAR — EX Home Page 25
Table 2. Functional Req. —2: Admin/F_user/P_user Login & HomePage 26
Table 3. Functional Req. — 3: Checking/Updating Information 27

,' Table 4. Detailed Non Functional Requirements 28

E

|

|

i

I

|

|

1

|

%

é

L =

INTRODUGTION

1.1 Objective

‘Shar-ex’ has been designed with a special purpose and goal kept in mind. The design has
been made such that the very nature of the stock markets is easily adapted and presented at
the root level of the system to every user in almost no time. The Current systems that are
deployed on i-phones or on some websites present delayed information — but the nature of
stock market doesn’t give enough room for delayed information, as the indices are very

sensitive and dynamic.

Hence, to make the information speedier and more readily available, Shar-ex provides for

effective business with a high degree of mobility. Free users can also enquire and keep

s —

updated about the stock indices, whereas for transactions, a premium login has been

designed.

‘Shar-ex’, in all therefore becomes a good remedy for the overall stock exchange trading and
its entire spectrum of solutions offered. From enquiry to listing to portfolio or trading shares
or company forecasting ‘Shar-ex’ is an ideal solution which can match any user’s A to Z

requirements. It is just not easy and speedy but even more safe and secured.

1.2 Scope

‘Shar-ex’ provides a varied number of solutions as so many options to the users of this
system. A complete package in itself, the core services that it holds to provide include:

1. Login as a manager/admin

1.1 Admin panel

. p————

1.2 Database and query management

Y 1.3 Updating and deletion of company records and profiling
1.4 Verification of all the transactions

2. Login as a customer
2.1 Login details and hence classification of customer type
2.2 Customer panel, as based on the customer type

3. Adedicated database holding the customer details, based on the customer type.
3.1 Personal details of all the customers
3.2 Details of only premium customers
3.3 Personal portfolio
3.4 Banking details
3.5 Transaction Records

4. A different database holding the transaction logs and details
4.1 Transaction ID
4.2 Transaction History
4.3 Amount Balance

5. A database that holds all the companies details
5.1 Brief profiling and updates of the company

52 Company’s listing

5.3 Brief history of company’s indices and related forecasts
5.4 Personal Portfolio |

55 Graphs

5.6 Reports

57 Alarm/ Watch

10|Page

—2

METHODOLOGY & SUMMARY

The first phase of the project opens up with the coding of the application itself — something
required at the most elementary level. The application coding for various modules pertaining
to the different scopes and user segments is being done in J2ME and the entire coding is done
on NetBeans 6.5. The interactive platform has enabled the automation of codes quite easy
and also very much visible as the application runs. The second phase of the project will take
into action the integration of all these modules designed previously. The third phase will then
bring into picture the databases and their integration. It is evident that the individual
databases will have been created in the first and second phases itself but integrating them and
enabling them for OLAPs is again a task. This phase will also involve the white box testing
of all the modules and integration testing of the entire application at the software end. The
next phasc will bring into picture the networking associated with it — the GPRS connectivity
of the mobile phone with the central server. Before this stage, a local database will only work
for all such database purposes. Once the networking has been resolved successfully,
appropriate security protocols will be aligned to the application. The security in itself will be

a separate and pre concluding phase followed by the concluding phases of alpha and beta

testing.

RESOURGCES & LIMITATIONS

3.1 Resources

Software Specification:
» NetBeans 6.5
> mySQOL

» J2ME and JSR172 specifications

Hardware Specifications:
» S60 Ed. 2 Sp. 3+ handset

» A GPRS enabled connection

3.1.1 Java 2 Micro Edition

J2ME application allows you to perform various tasks on your mobile phones that were not

earlier possible like cross functionality in mobile phones.

Definition: Sun Microsystems define J2ME as "a highly optimized Java run-time
environment targeting a wide range of consumer products, including pagers, cellular phones,

screen-phones, digital settop boxes and car navigation systems."

12| Page

. J2ME is a highly optimized Java runtime environment. J2ME is aimed at the consumer and
) embedded devices market. This includes devices such as cellular telephones, Personal

Digital Assistants (PDAs) and other small devices.

Profile Lovel

Configuration Level

Java Virtual Machine

"
Java 2 Micro Edition (J2ME)

Figure 1 J2ME Architecture

e B e o

3.1.2 J2ME Configurations

The configuration defines the basic run-time environment as a set of core classes and a specific
JVM that run on specific types of devices. There are two types of configurations for J2ME,
CLDC and CDC - CLDC for small devices and CDC for larger devices. A J2ME environment
can be configured dynamically to provide the environment needed to run an application,
regardless of whether or not all Java technology-based libraries necessary to run the application
are present on the device. The core platform receives both application code and

libraries. Configuration is performed by server software running on the network.
: 3121 €EDE

The J2ME CLDC configuration provides for a virtual machine and set of core libraries
to be used within an industry-defined profile. The K virtual machine (KVM), CLDC's

reference implementation of a virtual machine, and its KJava profile run on top of

CLDC. CLDC outlines the most basic set of libraries and Java virtual machine features

e

required for each implementation of J2ME on highly constrained devices. CLDC targets
devices with slow network connections, limited power (oﬂeh battery operated), 128
KB or more of non-volatile memory, and 32 KB or more of volatile memory.
Volatile memory is non-persistent and has no write protection, meaning if the device is
turned off, the contents of volatile memory are lost. With non-volatile memory,
contents are persistent and write protected. CLDC devices use non-volatile memory
to store the run-time libraries and KVM, or another virtual machine created for a
particular device. Volatile memory

is used for allocating run-time memory.
CLDC Security:

The security model of the CLDC is defined at three different levels, low-level
security, application-level security and, end-to-end security. Low-level security
ensures that the application follows the semantics of the Java programming language.

