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Abstract

Our project is based on the use of Rough Set Theoretic analysis of gene data. The importance of
rough set theory is for computing both relevance and significance of the genes. We learned how
rough set theory helps to analyze the expression data and to classify the genetic data. The genetic
expression data was produced by microarray processing. This genetic data was first preprocessed by
use of some clustering techniques. Clustering is done for selection of some of the closely related

genes, so that these can then further be analyzed for classification tasks.

To select certain number of attributes that are highly useful for classification from the remaining
data, we apply rough set minimum decision rules. These rules are applied by help of RSES
2.2(Rough Set Exploration System) software which by the help of reduction algorithm such as
Genetic Algorithm help us to find reducts and rules on gene expression data. RSES 2.2 was made
by using Java and C++ and is a software tool that provides the means for analysis of tabular data

sets with use of various methods, in particular those based on Rough Set Theory.

Thus, after calculation of rough set theoretic minimum rules we have significantly removed the
inappropriate set of attributes of genetic data that were redundant and imprecise. And we are now
able to classify all the genetic data with much accuracy and efficiency. The results so obtained are
than used for classification of Test set. We found that a gene named Zyxin was showing 91.2%

accuracy for classification of test set and 98.6% accuracy in classification of the total dataset. Our

findings were than compared with the experimentally found results.
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Introduction

1.1 GENES:

. A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes
i for a type of protein. All organisms have many genes corresponding to many different biological
traits, some of which are immediately visible, such as eye color or number of limbs, and some of
which are not, such as blood type or increased risk for specific diseases, or the thousands of basic
. biochemical processes that comprise life.

In all organisms, there are two major steps separating a protein-coding gene from its protein: First, ;
the DNA on which the gene resides must be transcribed from DNA to messenger RNA (mRNA); ‘
and, second, it must be translated from mRNA to protein. RNA-coding genes must still go through

the first step, but are not translated into protein. The process of producing a biologically functional
molecule of either RNA or protein is called gene expression.

1.2 MICROARRAY:

A high throughput technology that allows detection of thousands of genes simultaneously. Its
Principle is base-pairing hybridization. It is a Central platform for functional genomics.

A DNA microarray consists of a solid surface, usually a microscope slide, onto which thousands of
single-stranded DNA molecules have been chemically bonded. Microarray assays arc based on
hybridization of a single-stranded DNA labeled with a fluorescent tag to a complementary molecule
L attached to the chip. When each spot in a microarray is attached a unique DNA molecule, it can be
' used to detect presence/ absence or even concentration of a particular type of DNA molecule in test
tube .The labeled nucleic acids are derived from the mRNA of a sample and so the microarray
measures gene expression.

MICROARRAY GENE CHIPS

e E——————
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There are two types of microarray chips

e full-length cDNA chips
e oligo chips

INFORMATION DERIVABLE FROM CHIP DATA

By detecting the quantity of fluorescent molecules attached to each spot, one can infer the
relative abundance of the complementary mRNA molecules in solution.
e By observing chip data, one can infer which genes are highly expressed or not expressed, or

in general the relative expression levels of all genes.
e By comparing gene expression levels under two conditions, one can infer which genes’

expression levels are affected.

A/B, A-B

e By observing gene expression levels collected at different time points after a particular
stimulus, one can infer how a gene’s expression level changes with time

1.3 PROBLEM STATEMENT:

Microarray can be used to measure changes in expression levels in genes. There are millions of
genes available for studies which are not specifically classified according to their functionalities. As
the genes are highly specific in the protein it codes. There is a growing need for classification of
genes for better knowledge of their specific functionality. For example in case of a data set of
leukemia cells. Leukemia is a cancer of blood or bone marrow in which there is an abnormal
increase of blood cells usually white blood cells. These are sub-divided into two types i.e. myeloid
and lymphoblastic leukemia.

Myeloid refers to the cancerous change taking place in a type of
marrow cell that normally goes on to form red blood cells while lymphoblastic refers to the
cancerous change taking place in a type of marrow cell that normally goes on to form lymphocytes
which are infection fighting immune system. Each of these leukemia cells require a different type of
treatment depending on the blood cells they are affecting. Thus to find if a person has an abnormal
increase of red blood cell or lymphocytes (i.e. is suffering from myeloid leukemia or lymphoblastic
leukemia ) these genes are to classified more efficiently for Drug Discovery processes. Thus to
classify large amount of non specific genes is the major problem in our project.
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1.4 OBJECTIVE AND SCOPE:

The objective of our project is to develop some minimum decision rules for classification of
biological data with the help of rough set theory and verify its accuracy. As earlier said that it is a
tedious process to classify biological data by taking into consideration their biological significance ,
therefore we want to generate some decision rules by using rough set theory using which we can
classify the biological data easily by following these rules.

These rules must be followed by any gene taken as input and it must be classified
according to these rules. Thus classification can become easy for users by following these rules. For
this purpose our biological data must be converted to numerical form and then rough set concepts

must be used on it.

Here we are concerned with gene data only therefore the main aim of our project is to classify a
given gene sequence i.c. the order of As, Cs, Gs, and Ts by following minimum decision rules
developed using rough set theory.

These minimum decision rules can be developed by taking training data i.c. some gene sequences
from a database and then extracting features from it and converting the data into numerical form
and finally applying rough set theory to it to get some decision rules. Once these are generated then
there is no need to study the relevance of genes for classification as they can be easily classified by
any user using these decision rules.

Also, these decision rules can also be developed not only for genes but for other classifications in

‘- biology . We can use rough set theory for each and every process of classification in biological data

based on rough set theory which will be much user friendly and save a lot of time.

10
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Chapter-2

Basic Concepts of Rough Set Theory

Human knowledge about a domain is expressed by classification. Categories are features (i.e.
subsets) of objects which can be worded using knowledge available in a given knowledge base.
Rough set theory treats knowledge as an ability to classify perceived objects into categories.
Objects belonging to the same category are considered to be indistinguishable to each other. Rough
set theory has been applied mainly in data mining tasks like classification, clustering and feature

selection.

Often, information on the surrounding world is
— Imprecise
— Incomplete
— Uncertain.

We should be able to process uncertain and/or incomplete information. When dealing with inexact,
uncertain, or vague knowledge, the rough set theory is used. Rough set theory was introduced by
Pawley in 1985. Rough sets represent a different mathematical approach to vagueness and
uncertainty.

The rough set methodology is based on the premise that lowering the degree of precision in the data
makes the data pattern more visible. Consider a simple example. Two acids with pKs of
respectively pK 4.12 and 4.53 will, in many contexts, be perceived as so equally weak, that they
are indiscernible with respect to this attribute. They are part of a rough set ‘weak acids’ as
compared to ‘strong’ or ‘medium’ or whatever other category, relevant to the context of this
classification.

Information system can be defined as
IS=(U,A)

Where, U is the universe (a finite set of objects, U={x1, x2,....., xm}, A is the set of attributes

- (features, variables) and Va is the set of values a, called the domain of attribute a.

