

ACADEMIC RESOURCE MANAGEMENT SYSTEM USING
AGILE SOFTWARE DEVELOPMENT METHODOLOGY

SUBMITTED BY:

Rajat Kumar Jain (081215)
Aditya Singh (081219)
Anil Verma (081308)

SUPERVISED BY:

MAY 2012

Submitted in partial fulfilment of the degree of

BACHELOR OF TECHNOLOGY
< IN

’ COMPUTER SCIENCE AND ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

i &]
| |
i TABLE OF CONTENTS |
wi Chapter No. Topics Page No. }
Certificate from the Supervisor 111 |
| Acknowledgement v ‘;

Summary \Y
List of Figures Vi
| List of Acronyms VIII
I;t
| Chapter-1 1. Introduction 1
1.1 Objective 2
1.2 Project Vision 2
a‘ 1.3 Genesis of Problem 3
' Chapter-2 2. Literature Survey 4
2.1 Agile Software Development 4
2.2 The Agile Manifesto 3 /
2.3 Principles 5
2.4 Agile Methods 6
2.4.1 Agile Modelling 6 \
2.4.2 eXtreme Programming 7l -
2.4.3 Dynamic System Development Method 10
2.4.4 SCRUM 1
2.4.5 Feature Driven Development Il |
2.4.6 Agile Unified Process 11 |
2.4.7 Crystal Clear 12
2.5 Difference between Agile
and Traditional methods 13
Chapter-3 3. Implementation of eXtreme Programming 14
3.1 User Stories 14
3.2 Architectural Design 15
3.3 Planning 15
3.4 Release Planning 16
3.4.1 Iteration 1: Administration 16
3.4.2 [lteration 2: Department 30
3.4.3 TIteration 3: Account Office 38

t

é Chapter-4 4. Conclusion and Future Scope 42

[Appendix A: Codes 44

: Appendix B: Snapshots 48

| References 53

‘ Resume of Students 55

|
;

| i

S ———

CERTIFICATE

This is to certify that the work titled “ACADEMIC RESOURCE MANAGEMENT
; SYSTEM USING AGILE SOFTWARE DEVELOPMENT METHODOLOGY”
| submitted by Rajat Kumar Jain, Aditya Singh and Anil Verma in partial fulfilment
for the award of degree of B.Tech of Jaypee University of Information Technology,
Waknaghat has been carried out under my supervision. This work has not been

submitted partially or wholly to any other University or Institute for the award of this

. or any other degree or diploma.

Signature of Supervisor:
Name of Supervisor:

Designation:

Date:

[

ACKNOWLEDGEMENT

f
§
1
]
.

Apart from the efforts, the success of any project depends largely on the
encouragement and guidelines of many others. Therefore we take the opportunity to
express our gratitude to the people who have been instrumental in the successful

completion of this project.

We would also like to show our appreciation to our project guide Dr. Yashwant
Singh. Without his able guidance, tremendous support and continuous motivation the
project work would not be carried out satisfactory. His kind behaviour and motivation

provided us the required courage to complete our project.

Special thanks to our project panel because it was their regular concern and

appreciation that made this project carried out easily and satisfactorily.

R
Qo™
Rajat Kumar Jain

Y

Aditya Singh

W\W

Anil 'Vérma

Date: Qﬂwt’\&ﬂ— 20l

SUMMARY

The Academic Resource Management System provides an advanced solution for

I
:
|

today’s college or university record-keeping challenges. This Academic Resource
i Management System will give you room to handle your responsibilities whether

you’re just starting or are an experienced professional.

This Academic Resource Management System provides us the information about
student record, college faculty, college department and college examination result.
This system provides the flexibility of generating the required documents on screen

as well as on printer as and when required.

Academic Resource Management System opens a universe of opportunities to

automate the laborious paperwork involved in college or university management.
With our proposed record-keeping software the management can more effectively »
*interact with the students as they develop skills and character for success. They will
not only have more time to spend with them, but it will be quality time because they

will have up-to-date student information to facilitate them.

R
l &@\‘*WS/ -
1 \ 2
. Rajat Kumar Jain Dr. Yashwant Singh

e Sf\\‘ﬂ}/u (Assistant Professor, CSE Dept.)
Aditya Singh Date: 29-05 -22/2
;\\\\‘W

Anil Verma

Date: 24™ |y 2012

—&

?.'