It also ensures that an ill-formed or maliciously encoded class file does not crash or

e R L e e be— i, Ml

in any other way harm the target device. In a standard Java virtual machine
implementation this is guaranteed by a class file verifier.

Application-level security means that the application will mn in the CLDC
sandboxmodel. The application should only haye access the resources and libraries
permitted by the Java application environment. This means that the application
programmer must not be able to modify or bypass the standard class loading
mechanisms of the virtual machine. The CLDC sandbox model also requires that a
closed, predefined set of Java APIs is available to the application programmer,
defined by the CLDC, profiles (e.g. MIDP) and manufacturer-specific classes. The
application programlﬁer must not be able to override, modify, or add any classes to
the protected java.®, javax.microedition.*, profile-specific or manufacturer-specific
packages.

End-to-end sccurity usually requires a number of advanced security solutions (e.g.

14| Page

e

encryption and authentication). Therefore, all end-to-end security solutions are
) ~assumed to be implementation dependent and outside the scope of the CLDC

specification.

3.1.2.2 CDC

Connected Device Configuration (CDC) has been defined as a stripped-down version
of Java 2 Standard Edition (J2SE) with the CLDC classes added to it. Therefore,
applications developed for CLDC devices also run on CDC devices. CDC, also
developed by the Java Community Process, provides a standardized, portable, full-
featured Java 2 virtnal machine building block for consumer electronic and
embedded devices, such as smart phones, two-way pagers, PDAs, home
appliances, point-of-sale terminals, and car navigation systems. These devices run
a 32-bit microprocessor and have more than 2 MB bf memory, which is needed to
store the C virtual machine and libraries. While the K virtual machine supports

CLDC, the C virtual machine (CVM) supports CDC.

P N —

J2SENCDC #
~ 2SENCLDC =
- CLDCc CDC

Figure 2 Configuration Libraries
3.1.3 J2ME Profiles

Two profiles have been defined for J2ME and are built upon CLDC: KJava and MIDP. Both

KJava and MIDP are associated with CLDC and smaller devices. Profiles are built on
15|Page

L top of configurations. Because profiles are specific to the size of the device (amount of
memory) on which an application runs, certain profiles are associated with certain

configurations.

3.1.3.1 KJava

The KlJava profile is built on top of the CLDC configuration. The KJava virtual
machine, KVM, accepts the same byte codes and class file format as the classic J2SE
virtual machine. KJava contains a Sun-specific API that runs on the Palm OS. However,

because it is not a standard J2ME package, its main package is com.sun.kjava.

3.1.3.2 MIDP

MIDP is geared toward mobile devices such as cellular phones and pagers. The
MIDP, like Klava, is built upon CLDC and provides a standard run-time
environment that allows new applications and services to be deployed dynamically on

end-user devices. MIDP is a common, industry-standard profile for mobile devices

e R . 4.

that is not dependent on a specific vendor. It is a complete and supported foundation

for mobile application development.

y MIDP | oOEM-specific || Natve |
Applications 3; Applications | Applications |

Figure 3 Mobile Information Device Architecture

MIDP applications are represented by instances of the

javax.microedition.midlet. MIDlet class. A piece of device-specific software, the
application manager, controls the installation, execution, and life cycle of MIDlets.
MIDlets have no access to the application manager. A MIDlet is installed by moving
its class files to a device. The class files will be packaged in a Java Archive (JAR),
while an accompanying descriptor file (with a .jad extension) describes the contents
of the JAR. |

A MIDIet goes through the following states:

1. When the MIDlet is about to be run, an instance is created. The MIDlet’s
constructor is run, and the MIDlet is in the Paused state.

2. Next, the MIDlet enters the Active state after the application manager calls
startApp().

3. While the MIDlet is Active, the application manager can suspend its execution by

calling pauseApp(). This puts the MIDlet back in the Paused state. A MIDlet can

place itself in the Paused state by calling notifyPausedy).

>' 4. While the MIDIet is in the Paused state, the application manager can call
startApp() to put it back into the Active state.

5. The application manager can terminate the execution of the MIDlet by calling

destroyApp(), at which point the MIDlet is destroyed and patiently awaits garbage
collection. A MIDlet can destroy itself by calling notifyDestroyed().

Multiple MIDlets can share resources, like common libraries included in the MIDlet
suite or data stored on the device. Because of security constraints, a MIDlet may
only access the resources associated with its own MIDlet suite. The Java Application

Descriptor (JAD) file is a plain text file containing information about a MIDlet suite.

3.2 Limitations

e The entire application is based upon the quality of internet connection being used.

A Ve o R)

Hence, the dependency can result in lossy transactions, owing to problems with the

network.
o Databases may turn oversized result in possible delays for producing required queries.
e Delay can occur also because of the sensitivity of the stock market.

® Dependent on the mobile handset also, and hence mobile phones with higher

configurations are expected to perform better.