Consider-a data set containing the results of three measurements performed for 10 objects. The
results can be organized in a matrix of size 10*3. This data can be represented in tabular format

such as:

11
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Figure.2.1.1 Data Table
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" In such format, each row corresponds to an object and each column corresponds to an attribute. thus
for each object there is a certain value of attribute while the value stored in it could be gene
~ expression data or some other data i.e. Knowledge on which rough set could be applied. Thus
according to the data:

- IS=(U, A)
Where U={x1,x2,x3,x4,x5,6....., x10} , A={al,a2,a3}
- The domains of attributes are :

Vi= {1, 2, 3}

V2= {1, 2}

V3={1,2,3,4}

For every set of attributes B belongs to A , an indiscernibility relation Ind(B) is defined in the
- following way: “ two objects , Xi and XJ , are indiscernible by the set of attributes B in A, if b ( Xi
~ Jand b ( Xj) for every b belonging to B.

- The notation U/A means that we are considering elementary sets of the universe U in the space A.

- The rough sets approach to data analysis hinges on two basic concepts, namely lower and the upper
approximations of a set, referring to:

* the elements that doubtlessly belong to the set
* the elements that possibly belong to the set
* The boundary is defined as the difference between the upper and lower approximations,

contains elements which are in upper but not in lower approximation.

12
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Let us assume that we are interested in the subset X of five objects {X = x1, x3, x4, x5, x9}.
We can distinguish this set from the whole data set in the space of three attributes. We can
now calculate the lower and upper approximations of this set in the following way:

» The elementary set present in the table , which are also contained in X, are :

« {Xl, x3, x9}, {x4}.

Table 2

f U‘fd &g {1, '{33

| {x,%3, %} 2 1 3

——{xy,%5,%y0) 3 2 1

{x3} p 2 3

[ {x 5 Js} I L 4
{xg} 1 1 2

Figure 2.1.3 Reducts

It means that the lower approximation is given by the following set of objects:

BX = bl x3,°%9, x4}.
13
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To calculate the upper approximation of the subset X, one has to find all the elementary sets in the
table which have at least 1 element in common with the subset X. These are: fxl, %3, %9 3 {%x4 1,

HES o

So that upper approximation is:

BX:{Xl,xS,xg,X4,X5,X8}

" And the boundary of X in U, defined as the difference between the upper and the lower

approximations, contains elements which are in the upper but not in the lower approximation:
BNX = { x1, x3, x9, x4 x5, x8 } x5 %3, x9 x4

= {x5,x8}.
Independence of attributes: In order to check, whether the set of attributes are independent or not,
one checks for every attribute whether its removal increases the number of elementary sets in the

original set or not.

If the set of attributes is dependent, one can be interested in finding all possible minimal subsets of
attributes. Thus the concepts for calculation of core and reduct are two fundamental concepts of the
rough sets theory. Intuitively, a reduct of knowledge is its essential part, which suffices to define all
basic concepts occurring in the considered knowledge, whereas the core is in a certain sense its

most important part.

To compute reducts and core, the discernibility matrix is used. The discernibility matrix has the
dimension n=n, where n denotes the number of elementary sets and its elements are defined as the

- set of all attributes which discern elementary sets [x]i and [X]; .
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5.1 DECISION TABLES:

A decision table is a kind of prescription, which specifies what decisions (actions) should be
undertaken when some conditions are satisfied. Most decision problems can be formulated
employing decision table formalism; therefore, this tool is particularly useful in decision making.
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Table 1

Figure 2.1.4 Decision Table

In this table: a, b ,c and d are condition attributes and e is a decision attribute.
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2.2 Ol;tic.ians Decision Table:

DECISION MAKING: Used for finding minimum decision rule. Suppose we have a decision table

with 24 elements
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Fi 2.2.1 tician ision

Here we have a decision table for which we have to find out the decision rules,basically we have to
find out the core and the reducts on the basis of which our classification will be done.This can be
done by removing the inconsistency and redundancy in the data.

b poms peme b

Here in this table a,b,c,d,e are the attributes and these 1,2 ...... ,24 are the objects.

i Now lets delete the attribute one by one and see which all rules are showing inconsistency.Lets take
e attribute as a result.

+ When we removed attribute a the inconsistent rules are :

16
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! | b202d2 = el (rule2) and b2c2d2 = e3(rule 18 & 24)

bloldz = ¢2(rule 5) and blc1d2 = e3(rule 20)

: i) removed attribute b the inconsistent rules are :
When
a2°2d2 = el(rule 3) and a2c2d2 = e3(rule 18)

3 c2d2 = el(rule 4) and a3c2d2 = e3(rule 24)
a301d2 = ¢2(rule 9) and a3c1d2 = e3(rule 20)
.‘ When We removed attribute ¢ the inconsistent rules are :
] alb1d2 = el(rule 1) and albld2 = e2(rule 5)
alb2d2 = el(rule 2) and alb2d2 = e3(rule 13)

(]

] Wh;en e removed attribute d the inconsistent rules are :
alblc2 = el(rule 1) and alblc2 = e3(rule 11)

(]

alb2cl = €2(rule 6) and alb2cl = e3(rule 12)

. alblcl =e2(rule 5) and alblcl = e3(rule 10)
We find that all the attributes are important and no attribute can be removed.

\ So, we have to compute core values of each decision rule in the decision table i.e. find all those
~ condition attribute values in the decision rule which make the decision.

For example in the Ist decision rule alblc2d2 = el values ¢2 and d2 are core values because the
rules

blc2d2 = el and alc2d2 = el are true whereas the rules albld2 = el and alblc2 = el are false
The Ist rule alblc2d2 = el has two reducts alc2d2 = el and

blc2d2 = el, since both decision rules are true.

~ In the similar manner find out all the reducts and for all the decision rules.

 Ifthe particular rule has 1 reduct then it will be represented by the rule number but if a particular
" rule has more than 1 reducts then they are numbered by adding * and

| Eg: rule 1 has 2 reducts it will be represented by 1 and 1’
Like this we will calculate all the reducts and will represent in the table.
© Now we will see the reducts which are giving the same results. We will find out all those and we

© will combine them and will represent as one .

17
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U 2 a b C d e
| . . 2 2 1
| 2 1 . 2 . 1

) = 1 2 2 i

4 - 1 2 2 1

5 = = 1 2 2

6 5 i 1 i 2

it 2 - 1 ’ 2

8 s - 1 2 2

9 - 2 Ik 2 2

10 - - - I 3
. Now minimal decision rules are made by making the elementary sets. These are as follow:
g | U a b c d e
} 12 (S G B M | N
I (134 X 1 2 2 1

5.6 i % 1 9 7

7,8 2 X i 2 2

6oRE0- | X 9 1 2 2

10-

17,19

21,22,23 | X X X 1 3

Rl o 2 2 % 3

4] 19,20 3 2 2 % 3
12324 |3 2 2 o

| alead2 = el

© ble2d2 = ¢

alcld2 =¢2

! acld2= ¢
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 ppcld2=e2

dl =e3
a2b2¢c2 = €3

i a3blcl = e3

| a3b2c2 = €3

U a b C d e
il 1 X 2 2 1
2 X 1 2 2 1
3

4

5

Lol QO

N[ B[ BO| B4
o et it e
3¢

9 3

.‘ Crosses in the table denote “don’t care” values of attributes. What we have obtained finally is the
- minimal set of decision rules (minimal decision algorithms) which is equivalent to the original table
© as far as the decisions are concerned. That means that is the simplified table only the minimal set of
i conditions, necessary to make decisions specified in the table, are included.