Sr. No.

2
3
4
5
6
7
8

10

11

12

13

14

15

16

17

18
19

20

21

23

24

Eig 2.1,
Higd. 21
Fig 2.3:
Hig:3,13
Fig 3.2
Bieso
Fig 3.4
Eig-3:5;

Fig 3.6:
Hicid i
Fig 3.8;

Fig 3.9:

List of Figures

Name Page No.

eXteme Programming Lifecycle

Iterations in XP

Difference between Agile and Traditional method
Architectural Design

Use Case diagram of Administration

Class Diagram

Sequence diagram: Sign in by the Administration
Sequence diagram: Enrol Student by the
Administration

Sequence diagram: Add Faculty by the
Administration

Sequence diagram: Register Student by the
Administration

Sequence diagram: Register Student by the
Administration

Sequence diagram: View Student Information

by the Administration

Fig 3.10: Sequence diagram: View Faculty Information

Eig 5.11
Eigi3i1%

Fig 3.13

by the Administration

: Sequence diagram: Edit Student Information
by the Administration

: Sequence diagram: Edit Faculty Information
by the Administration

: Sequence diagram: Delete Student Record
by the Administration

Fig 3.14: Sequence diagram: Delete Faculty Record

Fig 3.15

by the Administration
© Activity diagram: Sign In by the Administration

Fig 3.16: Activity diagram: Enrol Student by the

Fig 3.17
Fig 3.18:

Eig3:]19:

Administration

. Activity diagram: Add Faculty by the
Administration

Activity diagram: Register Student by the
Administration

Activity diagram: Add Department by the
Administration

Fig 3.20: Activity diagram: View Student Info by the

Fig 3.21

Administration
: Activity diagram: View Faculty Info by the
Administration

8

g

13
15
16
17
18

18

22

22

3
23

24

24

26

S G S

25

26
27
28
29
30

23!
42

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

=il

Fig-3.22:
Fig 3251
Fig 3.24:
Big3.25i
Fig 3.26:
Bigsdlrs
Fig 3.26:
Fig 3.29:
Eigid30:
Eigiisile
Eig:3.32:
Eig 333
Fig 3.34:
Fig 3.35:
FFig 3.36:
Big:3:37:
Fig 3.38:
Eigi3:39:
Fig 3.40:
Fig 3.41:
Fig 3.42:
Fig 3.43:
Fig 3.44:
Fig 3.45:
Fig 3.46:
Fig 3.47:

Fig 3.48:

Activity diagram: Edit Faculty Info by the
Administration 27
Activity diagram: Delete Student Info by the
Administration 27
Activity diagram: Delete Faculty Info by the
Administration 28
Activity diagram: Edit Student Info by the
Administration 28
Entity Relation Diagram : 29
Use Case diagram of Department 30
Class diagram of Department 61
Sequence Diagram: Add Course by the

Department Al
Sequence Diagram: Allot Courses by the

Department 232
Sequence Diagram: Refresh Assignment of

Courses by the Department 32
Sequence Diagram: Assign Courses to Faculty

in Department 33
Sequence Diagram: View Staff Info by the

Department 33
Sequence Diagram: View Courses by the

Department 34
Sequence Diagram: View Courses Assigned

to Facuity by the Department 34
Activity Diagram: Add Course by the Department 35

Activity Diagram: Drop Course by the Department 35
Activity Diagram: Allot Courses by the Department 36
Activity Diagram: Refresh Assignment of Courses

by the Department 36
Activity Diagram: Assignment of Courses to

Faculty by the Department L)
View Staff Info in Department 24
View Courses in Department 38
Use Case Diagram of Account Office 38
Class Diagram of Account Office 39
Sequence Diagram: Submit Fees of Student

in Account Office 39
Sequence Diagram: Pay Salary to Faculty

in Account Office 40
Activity Diagram: Submit Fees of Student

in Account Office 40
Activity Diagram: Pay Salary to Faculty

in Account Department 41

Vil

Acronym
ARMS
XP
DSDM
AUP
EssUP
RUP
ExP
FDD
OpenUP
FMI
DBI
BAD
SAD
OPP
TDD
UML
IDE
JDBC

List of Acronyms |

Description
Academic Resource Management System
eXtreme Programming
Dynamic Systems Development Method
Agile Unified Process
Essential Unified Process
Rational Unified Process
Exia Process
Feature Driven Development
Open Unified Process
Functional Model Iteration
Design & Build Iteration
Business Area Definition 8
System Architecture Definition
Outline Prototyping Plan
Test Driven Development
Unified Modelling Language
Integrated Development Environment