Process Description

4.1 Description
4.1.1 Functional Requirements

The SHAR-EX encompasses numerous files and information from the Central Server, as
well as files on the central database. This system will be completely web-based, linking to
SHAR-EX and the remote web server from a standard mobile web browser. An Internet

connection is necessary to access the system.

SHAR-EX
Reference Enterprise Diagram

- Server

T =SV I

Mainfram

Application
_Process

Figure 4 Enterprise Diagram

| e T T

. The SHAR-EX web site will be operated from the application web server. When a user
;b connects to the Bank Web Server, the Web Server will pass the user to the application
Server. The application Server will then interact with the Central Database through DBC,

which allows the mentioned OS type program to transfer data to and from a database.

ERR e

Share Trading System

SHAR - EX
LEVEL - O DFD

Figure 5 Level 0 DFD

SHAR - EX
LEVEL -1 DFD

[Admin],.
Query R"Q#ult | /OIP

SHAR - EX
Share Trading System

! ; I Result

=TI TEERE IR o

Figure 6 Level 1 DFD

The system will consist of SHAR-EX Login page with four prompt for login information,

depending on which the user will be taken to its respective type of page.

20|Page

SHAR-EX

Data Flow Diagram_ i ?:t?ht;?er =

Y
Fiscal
Central Companies 2
3.0 Dafabase | Details

Request T
o fot] p——p| 33

3| _Txn.
i arie | ACK,
33 Companies
e ciacad

r— Req
ACK, E Query - m Re et Remeve —f 33 ¥
anagement : 9 X 7|Companles | ACK
Req. /—y Listing N Lf——..q‘
32 12 32 | ,Req.

e Record Reg. 3 i A AD,MJ 2| Listing (—_-l-
) 1| -7) —
Malntenanc Personal Request/Ratneve \Requssa IDENTIFIER ETE

Y
F 4

oy

Retrieve

. ACK. | Details / Retrieve \ g 31

Req. -y
31 LA ;
20 IF user panel 10 11 . Fgglsaoigal

ACK. TXn.

verification Iy E USER P_USER

N/ -
["22 JAdmin panel IDENTIFIER IDENTIFIER | : |P_usernanel
——

\ 7
T Request Request Request -

Login

: Login Validation
22 Validated | €= 4 0 s ;_:;ﬁ
Login P
Valdated €) L Validated

1L =St TR atoi— e 7

Figure 7 Level 2 DFD

The first selection is to login as an admin, a free user(used as F_user, from now on in this
document) or a premium user(used as P_user, from now on in this document). Only after
proper verification of the correct match of UserID and password, the user would be
authenticated to enter the core system, that too with restricted rights and user options, as per
the class of the user viz., admin, F_user or P_user. This information will be retained on the
application server and an e-mail regarding the login time and session information will be sent

to the designated network and server engineer.

The second selection will entirely depend upon the first selection.
If the first selection was an admin, the user will be prompted for additional Login securities

for a secondary password or a pin. It will then take the admin to the admin panel which will

consist of options like verifying transactions, updating information, doing forecasting, adding

3 newer entries in the database or check P_user’s portfolio.

SHAR - EX
USE CASES

= (Validate A/
extends

RTEVE “Saremee— o ¢

Figure 8 Use Case Diagram

The second possibility is that the first selection be an F_user. If it was a F_user, after
proper login details validation, the user will be taken to F user’s home page where the
available options would be checking and editing of personal details, going to the listing’s
page, where the user will be able to see the current index values and status of various listed
companies.

The third selection on the first page was the P_user which meant for the premium
users. This provides for a complex premium user panel that incorporates a number of options,
such as personal profile, banking profile, companies listing, viewing and editing personal
portfolios, producing various customer oriented services such as forecasting, reports and
graphs.

All pages will return the user to the SHAR-EX Home Page.

4.1.2 Non Functional Requirements

; There are requirements that are not functional in nature. Specifically, these are the constraints

the system must work within.

The web site must be compatible with both the mobile Explorer web browsers. This system
will use the same type of Internet security presently being used by other banking and

transactional softwares.

R

&

MODULE STRUCTURE & EXPLANATION

5.1 Module Structure

Another
Transaction

kecovd:‘_ go to

O]

T /l Logoff (G
-Perzonal info P N/

options X
Y Dbisplayed odit

i1

Personal infa

options
| bisplayed ‘edit

Displo\f g
Business Info . [Get Compariies
} >\ from DB

Perszenal info = L

eptions

[F USER } Displayed L edit :
Y Busint..u Info m
SHAR - EX ¢ :
ACTIVITY DIAGRAM
Figure 9 Activity Diagram

5.2 Module Explanation

5.2.1 Access SHAR-EX Home Page

The first module any of the three kind of users will get to see — in the form of a Home Page.

It is from this page, based upon different users type after prompting for their respective

Copy ta Verification Log

- e R

authentication, they would be provided with options they are allowed to do and various

} sections of the applications they are allowed to use.

Table 1 summarizes what all kind of details this particular state of the system may hold in the

pre and post conditions of authentication.

Use Case Name: Access Shar-ex Home Page

Priority Essential

Trigger Menu selection

Precondition User is connected to the Internet and
on the SHAR-EX home page

Basic Path 1. Core Web Server sends the User to

the Application Server.