. Now the final step is to make apply the Decision algorithm and we will get the following result

© (alVbl)c2d2 =el

(alV a2V b2)cl1d2 = e2

e e =

d1V (a3b2c1)V ((a2V a3)b2c2) = 3

20




Chapter 3

HISTORY OF ROUGH SET THEORY FOR THE
PURPOSE OF GENE SELECTION

Recent years, rough sets theory has been used in gene selection task by some researchers.

" Bvolutionary rough feature selection has been employed on three gene expression datasets by M.
* Banerjee, S. Mitra and H. Banka .They have applied an evolutionary rough feature selection
. algorithm for classification of microarray gene expression patterns. Rough set theory is employed to

generate reducts, which represent the minimal sets of non redundant features capable of discerning

" petween all objects, in multi-objective framework. And then they have shown the effectiveness of
* their algorithm on the cancer datasets. They by this algorithm selected 10 genes from each data set
" and high classification accuracies were obtained.

A positive region based reduct algorithm was also developed by B.F. Momin,S. Mitra and R. Datta
. Gupta . Identification of gene subsets responsible for discerning between available samples of gene
";' microarray data is an important task in Bioinformatics. They have presented an algorithm for
~ generating reducts from gene microarray data. It proceeds by processing gene expression data,

discretization of real value attributes into categorical followed by positive region based approach

for reduct generation. They have also discussed different approaches for reduct generation. They

e 0§

l—mr‘n e =

have found that more than 90% of redundant genes are eliminated.
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Chapter- 4

Microarray Data

4.1 Description:

Golub et al. set out to develop a systematic approach to cancer classification based on the
simultaneous expression monitoring of thousands of genes using DNA microarrays . It has been
suggested that such microarrays could provide a tool for cancer classification. Microarray studies to
date, however, have primarily been descriptive rather than analytical and have focused on cell
culture rather than primary patient material, in which genetic noise might obscure an underlying
reproducible expression pattern.

They began with class prediction: How could one use an initial collection of samples be longing to

~ known classes (such as AML and ALL) to create a “class predictor” to classify new, unknown |
* samples? They developed an analytical method and first tested it on distinctions that are easily

'_ made at the morphological level, such as distinguishing normal kidney from renal cell

| carcinoma.They then turned to the more challenging problem of distinguishing acute leukemia,

~ whose appearance is highly similar. Their initial leukemia data set consisted of 8 bone marrow

~ samples (27 ALL, 11 AML) obtained from acute leukemia patients at the time of diagnosis.

RNA prepared from bone marrow mononuclear cells was hybridized to high-density
oligonucleotide microarrays, produced by Affymetrix and containing probes for 7129 human genes.
For each gene, we obtained a quantitative expression level. Samples were subjected to a priori
© quality control standards regarding the amount of labeled RNA and the quality of the scanned
~ microarray image.The first issue was to explore whether there were genes whose expression pattern
was strongly correlated with the class distinction to be predicted. The 7129 genes were sorted by
their degree of correlation .

L To establish whether the observed correlations were stronger than would be expected by chance, we
! developed a method called “neighborhood analysis”. Briefly, one defines an “idealized expression
1 pattern” corresponding to a gene that is uniformly high in one class and uniformly low in the other.
~ One tests whether there is an unusually high density of genes “nearby” (that is, similar to) this
~ idealized pattern, as compared to equivalent random patterns. For the 38 acute leukemia samples,
neighborhood analysis showed that roughly 1100 genes were more highly correlated with the AML-
ALL class distinction than would be expected by chance .This suggested that classification could
indeed be based on expression data.

The second issue was how to use a collection of known samples to create a “class predictor”
capable of assigning a new sample to one of two classes.They developed a procedure that uses a
fixed subset of “informative genes” (chosen based on their correlation with the class distinction)

and makes a prediction on the basis of the expression level of these genes in a new sample.
22
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Bach informative gene casts a “weighted vote” for one of the classes, with the magnitude of each
vote dependent on the expression level in the new sample and the degree of that gene’s correlation
with the class distinction. The votes were summed to determine the winning class, as well as a

% “prediction strength” (PS), which is a measure of the margin of victory that ranges from 0 to 1. The
~ sample was assigned to the winning class if PS exceeded a predetermined threshold, and was
| otherwise considered uncertain. On the basis of previous analysis, we used a threshold of 0.3 .

" The third issue was how to test the validity of class predictors.They used a two-step procedure. The
~ accuracy of the predictors was first tested by cross-validation on the initial data set.Briefly, one

withholds a sample, builds a predictor based only on the remaining samples, and predicts the class
of the withheld sample. The process is repeated for each sample, and the cumulative error rate is
calculated. One then builds a final predictor based on the initial data set and assesses its accuracy on
an independent set of samples. They applied this approach to the 38 acute leukemia samples. The set
of informative genes to be used in the predictor was chosen to be the 50 genes most closely
correlated with AML-ALL distinction in the known samples.

The parameters of the predictor were determined by the expression levels of these 50 genes in the
known samples. The predictor was then used to classify new samples, by applying it to the

~ expression levels of these genes in the sample. The 50-gene predictors derived in cross-validation
© tests assigned 36 of the 38 samples as either AML or ALL and the remaining two as uncertain (PS ,

0.3). All 36 predictions agreed with the patients’ clinical diagnosis. They then created a 50-gene
predictor on the basis of all 38 samples and applied it to an independent collection of 34 leukemia
samples.

© The specimens consisted of 24 bone marrow and 10 peripheral blood samples . In total, the
* predictor made strong predictions for 29 of the 34 samples, and the accuracy was 100%. The
~ success was notable because the collection included a much broader range of samples, including

samples from peripheral blood rather than bone marrow, from childhood AML patients, and from

© different reference laboratories that used different sample preparation protocols. Overall, the
© prediction strengths were quite high (median PS 5 0.77 in cross-validation and 0.73 in independent
© test). The average prediction strength was lower for samples from one laboratory that used a very
- different protocol for sample preparation. This suggests that clinical implementation of such an

approach should include standardization of sample preparation.

23
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Chapter- 5

Statistica

" QTATISTICA is a statistics and analytics software package developed by StatSoft. The software

includes an array of data analysis, data management, data visualization, and data mining
procedures; as well as a variety of predictive modelling, clustering, classification, and exploratory
techniques. Additional techniques are available through integration with the free, open source R

programming environment.

5.1 Cluster Analysis :

The term cluster analysis encompasses a number of different algorithms and methods for grouping
objects of similar kind into respective categories. In other words cluster analysis is an exploratory
data analysis tool which aims at sorting different objects into groups in a way that the degree of
association between two objects is maximal if they belong to the same group and minimal
otherwise. Cluster analysis simply discovers structures in data without explaining why they exist.
The general categories of cluster analysis methods are Joining (Tree Clustering), Two-way Joining
(Block Clustering), and k-Means Clustering.

5.2 k-Means Clustering :

In statistics and data mining, k-means clustering is a method of cluster analysis which aims to
partition n observations into k clusters in which each observation belongs to the cluster with the
nearest mean.

An attribute clustering method can help in grouping genes based on their interdependence so as to
mine meaningful patterns from the gene expression data. It can be used for gene grouping, selection
and classification. The partitioning of a relational table into attribute subgroups allows a small
number of attributes within or across the groups to be selected for analysis. By clustering attributes,
the search dimension of a rough set algorithm is reduced. The reduction of search dimension is

. especially important to application of rough set theory in gene expression data because such data

typically consist of a huge number of genes (attributes) and a small number of gene expression
profiles (tuples).