Java Database Connectivity

VI

Chapter 1

1. Introduction

Academic Resource Management System is specifically developed for comprehensive solution
to manage academic records of a university. It facilitates university to record all information
regarding students and the staff. It handles information about all the departments in the college or
university. The main goal of the Academic Resource Management System is to automate the
university management, thus reduce paper work and improve the efficiency and enhance the

productivity.

Academic Resource Management System is a comprehensive student information management
system developed from the ground up to fulfil the needs of independent universitics. It connects
daily operations in the college or university environment ranging from Admissions and Registration
to Finance, Faculty and Department. This reduces data error and ensures that information is always

up-to-date throughout the university.

Academic Resource Management System provides a single source of data repository by
administration, departments, faculty and the accounts department. It has a simple user interface
which ensures that the users spend less time in learning the system and hence, increase their

productivity. Efficient security features provide data privacy and maintains data integrity.

Academic Resource Management System is a fast, affordable, low-risk solution with easy
implementation and lower maintenance and operational costs. It helps to optimize the use of
available resources in a cost effective manner through their proper scheduling and resource
allocation. It is an excellent tool to promote and manage enrolment growth and provide accurate
enrolment data. Eliminate duplicate data entry and redundant information storage that most often

propagates errors.

In short, Academic Resource Management System is a solution to manage all the records
related to a university like student records, staff records and handling accounts of a university. It
provides a university with an antomated system to handle the records that reduces the manual work,
It has a user friendly interface which is flexible and easy to maintain. It will be a very good solution

to maintain records of a university at one place as every department of the university will keep the

records at same place.

1.

ARMS has following entities:

Administration: Administration is the necessary part of any organization. In Academic
Resource Management System, It represents the Registrar office. It will handle the
enrolment and registration process of the students, create and distribute grade sheets of
them. It also keeps the record of faculty. In short we can say that Administration will be on
top of everything in the college or university.

Departments: In any organization, there are many departments which have their specific
tasks to perform. In Academic Resource Management System, Department are the different
streams which the university provides for education. Different departments will handle their
records like attendance of students, grades of students, subjects registered by students,
which course will be taught by which faculty etc.

Faculty: Faculty has the most important role in academics. He is a person who provides
knowledge to his pupils and makes them able to start their career. In Academic Resource
Management System, The role of faculty is to mark the attendance and grades of students.
Account office: The record of student’s fees and the salary of staff are also necessary to
keep. For this, we have Accounts department. In Academic Resource Management System,
It will handle all the data regarding finance like fees submitted by the students, salaries of

the staff.

1.1 Objectives

To implement Agile Software Development Methodology (eXtreme Programming).

To build a secure, flexible, easy to maintain environment for creating and maintaining
academic records.

To develop a user friendly and an eye catching GUI for Academic Resource Management
System.

To learn JAVA swings.

To learn the JDBC connectivity to the Oracle Database 10g Express Edition.

To learn Oracle SQL queries.

To have an experience of working on NetBeans 7.0 IDE.

1.2 Project Vision

The vision for the Academic Resource Management System is to provide a software for

managing Academic and Financial records. The system will provide the tools to create, maintain

i

and report on student data in an efficient and convenient manner. Upon completion of the project,
the system will improve the quality of the academic experience for students, faculty and staff.
Our vision is to create an environment that:

« Enables a stable, reliable and convenient self-service registration environment.

« Provides more timely, convenient and flexible options to students, faculty and staff.

« Provides the opportunity to improve on current business processes.

« Is conducive to managing and maintaining changes to academic and/or regulatory policies.

« Improves communication by sharing information within functional areas of the University.