2. The application Server presents the

User with the SHAR-EX Home Page. ;
Alternate Path N/A r
Postcondition The User is on the SHAR-EX Home

Page E
Exception Path If there is a connection failure the

Application Server returns to the wait

state

Table 1Functional Requirements - 1 Access SHAR-EX Home Page

5.2.2 Admin/F_user/P_user Login & HomePage

Use Case Name: Admin/F_uset/P_user Login &
HomePage

Priority Essential

Trigger Selects

Precondition The User is connected to the Internet

) st O e s 2.5 Tt

and on the Shar-ex Home Page

T

Basic Path 1. The Application Server presents the
user with different options.

2. The User clicks the required option
The Application Server checks to see
if the login details have been keyed in
properly and authenticate or not.

4. If the verification done is valid, the
Application Server creates a new log
of the user in the login Database.

5. If the login is not authenticated, the
user is given a prompt.

6. The Application Server returns the
User to the SHAR-EX Home Page

Alternate Path N/A

Postcondition The login record is created in the

oA e T

Login Table of the Users’Database.

Exception Path 1. If the connection is terminated before
login verification, the fields are all
cleared and the Application Server is

returned to the wait state.

Table 2 Functional Requirements - 2 Admin/F_user/P_user Login & HomePage

5.2.3 Checking/Updating Information

Use Case Name: Checking/Updating Personal Information

Priority Essential

Trigger Menu selection

Precondition The User must be connected to the Internet and
on the SHAR-EX Entries page.

Basic Path 1. The User clicks on check/update personal

g

information.

2/ The Application Server returns two switches —
view info, edit info.

3. The User views info and returns OR edits info

4. The Application Server checks to see if any
required field is empty.

5. If any required field is empty the Application
Server will send a message and return the User
to the new entry form page.

6. Ifno required field is empty the Application
Server will create a new record in the
corresponding (Employee/Customer/Manager)
Table in the Bank Database, and return the
User to the SHAR-EX Home Page.

7. The User may select Cancel.

AR TMEe G

8. Ifthe User selects Cancel, the form is cleared

and the User is returned to the SHAR-E X

Home page.

Postcondition A record is created in the corresponding Table
of the Bank Database.

Exception Path 1. If the connection is terminated before the update

is clicked, the fields are cleared and the
Application Server is returned to the wait state.
2. If the connection is terminated after the update
is clicked, but before the User is returned to the
SHAR-EX Home Page, the record is created in
the corresponding Table of the Bank Database.

Table 3 Functional Requirement - 3 Checking/Updating Information

e

5.2.4 Detailed non-functional requirements

A id String
A_Name String 30
A_Branch String 50
U id String 30
Password String 6to 12
Tel# Int 10
Name String 30
C id String 20
C_name String 50
C. Price Int 5
C_Log Memo 32000 §
C Note Memo 32000 F
T id String 10 y
St Int 10 ./
Actt String 20
Bank String 50
NEFT# String 10

Table 4 Detailed non-functional requirements

28| Page =

SAMPLE CODE

The programming and its entire evaluation is being done in NetBeans 6.5. So far the

company listing module has been coded, which is mentioned below in section 6.1
6.1 Sample Code for Company Listing

This code runs on the admin end to add new companies, delete previously listed companies
and keep on updating the records of all the listed companies. For referring to the code, kindly

see appendix at the end of this report. Following are the diagrams showing a few sample

rumns.

lic atatie String getFirstWams|byteil b) |
[rrurn na¥ Jtringib, FIRST NANEZ INDEX, FIELD L5N).trim{);

Extzaszer he last pace LIsld from A DRourd. IELLben Strivg centaina
last nape fieid b che zecord to pavsa

1ie stacic 3celng getlastRano(byte{] b} {
evucn nev Focinglb, LAST NAME THDEY, FINED LEM) .txim{};

Zubeacts the phone nusbzp field from 8 paeead. return 3tring contbainy
phon: nmber Tield h the vscord to parss

1ic avatic Scring gelPfhoneNumibyte[] b} {
evurn pev 3rringib, FHCHE IWDEX, FIELD_LEN) .trimg);

fils te £:3D 4nd. \LenovaiMy ‘HecBeansProjacta\Mobiledpplicacions\dist \uhrun?ds
fils o €35 and \Latiovolty Haebi JectasHobiledpplicaciong\dist \nhrunZdss
9F CTh axacutden: htep://localhost:E0BZ/a9rvies/org.netheans. sodules. 20bility.projact. Jan, JANServlee/CV2A/Docunss
lemulavor in axscution meds ¥
Hith storags root €:\Dooussnta and Setrings\lLwacyo'jTwavtk\Z. 5. 2'uppib\GuercyDevics
bith locals: Inglish Undced Bcaces. 1252

in the ideatified third party saruricy domadn

Figure 10 Sample Run — application initialization

29|p a g .

TR, TENERE A 5

0 1ap gt
s 4at Sy, FA AL,

S5, - e == s

Testing of the worked application will progress for two separate realms:
> Software Testing

» Hardware Testing

7.1 Software Testing

The entire software framework is based on Java 2 Microedition, worked upon Netbeans,

which in itself provide all testing solutions out of the box.

Using NB JUnit, which is a NetBeans Platform Extension to the JUnit Testing Framework.