By applying clustering algorithm such as K-mean algorithm to gene expression data, meaningful

CIFSt'erS of genes can be discovered. The grouping of genes based on attribute interdependence
Within group helps to capture different aspects of gene association patterns in each group.
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' Significant genes selected from each group then contain useful Information for gene expression

© classification and identification.

~ clusters,
" canbeu

By selecting a subset of genes which have high multiple-interdependence with others within
significant classification information can be obtained. Thus a small pool of selected genes
sed to build classifiers with very high classification rate. From the pool, gene expressions of

" different categories can be identified by the help of Rough set theory.

. Given an un-annotated dataset satisfying the above assumption, we first partition it into k clusters,
" where each cluster comprises data-vectors with similar inherent characteristics. The data clustering
* task is carried out with no a priori knowledge about the intrinsic class structure—i.e. how the data is
'~ inherently partitioned into distinct clusters. In practice, the data clustering algorithm inductively
~ derives the class information and partitions the data-set accordingly. We use the popular K-Means
" data clustering algorithm primarily due to its effectiveness and procedural simplicity. The net
* outcome of this phase is the availability of k number of data clusters, which forms the basis for
* subsequent discovery of symbolic rules that define the structure of the discovered clusters.

~ As the result of a k-means clustering analysis, we examined the means for each cluster on each
~ dimension to assess how distinct our k clusters are. We obtained very different means for most, if

* not all dimensions, used in the analysis.
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Figure 5.2.1 Flow Diagram For K-mean Algorithm
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Chapter- 6
RSES

i 6.1 RSES 2.2(Rough Set Exploration System 2.2):

EIENBENED

Figure 6.1.1 RSES

~ Rough Set Exploration System 2.2 is a software tool that provides the means for analysis of tabular
- data sets with use of various methods, in particular those based on Rough Set Theory. RSES
~ 2.2(Rough Set Exploration System) software which by the help of reduction algorithm such as
Gel:netic.Algorithm helps to find reducts and rules on gene expression data. RSES 2.2 was made by
using Java and C-++ and is a software tool that provides the means for analysis of tabular data sets
with use of various methods, in particular those based on Rough Set Theory. In general, the RSES
system offers the following capabilities:

® import of data from text files,

® visualization and pre-processing of data including, among others, methods for discretization
'i and missing value completion,
} ® construction and application of classifiers for both smaller and vast data sets, together with
y methods for classifier evaluation.
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- The RSES system is a software tool with an easy-to-use interface, at the same time featuring a
" bunch of method that make it possible to perform compound, non-trivial experiments in data

exploration with use of Rough Set methods. The RSES system is capable of working with several
projects at the same time. However, only one of the experiments may be active (perform

computation) at any given moment.

Wwith RSES one can explore any data that is represented as the rectangular table of reasonable size.

"Reasonable” size means that for the very large data tables the significant latency caused by the

~ necessity of loading the data to/from memory/file may make some operations practically

unmanageable. So, for the huge data one can not expect immediate results. However, the
implementation of decomposition techniques as well as use of approximate techniques such as GA's

:] (genetic algorithms) allow to cope with massive data sources.

T

e o e it e
e e h S

Project is the name given to the work space on which RSES allows its user to work on.Objects that
can be placed in projects fell into following categories:
o Data Tables
Reduct Sets
Rule Sets
Cut Sets
Linear Combinations
Decomposition Trees
LTF-C (Local Transfer Function Classifiers)
Classification Results (Experiments’ effects)

Figure 6.1.2 Rules Calculation
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| Dependencies between objects within project are marked by connecting such object with arrows.
For example, if we calculate decision rules for some data table then the arrow originating in table

and pointing at set of rules appears.

e

Open project
New project Save project About

7| r &l A ] (8]
1 Insert table Insert results
: Insert reduct set Insert LTF-C
Insert rule set Insert decomposition tree
Insert cut set

Insert linear combination set

v o b

The toolbar contains buttons corresponding to selected options from main and general menus. In

this way the RSES user have instant access to most common actions.

Some of the functions of the toolbar are: '
e New project — creates new project

Open project — restores previously saved project from the disk

Save project — saves active project to a file on disk

Exit — terminates RSES

Insert table — inserts data table

Insert reduct set — inserts reduct set

Insert rule set — inserts rule set

Insert cut set — inserts cut and/or attribute partition set

Insert linear combination set — inserts a set of linear combinations

Insert decomposition tree — inserts decomposition tree

Insert LTF-C — inserts LTF-C ( Local Transfer Function Classifier)

Insert results — inserts an object for viewing experiment results

About — basic information about RSES

Tables are the most important entities in project. They represent data tables (tabular data
© sets) and allow for their examination, edition, and launching computations on data. The user can
. View the data contained in the table by double clicking on it or by selecting View from table
© Object’s context menu. The context menu for table contains the following options:

® Load - load data from file into table object. File is in one of formats: RSES, RSES 1.0,
# Rosetta, and Weka.

® Save As - save data to file in RSES format.

® View — view the contents of table .The user may Scroll, and rearrange the view window.
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. Change name — change the table name (see figure 3.4). This name is saved together with
data. Table name does not have to be identical with the name of file used to store the table
on disk. Table name can also be altered by double-clicking on table name appearing below

the icon.
Change decision attribute — selecting the decision attribute. Selected attribute is moved to

the end of table (becomes the last attribute).
Remove — removes table (after separate confirmation).
Split in Two — randomly splits table into two disjoint sub tables.
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Figure 6.1.3 View of data table contents

 Reduct for an information system is a subset of attributes which preserves all discernibility

information from the information system, and none of its proper subsets has this ability.

Figure 6.1.4 Viewing contents of reduct set

Options in the context menu for reduct set:

View — displays contents of the reduct set (see figure 3.15). The user can scroll and resize
this window according to requirements.The reduct set view window consists of five
columns. First of these columns stores the identification number, the others have the
following meaning (for a single row):
— Size — size of the reduct, number of participating attributes.

Pos.Reg. — the positive region for the table after reduction, i.e. after removing attributes
from outside the reduct.

SC — value of the Stability Coefficient (SC) for the reduct. This value is used to determine

the stability of reduct in dynamic case.
— Reducts — reduct presented as a list of attributes.
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; Chan-;_g-;-rllha-l_n_e“— changes object name , the name is stored together with the contents of
object in file. The name of object does not need to be identical with the name of file that is
used to store it.

The name of object can also be changed by double clicking on name tag below the icon
representing object.

Remove — removes reduct set .
Filter — filters the reduct set. The user can remove reducts on the basis of stability coefficient

(SC). Before using this option it is recommended to examine statistics for the set of reducts
to be filtered.

Shorten — shortening of reducts. The user provides a coefficient between 0 and 1, which
determines how “aggressive” the shortening procedure should be. The coefficient equal to
1.0 means that no shortening occurs. If Shortening ratio is near zero, the algorithm attempts
to maximally shorten reducts. This shortening ratio is in fact a threshold imposed on the
relative size of positive region after shortening.

Generate rules — generates a set of decision rules on the basis of the reduct set and selected
data table.

Save As — saves the set of reducts to a file.

Load — loads previously stored reduct set from a file.

Append — appends the current reduct set with reducts from a file. Repeating entries only
appear once.

Statistics — present basic statistics on the reduct set . It also provides the ability for
displaying the core (intersection of all reducts).