1.3 Genesis of Problem

Previously the administration of any university have to make records of students registered and
the staff of the university on paper and have to keep them safe in some files. The same thing
happens to the accounts department and the different branches as they also need to keep all the
records on paper. If anytime, they wanted to get someone’s record, first they had to scarch the file
of that record which takes a lot of time. We know that it’s very tedious task to keep these much
records on paper for a long period of time and in this paperwork, the manual work increases which
indeed reduced the utilization of the efficiency of staff. So we require something where we can
store as much data as we want and can keep them safe for long period and that must be an

automated system by which the utilization of the staff can be increased.

The rest of this report describes our systematic approach towards developing user friendly,
flexible and casy to maintain environment for Academic Resource Management System. Chapter 2
describes the Literature survey on the Agile Methodology and different agile methods and their
characteristics, after which we are able to decide which method should be used to develop
Academic Resource Management System .With Chapter 3 we start with the implementation of

eXtreme programming and development of Academic Resource Management System. After that, in

Chapter 4, we describe what is our learning from this project and the future scope of the project.

Chapter 2

2. Literature Survey

2.1 Agile Software Development:

Agile Software development is not a single methodology or a set of tools, in fact it is a

philosophy which put on paper in 2001 with initial 17 signatories.

Agile is a group of software development methodologies based on iterative and incremental
development. Common theme about agile methodologies is that they are all focussed on trying to

produce a working solution and be able to respond to changing user/client requirement.

Dictionary meaning of Agile is moving quickly and lightly. It is a method that tries to be
responsive to the needs of the software development process. Primary goal of agile methods is to

develop working software.

Agile methodologies are used to produce higher quality software in a shorter period of time.
Agile methodologies were developed to streamline the development process and remove barriers to
accepting business requirement changes during the development process. Agile methodologies do
not require that business requirements and design details be locked in for the duration of

development.[1]

Agile methods recommend close team cooperation, exchange of knowledge, ideas and code
between team members. Instead of specialists for specific parts of development process, it is
recommended that a person is included in multiple parts of development process, which can include
parts like coding new features, writing coding tests but also gathering user requirements etc. By
including team members in various aspects of development process the chance of misinterpretation

is reduced. Regardless of their experience each developer can enhance the model of the system.[2]
It focuses on being effective and sufficient.

* Effective in terms of producing working (defect free) software.

* Sufficient in terms of meeting its requirements.

15

| Now, we can say that Agile Methodology is a method that tries to be responsive to the need of the
software development process, that is based on practice and that focuses on being effective and

sufficient.[5]

2.2 The Agile Manifesto

Individuals and interactions over processes and tools.

This refers to the fact that people involvement to the project and their communication with
cach other is essential. Tools and processes can help but they are still not the overriding

influence.
Working Software over comprehensive documentation.

The team must focus on working software and not on the documentation. The main goal of
the team should be developing working software as soon as possible and the documentation

should be a supportive part of the project.
Customer collaboration over contract negotiation.

There must be a customer representative with the developing team rather than having

detailed contract negotiations.
Responding to change over following a plan.

Agile team must be responsive to change rather then saying that it was not in the
requirements of the plan, so we can’t do it. Note that it does not mean that plan is not

important- actually, it is very important but the project adapts itself to its environment.

2.3 Principles

* Highest priority is to satisfy the customer.
l * Welcome change.

* Deliver working software frequently.

Business peopie and developers must work together daily.

b

Face to face communication is best.

. Working software is the primary measure of progress.

» Teams should regularly review itself and its processes to try and improve.

2.4 Agile Methods
The following are the core methods of Agile Software Development being worked on:

2.4.1 Agile Modelling

2.42 eXtreme Programming (XP)
2.4.3 Dynamic System Development Method (DSDM)
2.4.4 SCRUM

2.4.5 Feature Driven Development (FDD)
2.4.6 Agile Unified Process (AUP)

2.4.7 Crystal Clear

2.4.1 Agile Modelling

It tries to find an appropriate balance between too little modelling and too much modelling,
at the design stage. Modelled enough to explore and document your system effectively, but not so
much that it becomes a burden. It provides guidelines on how to create effective models and how to
be an efficient modeller. It does not necessarily means that less modelling will be performed while

adopting Agile Modelling.[5]
It has three main goals:

[. The definition and promotion of a s¢t of values, principles and practices that help to produce the

appropriate models.
2. Guidance on how to apply modelling to an Agile software development.