Using this framework, complete care can be taken for:
» Unit Testing
» Functional Testing

» Code Coverage

7.2 Hardware Testing

Will be carried forward in the later phases of the SDLC as the deployment needs to be

started, with various hardware options and testing on all the available options

31]Pagé :

T3

AES. -

RESULTS & CONGLUSIONS

A better platform focusing on reduction of delay and lossless transactions, providing the best
of the results related to stock market and giving the term mobility its true meaning is what we
tried to achieve. Also, as commercial application is involved, money and banking is involved

we need good security solutions,

A few points we have been able to ponder upon so far, related to the issues mentioned above,
that would be incorporated at various stages through the process of coding and application

development can be summed upon as follows: -
1. Maximized customizations at the premium user login end.

2. Setting up a buffer to reduce lossy transactions by always ensuring either high grade

network availability or none at all,

3. Ensuring maximum OLAP as mySQL doesn’t create problems but hardware devices do,

S R S

when the data size increases exponentially.

4. Ensuring security measures that are least prone to brute force attacks or other outside
attacks over the secured payment gateways. SSL certificates, MD5 Hashing could be a

few suggested solutions.

32|Page

. _ |

PROJECT GONTRIBUTION

» The final simulation developed can find its implementation in integrating the mobile
industry to the stock exchange, opening a new gateway for those who deal in the

same, at the comfort of their mobility.

» Based on its successful completion, it can contribute to the increased reliability of

mobile applications for such commercial and investment purposes.
References
[1] J2ME: Step by Step, developerWorks, ibm.com/developerWorks
t2] Enterprise J2ME: Developing Mobile Java App]icatior;s by Michael Juntao Yuan

[3] Writing portable J2ME applications, Anurag Gupta, Mindfire Solutions

By T

[4] I2ME in a Nutshell, Kim Topley, O’Reilly, 2002

[5] Sun’s J2ME Wireless Toolkit Documentation
http://java.sun.com/j2me/docs/index.html

[6] Documentation in J2ME Wireless Toolkit download
http://www.eli.sdsu.edu/courses/fall04/cs683/j2me/index.html

[7] Wireless J2ME™ Platform Programming by Vartan Piroumian, Prentice Hall PTR

[8] Core J2ME™ Technology & MIDP by John W. Muchow, Prentice Hall PTR

33| Page

ADDITIONAL SYSTEM INFORMATION

SHAR - EX

Entity Relationship Diagram

Login Validation|

P_user Panel|
" [Personal]
= Ga>
(NEFTD)

E ST e e

Figure 13 Entity Relationship Diagram

& 34| Page

s SHAR - EX
L ; STATE CHART DIAGRAM

CONSORTIUM i
Clossify as

Cust Emp, Mangr

Correct Login

Chack
:Login
Details

g¢ to respective class

Txn &)
‘_d':pt ication]

Invalid
Legin

L—_Tey agdin

a8

Parsenal 1 [Business| [Pansesal Businass
database| | Enquiry | | go4obacal |Database

%

‘System '%ﬂqrq[l{lng

> o

Figure 14 State Chart Diagram

N

35|Page

Valid Login

u_id C_IDistring

Psswd. C_Name ! string
Login(] C_log: memo

public gatLogin() C_Note: string

m C_Price: currency

T public Update()
E_II 2 string public Delete() -
.SOB;?att:“ quj!lc_Add!}
Cg;“taé:- liu?nber el
_ address: string’
E el
x Bank: String
A_ID: string Acit : Number
A_ﬂa‘me:’gumg NEFT: String
-B’a'_‘.‘:h-'_s.t_ﬁ@ 2 publi¢ getPersonalf)
P“E:;C.‘Qeg’a"s% " public -Q.éﬁcit!!ﬁlidﬂﬂ) I: st
public getRecords{ ublic getList : % e
public getVerify(} ‘=;u'hiic-’geitog‘(}) public getPetsonal()
public getCompany() public getTxn() public getCompany()
= T . e e i 4 e
Account
Verification

1‘
S SHAR - EX

public consortium(CLASS DIAGRAM

public void validateAccountinfo()

NSy = F

Figure 15 Class Diagram

/

- - Application Server - =
:Web Server { 05- Symblan) _} ‘DB SB.IWI‘ !
| <<RMI>> i ({05- Linux}
SHAR -EX : y 5 << DBC >» Central
Sensex Application | | i i .Qt Container Darabase
<<J2ME, C++ >> ﬁ <<datastore>>
. Admin B]| I vendor:Oracle
Puser @] | |
: : i
SHAR-EX Fuser & | Mainframe .
Deployment Dlagram (05:#VS) %
Banking Activity Sensex 32
Execution: Thread Appﬂ'cafign ggfs
\nesfed "

. (Stock Exchange Applitation] SHAR - EX
. _ il FUNCTIONAL DEPENDENCY
| DIAGRAM (FDD)

((Admin Functions) Premium Usage] Free Usage) {Analytics)

-‘ Authen. Login I —(‘Authen. Login] Authen;iogin] ——-l Con‘)lpanyHistory]
—(ManagfngUsers I _.(CQmpanyEnq.] Company Enq. | —(Company Log]

—‘ Verlfying Txns.] —' Personal l —@mpanyForecast_ing]
: Portfolio -

Updating/ Deleting ——{ Regular Updates |

(U. Records : = _
__{ Updating I Deleting | |—{ BuildiviewLog] frmmaf Graphs]
C.Records : Peraonal —‘ Reports |
‘ Information] . m