Fioure 6.1.5 Information on reduct set
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Data Discretization

o motivation for this phase is driven by the fact that ordinal or continuous valued attributes are

Th ! . . . .
“proven to be rather unsuitable for the extraction of concise symbolic rules. Henceforth, the necessity
j ;(0 discretize continuous-valued attributes to discrete intervals—i.e. reduce the domain of values of

an attribute to a small number of attribute-value ranges—where each interval can be represented by
. label/token. More attractively, the data discretization phase not only reduces the complexity and
volume of the data-set, but also serves as a attribute filtering mechanism, whereby attributes that are
eemed to have minimum impact on the class specification can be eliminated.

6.2 Cuts and discretization:

ith use of Discretize/Generate cuts from data table context menu we may generate
“decompositions of attribute value sets. With these descriptions, further referred to as cuts we may
perform next step, i.e. discretization of numerical attributes or grouping (quantization) of nominal
attributes.
The user may set several parameters that control discretization/grouping procedure:
e Method choice — choice of discretization method from:

— Global method — global method

— Local method — local method, slightly faster than the global one but, generating

much more cuts in some cases.

" Discretize option (in data table context menu) makes it possible to discretize attributes in the data
table with use of previously calculated cuts. The user sets the set of cuts to be used and the name of

object to store resulting discretized table.

|
|

i
|
l
|

Figure 6.2.1 Generate Cuts
31

Dl L L Sy Y AEg e




ROUGH SET ALGORITHMS

.3 Computing reducts using genetic algorithms:

he time cost of the reduct set computation can be too high in case the decision table consist of too
many: objects or attributes or different values of attributes.the reason is that in general the size of
he reduct set can be exponential with respect to the size of the decision table and the problem of
computing a minimum reduct is NP hard. One way of solving such problem is to use approximation
Jgorithm that do not give the optimal solutions but require short computing time. Among these is

$ In a genetic algorithm, a populationof strings

(called chromosomes or the genotype of the genome), which encode candidate solutions (called
; individuals, creatures, or phenotypes) to an optimization problem, evolves toward better solutions.
" Traditionally, solutions are represented in binary as strings of Os and 1s, but other encodings are
also possible. The evolution usually starts from a population of randomly generated individuals and
~happens in generations.

In each generation, the fitness of every individual in the population is evaluated, multiple
_i'mdividuals are stochastically selected from the current population (based on their fitness), and
- modified (recombined and possibly randomly mutated) to form a new population. The new
~ population is then used in the next iteration of the algorithm.

- Commonly, the algorithm terminates when either a maximum number of
© generations has been produced, or a satisfactory fitness level has been reached for the population. If
 the algorithm has terminated due to a maximum number of generations, a satisfactory solution may
© or may not have been reached.

The main idea of genetic algorithm is based on the Darwinian
* principle of “survival of the fittest” ( natural selection). In case of genetic algorithms we are given a
 state space S (finite, but large) and a function: f: S -> R . The goal is to find x0 : f{x0 ) = max {
“f(x)ix-belongs to S}. Element of set S are “individuals” . We treat a value of the function f as ability
10 survive in the environment ( “fitness” ) , and we simulate the process of evoulution as follows:

i
mr—

l. W e choose the representation scheme: a mapping from a space of “individuals” into
“chromosome” — usually bit strings.

= T e

2. We randomly choose the set of chromosomes as an initial population.
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3. We calculate “fitness
individual encoded by c. then we create a n
low fitness by those with higher fitness.

» F(c) of each chromosomes as a value of f(s(c)), where s(c) is the
ew population, replacing the chromosome with

We randomly affect the new population by genetic operators, €.g. mutation(small random
modification of chromosomes) and crossing-over (exchange of “genetic material” between

some pairs of chromosomes).
5. We repeat 3-4 with new population, until a stopping criterion is satisfied.

Thus resulting in the evolution of the best individual xmax which usually as good as the

global optimum.
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Chapter-7

Experimental Procedure

7.1 Flow Diagram for the procedure:

| Rough Set Rul
and Reducts




In this paper we will present experimental results based on prediction results for Golub et al
"Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring". The dataset is chosen for two reasons: (1) all their data vector components being
continuous-valued and (2) all the class-subsets are well-separated.

The acute leukemia dataset (http://www.genome.wi.mit.edu/MPR)consists of 38 samples including
27 cases of acute lymphoblastic leukemia (ALL) and 11 cases of acute myeloid leukemia (AML).
The gene expression measurements were taken from high-density oligonucleotide microarrays
containing 7129 genes. An independent test set of 20 ALL and 14 AML samples also exists.

Table 1. Characteristics of Dataset Used

DATASETS No of | No. of Genes ATTRIBUTES
Samples/Patients

Acute Leukemia | 38 7129 1 ALLE =527

Training Dataset 2. AML =>11

Acute Leukemia Test | 35 7129 1. ALL =>21

Dataset 2. AML => 14
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7.2 Data Clustering Using K-Means Clustering Algorithm:

Prior to clustering the actual classification information is removed from each dataset—i.e. we work
with an un-annotated dataset. The K-means algorithm is used to inductively cluster the data
patterns. Upon completion of the clustering process the members of each cluster are associated with
their respective class label.

e b e s B

Use of Statistica for K-mean clustering:
1. Opening the data in excel sheet inside of Statistica.

| 1
| 00 W Cu s LI SRR )
..... 20 2 0
20, 80 20
20 0 20 : 20
247 11 35 20. 2 85
153 53 659 733 435 503 647 423 295 532 3938 378 n 722
20 16000 16000 20 4958 23 783 1065 45 3042 5199 1258 504 au7n 580
20 13380 16000 20, w66 20 4004 498 200 3852 1869 20 2 172 130
20,1000 . S38S .20 Aad) 000 A dod Gl Eetiiaing 390, iig S 20
188, 13831 16000 11329 16000 6480 9E0S 15000 14706 16000 16000 15496 15000 16000 10695 36000
20 13270 16000 10299 1590 8300 vRav 12453 16000 14230 15646 12086 13617 1361 103 16000
570 6588 16000 11295°  BA96 7579 12077 15706~ BA46 16000 16000 16000 16000 12695 9628 16000
20 11070 16000 16000, 12980 14928 16000 16000, 12482 16000 16000 16000 16000 15550 13001 16000
n 285 340 243 326 172 151 01 559 a9 340 398 1 3z 432 269
| 52 20 a5 20 20 20 20 a1 37 75 47 2 4934 20 257 8 i
! 184 164 e 000 g0 158 01 ;a2 435 341 322 un 367 31 92
20 718 7asy 25 o085 32 a8 1TI0 269 209 WM B 870 561 1733 718
1263 B7 10411 1070 9692 267 3692 2644 o75 153 514 3076 1616 224 M8l an ‘
740 62 3w 871 92 800 522 1174 277 405 a9 %41 ane 127 10% 1007
607. U 1812 155 1578 T 439 138 30 - 1474 1633 1566 1693 1521 1837 15
20 142 108 75 275 20 20 319 20 73 154 A3 510 209 0 160
152 385 203 04 a1z 5 20 389 20 394 153 24 907 27 343 an
108 430 285 20 . 1 am 461 8 268 307 307 437 596 351 487 4
k) 453 364 514 251 224 646 By 157 51t 591 441 1013 332 639 604
48 126 305 107 120 125 485 130 318 382 486 388 260 324 473 50 o
191 % 197 290 1359 110 178 14 1063 233 221 405 1306 203 ul b3
Flgure 7.2.1 Original Data

g 2. Calculation of K-mean Clusters with the following specifications.
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Figure 7.2.2 Statistica K-mean Analysis
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3. Checking the mean for each of the 6 clusters.
a) If the number of elements for the cluster is greater than 80% of the training data set =>

consider for further clustering.
b) Else discard the data.
4. Repeat 3 until selection of closest 50 genes.

| [ae au AL Al ALL AL AR AL ALl ALL Al AL A
| FFX-HSACOT/X00351_5_at (endo AFFX-HSACO7/X0C 16287 15770 16386 13576 16301 11665 | 14587 | 16292 14150 14989 18222 9672 10468
| AAD221 gene 165533 _s_at -215 483 -258 460 872 -354_ i -31_3 i 183 -323 -807 -191 -395 -360
| obin,Beta HGLA2EHTIAZE s 17962 27240 G472 33039 25829 10661 . 16215 . 1886 15551 21805 62 18798 9391
| RPS3Ribosomal protein 53 X57351_s_at 16489 10996 12769 16432  18B90 16659 © 14353 16638 9783 25287 1182 17327 20685
| |LAMRI Laminin receptor {2HS epi: M14159_s_at 16528 17762 18496 12445 13247 17420 13180 | 19487 19597 16602 19533 15986 16688
} Myosin, Light Chain, Alkall, Smoo/HG2815 HT2931 a 10857 4773 5020 4108 7135 6596 8542 8443 1226 986 4415 4931 15455
| Heterogeneous Nucfear Ribonucl HG3076-HT3238 s 4094 2621 4087 1863 4251 1244 | 2966 | 3530 2 5765 1351 2366 7284
| :Unknownpmt_elngen_eextradedﬂalizuﬁmalﬁsia 8818 9380 8300 4333 5876 5471 ¢ 5870 @ 10147 8813 12250 6202 7906 15039
Dna-Binding Protein Hrfx2 HGI27-HTISOAs 1198 1322 661 1327 4577 B%2 . 756 . 60 934 4567 G40 719 B3
GB DEF = 52 kD subunit of transcri Y07595_at -385 67 -203 509 556 -280 ¢ 2@ -280 -357 568 -289 -310 417
BETA-2-MICROGLOBULIN PRECUR{J00105_s_at 21909 18519 13309 15020 24015 | 16810 | 20133 | 21147 15167 24346 18367 15719 22930
mRNA fragment encoding beta-t v00599_s_at 16077 11421 10273 8264 11355 5868 . 17328 | 14960 6919 19825 15160 6596 13375
SERUM AMYLOID A PROTEIN PRECX51441_5_at -567 666 307 680 1341 306 . 400 374 397 889 167 975 | 4842
SmB protein gene extracted from X52979_mal s_at 1962 . 1218 2349 971 887 819 | 2433 2683 1327 2976 1423 1105 4031
GB DEF = mANA fragment for elonX03689_s_at 23239 22891 233 23779 27234 16266 | 23198 21212 22636 26055 22038 20968 | 21762
RPS21 Ribosomal protelnS21 104483 5 at 20649 20642 21202 22111 23191 23782 19472 | 47330 22373 21104 20454 22083 14404
EEF1G Translation efongation fact X05855_s_at 2683 1991 2527 1465 2812 | 931 | 2014 | 2626 2787 63 64 1285 7726
PROBABLE PROTEIN DISULFIDE ISCM13560_s_at 15446 11734 9260 | 8432 11168 8833 | 16757 14404 9568 4142 16551 18105 16211
ENO1 Enclase 1, (alpha) ‘M14328 5 at 2700 6276 9739 4455 3373 6039 . 7080 | 10803 7187 13404 14767 7183 . 10184
| |PTMAgene extracted from Huma M14483 rnal s a 18443 21771 19363 16326 17346 15270 | 9946 | 21908 11204 10465 10737 6475 . 15861
| iPTMA Prothymosin alpha 'M26708_s_at 13334 44004 13899 17667 16112 11362 | 13410 12420  139% 13261 13733 13387 | 12920
VIMVimentn 219554 s at 15000 16547 18660 9147 17977 4540 16822 14432 17265 16164 9G4 373 16305
Guanine nucleotide-binding proteM21142 cds2 s a 11359 6754 7882 9595 10836 5924 | 7673 . 11588 10160 10096 4096 6095 . 12533 ¥,
T-CELL SURFACE GLYCOPROTEIN C M23323 s_at 217 1584 977 2115 3831 0 1043 | 1219 0 937 B9 M W 1B N
SAT Spermidine/spermine N1-ace M24485_s_at 2657 2754 313 3113 2563 2368 2939 5187 2916 8070 4274 1839 3283
Casein kinase Jl subunit beta {(EC :X57152_rnal s _at 2464 2099 1885 2197 1146 1294 | 2476 | 2932 1864 2237 1733 922 2863

Figure 7.2.3 Selected 50 Genes
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7.3 Conversion of data :

Steps for conversion of data , so that it can run on RSES :

1. Data in the excel sheet is saved as Text (Tab delimited).
2. Converting the data into .tab file includes changing the data file.
3. This file can now be loaded into the table in RSES.
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After the successful clustering of the datasets, we employ the data discretization technique to
discretise the continuous data values into meaningful intervals—i.e. nominal values and perform
attribute elimination—i.e. attributes that yield only a single discrete value are deemed insignificant

and eliminated from the dataset.

7.4 Cuts calculation :

By cuts we understand the definition for decomposition of attribute value sets. In case of numerical
attributes being discretized in order to produce a collection of intervals, the cuts are thresholds
defining these intervals. In case of symbolic attributes being grouped (quantized), cuts define

i disjoint subsets of original attribute values.
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Figure 7.4.1 Calculated Cuts
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7.5 Descritization :

Discretize/Discretize table option (in data table context menu) makes it possible to discretize
(group) attributes in the data table with use of previously calculated cuts. The user sets the set of
cuts to be used and the name of object to store resulting discretized table.
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7.6 Rules Calculation:

Decision rules make it possible to classify objects, i.e. assign the value of decision attribute. Having
a collection of rules pointing at different decision we may perform a voting obtaining in this way a
simple rule-based decision support system.