‘ Banking : Ll

Transactions

Figure 17 Functional Dependency Diagram

=

SHAR - EX : ; Personal
SEQUENCE DIAGRAM <ksel S Database

| I
: Userid i !
1.Customar wishes to Login 3 o Pass valid admin 3

valid P_user |.

e N

Z,E_mployeg wishes to :Logﬁ

valld F_user

3. Manager wishes to Login

4. Login permitted 3 o -ﬂtﬂﬂngnﬂﬁ-mﬂm

1.1. Customer wishes
to gat & udit Personal data

1,2 Customer wishes to get-
company data

1.3 Customar wishes ta do’ g.n‘!'xno

Aransactions

- —ACK = Pay = }— —— — —|
T ACK - Ve‘rlfy-{: —_————
1.8.1 Customer neads to . i .
"7 maka payments 9:‘V¢rlfy()
1.3.2" Admin needs to verify
transections ;

1.4 Customer needs to customize
portfolic.

2.1 Admin needs to perform
updation of company records

APPENDIK
SAMPLE GODE

Server.java

package Company;

import java.io.*;

import javax.bluetooth.*;

import javax.microedition.io.*;

import java.sql.*;

import java.util. StringTokenizer;

import java.util List;

public class Server implements Runnable {
private Thread mServer = null;
java.sql.Connection con;
private LocalDevice mLocalBT;
private boolean mEndNow;

1 public String messageToBeSentf;"';;

private StreamConnectionNotifier mServerNotifier;

e 38] : P . .g e

private static final UUID MY_SERVICE_ID = new
1 UUID("BAEODOCOB0A000955570605040302010", false);

public void run() {
try { : !
try{ |
Class.forName("sun.jdbc.odbe.JdbcOdbeDriver");
con = DriverManager.getConnection("jdbc:odbe:BlueServer");

}

catch(Exception ex){

#

System.out.println(ex.getMessage());

}

// get local BT manager

mLocal BT = LocalDevice.getLocalDevice();

// set we are discoverable

mLocal BT.setDiscoverable(DiscoveryAgent. GIAC);

String url = "btspp://localhost:" + MY_SERVICE_ID.toString() + ";name=Hacker

Service;authorize=false";
/I create notifier now
mServerNotifier = (StreamConnectionNotifier) Connector.open(url.toString());
//System.out.println(" got notifier ");

} catch (Exception e) {

System.err.println("Can't initialize bluetooth: " + €);

}

StreamConnection conn = null;

while (ImEndNow) {
conn = null;
try {
conn = mServerNotifier.acceptAndOpen();
} catch (IOException e) {
continue;
t

if (conn != null)

N . e e

processRequest(conn);

}

public void startServer() {
if (mServer != null)
return;
// start receive thread
mServer = new Thread(this),

mServer.start();

. 40| Pa‘g ek

e

private void processRequest(StreamConnection conn) {
DatalnputStream dis = null;
DataOutputStream dos=null;
try {
dis=conn.openDatalnputStream();
dos=conn.openDataOutputStream();
String read=dis.readUTF();
if(read.toUpperCase().startsWith("STUDENT")){
read=read.substring(read.index Of(":")+1);
Statement st=con.createStatement();

ResultSet rs=st.executeQuery("sclect * from students where admno="" + read +

l|l!l);

if(rs.next()}{
String info="";

info="Name: " + rs.getString("sname™) + ", Class: "+ rs.getString("Class") + ",

Roll: " + rs.getString("Roll");

dos.writeUTF(info);

}

else{

dos.writeUTF("Sorry, no result found!");

™

B

}

dos.flush(); *

dos.close(); | !
dis.close();
//conn.close();

}

catch (Exception e} {

System.out.println(e.getMessage());

Ed

Ny

SearchDevice.java

package Company;

import java.io.IOException;
import java.util. Vector;
import javax.bluetooth.*;

ok

* Minimal Device Discovery example.

42 |p a\g e e s

s

o

public class SearchDevice {

public static final Vector/*<RemoteDevice>*/ devicesDiscovered = new Vectof();

public static void main(String[] args) throws IOException, InterruptedException {
final Object inquiryCompletedEvent = new Object();
devicesDiscovered.removeAllElements();
DiscoveryListener listener = new DiscoveryListener() {

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {
System.out.println("Device " + btDevice.getBluetoothAddress() + " found");

devicesDiscovered.addElement(btDevice);

e

try {
System.out.println(" name " + btDevice.getFriendlyName(false));

} catch (IOException cantGetDeviceName) {

public void inquiryCompleted(int discType) {

System.out.println("Device Inquiry completed!");

synchronized(inquiryCompletedEvent){
e T

inquiryCompletedEvent.notify All();

public void serviceSearchCompleted(int transID, int respCode) {

public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {

}
b

synchronized(inquiryCompletedEvent) {

boolean started =
LocalDevice.getLocalDevice().getDiscoveryA gent().startInquiry(DiscoveryAgent. GIAC,

listener);
if (started) {
System.out.println("wait for device inquiry to complete...");
inquiryCompletedEvent. wait();

System.out.println(devicesDiscovered.size(} + " device(s) found™);

44 Ip agé

Record.java

package Company;
public class Record {
static void debug(String message) {

System.out.println(message);

static void debug(String message, Object 0) {

System.out.println(message + " " + 0);

static void debug(String message, Throwable €) {
System.out.println(message + " " + e.getMessage());

e.printStackTrace();

 45|Page

=T

static void debug(Throwable ¢) {
System.out.println(e.getMessage());

e.printStackTrace();

static void error(String message) {

System.out.printin(message);

static void error(String message, Throwable €) {
System.out.println(message + " " + e.getMessage());

e.printStackTrace();

SearchService.java

package Company;
import java.io.IOException;

import java.util. Enumeration;

import java.util. Vector;

import javax.bluetooth.*;

=TTy

public class SearchService {
static final UUID OBEX_FILE_TRANSFER = new UUID(0x 106);
public static final Vector/*<String>*/ serviceFound = new Vector();
public static void main(String[] args) throws IOException, InterruptedException {
/! First run SearchDevice and use discoved device
SearchDevice.main(null);
serviceFound.removeAllElements();
String deviceName="";
UUID serviceUUID = OBEX_FILE_TRANSFER:
if ((args != null) && (args.length > 0)) {
/lserviceUUID = new UUID(args[0], false);

deviceName=args[0];

final Object SearchServiceCompletedEvent = new Object();

DiscoveryListener listener = new DiscoveryListener() {

R ————

s

url=servRecord[i]. getConnectionURL(ServiceRecord NOAUTHENTICATE NOENCRYPT

, false);

public void inquiryCompleted(int discType) {

public void servicesDiscovered(int transID, ServiceRecord]] servRecord) {
//for (int i = 0; i < servRecord.length; i++) {
for (inti=0;i<1; i++) {

String

if (url == null) {
continue;
}
serviceFound.addElement(url);
DataElement serviceName = servRecord[i].getAttributeValue(0x0100);
if (serviceName != null) {

System.out.println("service " + serviceName.getValue() + " found " + url);

} else § '

T oo

System.out.println{"service found " + url);

public void SearchServiceCompleted(int transID, int respCode) {
System.out.println("service search completed!™");
synchronized(SearchServiceCompletedEvent) {

SearchServiceCompletedEvent.notifyAll();

I

|5

UUID[] searchUuidSet = new UUID{] { serviceUUID };

int[] attrIDs = new int[] {
0x0100 // Service name
|5

for(Enumeration en = SearchDevice.devicesDiscovered.elements();

en.hasMoreElements();) {

RemoteDevice btDevice = (RemoteDevice)en.nextElement();

~=a ¥

synchronized(SearchServiceCompletedEvent) {
if(btDevice.getFriendlyName(false).equals(deviceName)) {

System.out.printIn("search services on " + btDevice.getBluetoothAddress() + "

+ btDevice.getFriendlyName(false));

LocalDevice.getLocalDevice().getDiscoveryAgent().ServiceSearch (attrIDs,

searchUuidSet, btDevice, listener);

SearchServiceCompletedEvent.wait();

SearchInfo.java

package Company;
import java.io.*;
import javax.microedition.midlet.*;

import javax.microedition.lcdui. *;

50 - aﬂg,,e S

|
!
|
|
|

import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui. Displayable;

public class SearchInfo extends MIDlet implements CommandListener {

private boolean midletPaused = false;

private Display display=Display.getDisplay(this);;
private Thread mClientThread = null;

private boolean mEndNow = false;

private DiscoveryAgent mDiscoveryAgent = null;
private String mConnect = null;

private String lastMessage="";

StreamConnection conn = null;

DatalnputStream dis=null;

DataOutputStream dos=null;

/ldisplay = Display.getDisplay(this);

private static final UUID MY_SERVICE ID = new
UUID("BAEODOCOB0A000955570605040302010", false);

= IAP age

//<editor-fold defaultstate="collapsed" desc=" Generated Fields ">

private Form form;
private TextField txtSearch;
private Stringltem IblResult;

private Command okCommand;

private Command exitCommand,

/{</editor-fold>

JEF

* The SearchInfo constructor. !

!4

public SearchInfo() {

while(mDiscoveryAgent==null){
try {
mDiscoveryAgent = LocalDevice.getLocalDevice(). getDiscoveryAgent();
ycatch (Exception ex) {

System.out.println(ex.getMessage());

52 | Kp"a ge =

/I<editor-fold defaultstate="collapsed" desc=" Generated Methods ">
//<[editor-fold>

/I<editor-fold defaultstate="collapsed" desc=" Generated Method: initialize ">

[k
* Initilizes the application.

* 1t is called only once when the MIDlet is started. The method is called before the
<code>startMIDlet</code> method.

*/

private void initialize() {

// write pre-initialize user code here

// write post-initialize user code here

/I</editor-fold>

f/<editor-fold-defaultstate="collapsed" desc=" Generated Method: startMIDlet ">

/**

53 | page :

* Performs an action assigned to the Mobile Device - MIDlet Started point,

*/

public void startMIDlet() {
// write pre-action user code here
switchDisplayable(null, getForm());
// write post-action user code here

}

H<{editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated Method: resumeMIDlet "> i
[
* Performs an action assigned to the Mobile Device - MIDIet Resumed point.