s {180 o Hﬁlc_hw__ Decisnon rles oo
1 1 {altr0="(8180.5 inf)")&(aﬂr‘i-"( 96.5, iy ')&{ateru“(141 10. 5,;n|‘)“)&(attr5="(5981 5 mn'-)s.(at:ra S~
2 1 | (atr0="(:1740.0,2039.5)" )8 attr1="{-inf,-06.5)")8(attr2="{-996.5,14110.5)" )& (attr5="(-Inf,5981.5)")&(
3 1 {attr0="(8180.5,Inf)")8(attr1="(-96.5,Inf)"}8(attr2="(-996.5,14110.5)")&(attr5="(5981.5,Inf)")B(attro=
A 1| (attr0="(8180.5,n0" & (atir1=""(-96.5,In0)"}&{attr2="(-096.5,14110.5)")&(attr5="(5981.5,Inf)"}&(attr9=}
5 1 {attr0="(8180.5n0)")&(attr1="{-96.5,Inf)")8&(attr2="(14110.5,inl)"}8 (attr5="(5981.5,Inf}")&(attr9="{15
6 1 7| (attr0="{8180.5,InN")&(atfr1="(-96.5,In))")3(attr2="(-996.5,14110.5)")& (attr5="({5981.5,In1) ") &(attro=|
T 1 {attro="({2852.5,8180.5)")&(attr1="(-96.5,Inf)")&(attr2="(-996.5,14110.5)")&{attr5="(-In1,5981.5)")&(a] |
8 1| (attr0="(8180.5,Inf)")&(attr1="(-06.5,In1)")8(attr2="(-996.5,14110.5)")&(attr5="(-In},5981.5)"}(attr94 |
9 1 {attr0="(-1740.0,2039.5)")&(attr1="{Inf,-96.5)")&{attr2="(-996.5,14110.5)")8{attr5="(-In1,5981.5)")&( |
A 1 [ (attr0="(-1740.0,2039.5)")&(attr1="(-96.5,inf)")&(attr2="(-996.5,14110.5)")&(attr5="(Inf,5981.5)")&(4 . |
11 1 {attr0="{8180.5,Inf)")&(attr1="(-96.5,In1)")8 (attr2="(-996.5,14110.5)")8(attr5="(5981.5,Inf)") &{attr9=} |
12 1| (attr0="(8180.5,in1)" )& (aktri="(-96.5,In)")& (altr2="(-096.5,14110.5)")&(attr5="(-Inf,5981.5)")8(attr94
13 1 {attr0="{-1740.0,2039.5)")&(attr1="{-Inf,-96.5)")&(aftr2="(-996.5,14110.5)")&(attr5="(-Inf,5981.5)")8( |
1 1 [ {attr0="11740.0,2039.5)")8(attr1="{-96.5In)") 8(attr2="{-996.5,14110.5)")&(attr5="(Inf,5981.5)")&(
15 1 {attr0="(8180.5,Inf)")&(atir1="{-96.5,In)"}&(attr2="{14110.5,Inf)")&(attr5="(5981.5,Inf)")8{(attr9="(15
16 1 [ (attr0="(8180.5, 0N )& (attr1="(-96.5,In) ") &{attr2="(14110.5,In1)" )& (attr5="(5981.5Inf) ") 8 (attr9="{15
17 1 (attr0="(2039.5,2852.5)")8(attr1="(-96.5,In1)")8(attr2="(-996.5,14110.5)")&(attr5="(In1,5981.5)")&(a|
B "1 [ (altr0="(8180.5In")&(atir1="(-06.5,In)")8(attr2="(-996.5,14110.5)")&(attr5="(5981.5,In0)"}&(attrd=} 1
19 1 (attr0="({2039.5,2852.5)")B(attr1="{-96.5,Inf)")&(attr2="(-096.5,14110.5)")&(attr5="(5981.5 lnf!"}&(atim
20 1 attro="18180.5,Inf) 18 (attr1="(-06.5,/n0")8{attr2="(14110.5,tn0)")&(attr5="(5981.5 Inf) ") (attra="(
21 1 {attr0="(8180.5,In0)")&(attr1="{-96.5,Inf)")&(attr2="(-896.5,14110.5)")&(attr5="(5981.5 Inf) )& (attrg=
22 1 | (attr0="(8180.5n0)")8{atlr1="(-96.5Inf)")&(attr2="(14110.5,Inf)")8(attr5="(Inf,5981.5)")&(attr9="(1
23 1 (attr0="(8180.5,In1)")&(atir1="{-96.5,In0)")&(attr2="(-996.5,14110.5)")&(attr5="(In[,5981.5)")&(attr9= .
24 1 | (attr0="(2039.5,2852,5)")& (attr1="(-96.5,In1)")&(attr2="(-996.5,14110.5)"}&{attr5="( inf,5081.5)")&(a} 1
25 1 {attr0="(2039.5,2852.5y")&(attr1="(-06.5,In1)")&(attr2="(-996.5,14110.5)")&{attr5="(-Inf,5981.5)")&(a} |
26 1| (attr0="(2039.5,2852.5)")&(attr1="(-96.5,In1)")& (attr2="(:996,5,14110.5)")&{attr5="(-Inf,5981.5)")&(a}
27 1 {attr0="(-1740.0,2039.5)")&(attr1="{-In1,-96.5)")&(attr2="{(-inf,-996.5)") & (attr5="{-Inf,5981.5)")&(attr9)
28 1 | (atlr0="(8180.5,n0)")&(aftr1="{-96.5 In)") & (atlr2="(-996.5,14110.5)")&(attr5="(5981.5 Inf)"") &(attrg=
29 1 (altr0="(2852.5,8180. 5}")&(altr1 "{.95 5 Inﬂ“)&(atlrz—“{ 996.5,14110. 5)"}&{aﬂr5-— "(5981.5,In1)")&(at
30 W
31 1

Figure 7.6.1 Calculated Rules
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7.7 Reducts Calculation:

Reduct for an information system is a subset of attributes which preserves all discernibility
information from the information system, and none of its proper subsets has this ability.
These were the reduct sets that were found :

g i
S Size 1 PosReg. | SC ] Reducts R e s R
1 12 1 1 { attr0, attr1, attr2, attr5, attr9, atir10, attr12, attr13, attr14, attr20, attr22, attr29 }

Teukimia® 77

.
b

i
e

No. reducts: 1 Length of reducts—

Size of core: 12 Minimal: 12

- Stability coefficient {SC)— Maximal: 12 Il
Minimal: 1 Mean: 12

Maximal: 1
_ Showchart |

Mean: 1

-Occurrence of attributes in reducts

attrQ 1 33 YES a

attr1 8.3 YES
attr2 8.3 YES
attrs 83 YES i
attro 8.3 YES
attr10 33 YES B
atir12 8.3 YES ot

gashowehart .

PR (PN 3 RN A
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As these are all core attributes therefore we separately took these to be considered for classification