*/

public void resumeMIDlet() {
// write pre-action user code here
// write post-action user code here
}
/{<feditor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated Method: switchDisplayable ">

..... 54|p ag e

/**

* Switches a current displayable in a display. The <code>display</code> instance is taken
from <code>getDisplay</code> method. This method is used by all actions in the design for

switching displayable.

* @param alert the Alert which is temporarily set to the display; if <code>null</code>,

then <code>nextDisplayable</code> is set immediately

* @param nextDisplayable the Displayable to be set

L/

public void switchDisplayable(Alert alert, Displayable nextDisplayabl@ {
/1 write pre-switch user code here Display display = getDisplay();
if (alert == null) {
display.setCurrent(nextDisplayable);
telse {
display.setCurrent(alert, nextDisplayable);

}

/I write post-switch user code here

}

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated Method: commandAction for

Displayables ">

[E*

* Called by a system to indicated that a command has been invoked on a particular

! displayable.
* @param command the Command that was invoked

* (@param displayable the Displayable where the command was invoked

*/

public void commandAction(Command command, Displayable displayable) {
/l write pre-action user code here
if (displayable == form) {
if (command == exitComniand) {
/f write pre-action user code here

[/l write post-action user code here

this.exitMIDlet();

} else if (command == okCommand) {
// write pre-action user code here
// write post-action user code here

searchDict();

// write post-action user code here

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated Getter: form ">
[

* Returns an initiliazed instance of form component.

* @return the initialized component instance

h

public Form getForm() {
if (form == null) {
/[write pre-init user code here

form = new Form("Search Student Info.", new Item[] { getTxtSearch(),
getLblResult() });

form.addCommand(getOkCommand());
form.addCommand(getExitCommand());
form.setCommandListener(this);

// write post-init user code here

}

return form;
¥
//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated Getter: txtSearch ">

/**
* Returns an initiliazed instance of txtSearch component.

* @return the initialized component instance

*/

public TextField getTxtSearch() {
if (txtSearch == null) {
/f write pre-init user code here
txtSearch = new TextField(" Admsn No:", null, 32, TextField. ANY);

// write post-init user code here

}

return txtSearch;

}
//</editor-fold>
//<editor-fold defaultstate="collapsed" desc=" Generated Getter: okCommand ">
/**
* Returns an initiliazed instance of okCommand component.
* @return the initialized component instance

*/

public Command getOkCommand() {
A, Spage

l if (okCommand == null) {

// write pre-init user code here

okCommand = new Command("Ok", Command.QK, 0);
/f write post-init user code here

}

return okCommand;
}
//</editor-fold>
/I<editor-fold defaultstate="collapsed" desc=" Generated Getter; IbIResult ">
/* *
* Returns an initiliazed instance of IbIResult component. .
* @return the initialized component instance

*/

public Stringltem getLblResult() {
if (IblResult = null) {
/1 write pre-init user code here
IbIResult = new Stringltem("Result:", ");

// write post-init user code here

}

" 59|Page

}

f{</editor-fold>

/{<editor-fold defaultstate="collapsed" desc=" Generated Getter: exitCommand ">
/**

* Returns an initiliazed instance of exitCommand component.

* @return the initialized component instance

*/

public Command getExitCommand() {
if (exitCommand == null) {
// write pre-init user code here
exitCommand = new Command("Exit", Command EXIT, 0);
// write post-init user code here

}

return exitCommand;

}

/{</editor-fold>

¥k

* Returns a display instance.

* @return the display instance.

*/

60|p ag e

public Display getDisplay () {
return Display.getDisplay(this);
}
class ShowMessage implements Runnable {
Display disp = null;
String message = null;
public ShowMessage(String mess) {
try{
message = mess;
} catch(Exception ex){

/fignore

public void run() {
if(message!=null)

IblResult.setText(message);

void searchDict(}{

51Ipage e

try {

mConnect = mDiscoveryAgent.selectService(MY SERVICE 1D,
ServiceRecord NOAUTHENTICATE NOENCRYPT, false);

String readMessage="";

if (mConnect != null) {
conn = (StreamConnection) Connector.open(mConnect);
dis=conn.openDatalnputStream();
dos=conn.openDataOutputStream();
dos.writetUTF("STUDENT:" + txtSearch.getString());
dos.close();
readMessage=dis.readUTF();
dis.close();

} else{
IbIResult.setText("Unable to connect!");

}

conn.close();

lastMessage=readMessage;

getDisplay().callSerially(new ShowMessage(lastMessage));

} catch (Exception ex) {

System.err.println(ex.getMessage());

: 62|4Pagé‘

-

}
/**
* Exits MIDlet.

i

public void exitMIDlet() {
switchDisplayable (null, null);
destroyApp(true);

notifyDestroyed();

}

[H*

* Called when MIDlet is started.

* Checks whether the MIDlet have been already started and initialize/starts or resumes the

MIDlet.

"/

public void startApp() {
if (midletPaused) {
resumeMIDlet ();
) glse{

initialize ();

startMIDlet ();

}

midletPavsed = false;

}

[H*
* Called when MIDlet is paused.

*/

public void pauseApp() {

midletPaused = true;

}

JH*

* Called to signal the MIDlet to terminate.

* @param unconditional if true, then the MIDlet has to be unconditionally terminated and

all resources has to be released.
*/

public void destroyApp(boolean unconditional) {}

é41page

65 Ipag e v

St A TR Fare