task :
i i MHALL : AE:L o= A'_L i) ‘ALE. ‘ A”LL . AEL D, in.-_ ) ALl § ALL o A.L ) ALL ; A?JIL.
IAFEX-HSACOT/X00351 5_otAFFX-HSACOT/X00351 16287 16770 16385 11685 14989 | 18222 10468 570 997 22615 18282 21099
XIAAD221 gene UB3533 5 _st 215 483 258 354 807 -9 360 212 291 502 | &1 6T
l6lobin, Beta HG1428-HT1426_s ot 11952 22240  §472 10661 21905 @2 §391 26246 26EBE 23427 1671 15909
RPS3 Ribosomal protein $3X57351 s_at 16433 10996 12769 | 16859 25267 | 1182 20695 26510 4248 7560 | 7916 14421
LAMR1 Laminin receptor (2M14199 5_at 16528 17782 18435 17420 16802 19533 1668 12727 16063 Me06 19575 12771
Myosin, Light Chain, Alkali, HG2815-HT2931 at 10557 773 8023 | 636 G936 4415 . 13455 13192 6320 WM170 M8 12107
Heterogeneous Nuclear RilHG3076-HT3236 s _at 4034 2621 4087 1244 €765 1351 7284 0 034 2641 5095 4843 4620
Unknown protein gene extM31520_rnal s_at 3818 9380 8300 = 547 12250 6202 1503¢ 16056 7360 8192 9245 5468
|Ona-Binding Pratein HIfx2 HG3327-HT3S04 s at 1198 1322 861 892 1557 640 A3 598 832 | M3 4265 115
|68 DEF =52 %D subunitof t 07595 at -385 67 203 280 668 289 417 86 290 570 425 -B5B
BETA-2-MICROGLOBULIN £100105 s at | 21909 18519 13909 | 16810 24346 18367 = 22990 10664 21461 19966 19272 21580
MRNA fragment encoding {V00399_s_at 16077 11421 10273 | 5868 19826 | 15160 13376 5543 7R05 | 21270 . 21667 17550
SERUM AMYLOID A PROTEHX51441 5_at 567 663 307 305 889 187 642 208 545 507 | 34 55
SmB protetn gene extracte X52979_rnal_s_at 1962 1218 2349 819 2976 - 1423 4o 594 900 3527 4866 2360
GBDEF =mANA fragment fX03689 s at 23230 22891 23943 | 16286 | 26056 | 22938 21762 164 | 20744 | 2dEAT | 23684 23716
RPS21 Ribosomal protein § L0483 s_at 20640 20042 21232 | 23782 21104 . 20454 14404 26765 21308 221%4 19288 21841
EEF1G Translation elongati X0S855_s_at 2663 1991 2627 93 6399 | 643 7726 2158 170 3007 2952 1838
PROBABLE PROTEIN DISULEM13560_s_at 15446 11734 9260 8833 412 16561 16211 6256 13625 GA2 437 16606
ENO1 Enclase 1, (alpha)  M14328_s_at 2700 6276 973 6039 1M04  M7E7 0184 2394 . 1082 6978 . 12124 16265
PTMA gene extracted fromM14483 mal_s_at 18443 21771 19363 15270 10485 | 10737 15061 | §913 26892 22160 | 20381 14509
PTMA Prothymosin alpha M26708 s_at 13394 14004 13639 11362 | 13281 | 13733 12920 | M696 12682 16727 12674 147W
VIM Vimentin 1719554 _s_at 15009 16547 18660 4540 1164 : 9643 16306 18407 12688 1B950 20588 25563
\Guanine nucieotide-bindirM21142 cds2 s at 11350 | 8784 7882 G824 . 10096 | 4095 | 12533 BBOO 9227 MmdD2 | 11291 79
T-CELL SURFACE GLYCOPRCM23323 s _at M7 1584 977 1043 321 T T | 783 787 . 6288 9223 223
ISAT spermidine/spermine M24485 s at 2657 2781 313 2368 8070 | 4274 3263 785 M4 4738 B 702
g!:asem kinase Il subunit b2 X57152_rnal s_at 2484 2099 1885 1294 2237 ¢ 17133 2863 1445 946 1518 3458 2171 4
\
Now by carefully considering the expression values ofeach gene with respect to ALL and AML
from these reducts , we found only those genes that were being classified by their expression level
and found these rules : )
o
Unknown protein gene extracted from Human ribosomal protein 524 mANA  M31520 rnal s _at AML < 5468
GB DEF = 52 kD subunit of transcription factor TFIIH ¥07595_at AML < -656
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR M13560 s_at AML > 16606
ENO1Enolase 1, {alpha) E M14328 s at AML > 16265
VIM Vimentin ) 219554 _s_at AML > 25568
Zyxin X95735_at AML > 4371
GB DEF = Polyadenylate binding protein ii 748501 s _at AML > 17637
GB DEF = Neurofilament triplet L protein mRNA, partial cds U57341 r_at AML > 7891
GB DEF =TNNT2geneexon1l e X98482 r at  AML > 17935
SAT Spermldane/spermme i\i—acety!transferase ; AML i< -3381
ACTB Actin, beta : X00351_ f at AML > 26861
Major H;stccompatub;hty Complex, ctassi C{Gb X58536} HGG658-HT658_f_at AML > 16619
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Testing

7.8 Evaluating with the Test set :

Checking only the selected genes from above to check the percentage of classification , We found

that :
ALL percent correctnass
2Zyxin X35735_at 17 80,95238095
GB DEF =52 kD subunit of transcription factor TFitH ¥07595_at 5 23.80952381
Unknown protein gene extracted from Human ribosomal protein 24 mRNA  M31520_ral s_at ! 0 g
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR M13560_s_at i 0 g
ENOZ Enotase 1, {alpha} A114328 s at i 12 57.14285714
VIM Vimantin 719554 5 _at 0 0
GB DEF = Polyadenylate binding protein il 748501 s_at 2! 9.523809524
GB DEF = Neurofilament triplet L protein mRNA, partisl cds U57341 r_at 1 4,761904762
GB DEF =TNNT2 gene exon i1 X98482 r_at 3 14,28571429
SAT Spermidina/spermine Nl-acetyltransferase U21689_at ] 2
ACTB Actin, bets X00351_f at 6 g
Major Histocompatibility Complex, Class I, C (Go:X538536] HG658-HT658_f_at o L]

As the percentage of classification is highest for Zyxin and the second highest is for ENO1 Enolase
1,(alpha). Therefore these genes are now selected for showing the highest classification.
A box plot of X95735 expression levels in the training set is as follows :

/

e
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- :
!
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et ; S i < o o iy I dis o e i
ALL AhdL,

Figure 7.8.1 Box Plot of Zyxin
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This figure clearly indicates that the expression levels of X95735 can be used to distinguish ALL
from AML in the training set.

Two rules are induced by Rough sets:

If expression level of Zyxin is =>

(A) Higher than 983 than AML

(B) Lower than 983 than ALL

Zyxin is also selected by many other methods. It is reported in “Gene Selection from Microarray
Data for Cancer Classification-A Machine Learning Approach”, that Zyxin is the only gene
identified by J48 pruned tree and the emerging patterns algorithm. Zyxin is repeated selected, and
the classification accuracy is 91.2% on test data set. The results obtained by us suggest that the
expression level of Zyxin plays an important role in distinguishing two types of acute leukemia.
Role of Zyxin in discerning between two types of acute leukemia samples is also verified by
biological researchers in Role of Zyxin in “Differential Cell Spreading and Proliferation of
Melanoma Cells and Melanocytes.”
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Chapter-8

Conclusion

Gene expression data set usually has thousands of genes while a few dozens of samples, among a
large amount of genes, only a very small fraction of them are informative for classification task. In
order to achieve good classification performance, and obtain more useful insight about the
biological related issues in cancer classification, gene selection should be well explored to reduce
the noise and avoid overfitting of classification algorithm.

The theory of rough sets is a major mathematical tool for managing uncertainty that arises

from granularity in the domain of discourse—that is, from the indiscernibility between objects in a
set. Rough sets have been applied mainly in mining tasks like classification, clustering and feature
selection. A quick search of biological literatures shows that rough sets are still seldom used in
bioinformatics.

Systematic and unbiased approach to cancer classification is of great importance to cancer treatment
and drug discovery. Previous cancer classification methods are all clinical based and were limited in
their diagnostic ability. It has been known that gene expressions contains the keys to the
fundamental problems of cancer diagnosis, cancer treatment and drug discovery.

We have performed a successful gene selection method based on rough sets theory. Filter kind of
method (clustering by the help of K-mean algorithm) is done first as a preprocessing to select top
ranked genes; the minimal reduct of the filtered attribute sets is induced by rough sets. Acute
leukemia gene expression dataset is used to test the performance of this novel method; only one
gene Zyxin is selected, and high prediction accuracies have been achieved on the test data set.
Zyxin is also selected by many other methods, and has been verified by biological researchers to
play an important role in distinguish two different types of acute leukemia, AML and ALL.
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