3. Guidance on how to apply Agile Modelling to other software processes (such as RUP).

6

i

=

= O

2.4.2 eXtreme Programming (XP)

It was originally designed as a way of supporting small development teams working within
uncertain and changing requirements. It was designed as an approach based on software engineering
principles, but focussed on the timely delivery of software that meets user’s requirements.[4] An
jmportant aspect of XP is the empowerment of the actual developers- they should be able to react
immediately to changing customer requirements, even late in the development life cycle. It also
places great emphasis on the software development team and teamwork. One of its aims is that team
should communicate and constantly pay attention to all the details necessary to make sure that the
software being developed, matches the user requirements. The main focus of the eXtreme team is
on giving the working software to the customer as soon as possible rather then wasting time in

doing the documentation.[5]
Four basic principles of XP are as follows:

e Communication

Programmer must have communication with his fellow programmer as well as the user
representative.

e Simplicity
Design should be as simple as possible. Focus on giving the complete working software to
the customer as soon as possible rather than wasting time on documentation.

o Feedback
Testing must start from day one of the implementation and get feedback from those test
cases so that those errors do not repeat in future.

e Courage
Programmer must have courage to remove the obsolete code without thinking how much

time it took at the time of implementation.

Some key ideas presented in XP are as follows:

* Code in pairs
According to XP, Coding should be done in pairs as it assumes that two heads are better
= than the one:
¢ Stay in contact with the customer
In XP, One user representative always stays with the developer team and whenever
developer team needs to ask some information about the problem given by the user, they

consult with him.

Create tests before coding then test heavily

Test scenarios must be prepared at the beginning from the user stories and testing should go
hand in hand with coding.

¢ Short iterations

The whole project is divided into iterations. Iterations must be as short as possible because it
will reduce the possibility of errors.

« Keep it simple
Focus on delivering the working software to the customer as soon as possible rather than
wasting time on documentation. Design must be as simple as possible.

e Don’t anticipate

Don’t think about tomorrow. Complete today’s work and leave tomorrow work on
tomorrow.

e Collective ownership

Everyone within the team has the responsibility for the software. If something goes wrong,
nobody will be blamed particularly - everyone will be responsible for that. Thus anybody in

the team can fix that problem.

% XP Lifecycle

User """-___— i Test Scenarios
Stories ™\ ! i

i

1 H
i 1 1
i H

i Requirement Naw User Story,

N Project \locit
\ e V\ f,..-augs-.,\ |

Achi’tectural‘} system i Release ! Release Latest Acceptance Customer Small

Spike TMetaphori Planning T Plan g ltoravan Mersion Tests — ‘eproval ™" Releases
i : Mext
Ungertain Confiderit fteration

Estimates Estimates

Spike
i H | i lterati i
Exploration i Planning . i eratm;lr::‘at;:veﬂelease Productionizing
i Phase i Phase

Fig 2.1: eXteme Programming Lifecycle [4]

This figure 2.1 depicts the lifecycle of eXtreme Programming, It has many keywords which are

explained as follows:

% User Stories

A user story describes problems to be solved by the system being built. These stories must
pe written by the user and should be about three sentences long. Because user stories are short and
somewhat vague, XP will only work if the customer representative is on hand to review and
approve user story implementations. This is one of the main objections to the XP methodology, but

also one of its greatest strengths.[5]
» Architectural Spike

A Spike in XP terms is an attempt to reduce the risk associated with an unknown area of the
system, technology or application domain. A spike may involve some investigation, research and

possibly some software to evaluate the problem.[5]

» Release Planning

It indicates which user stories will be implemented and in which release this will happen. It
also indicates how many iterations are planned and when each iteration will be delivered. Note that

individual iterations are planned just before the iteration commences, not in advance.[5]

» Iterations

At the start of each iteration changes can be made to what will be done and when it will be

done. The shorter the iteration, the quicker the development team can respond to changes.[5]

3.3 3.5 5 5 3

on

|teration

[teration

teration
lterat

= potential release

E -3 weeks 1

Fig 2.2: Iterations in XP

9

Fig 2:2 shows how in each iteration, implementation is done. We can depict here that in each

iteration, everything from planning to the small release is done. We can see here that each iteration

takes 1-3 weeks of time to complete with small release.

5 Acceptance Testing

The acceptance tests are created from the user stories, written at the start of the project. Each
iteration implements one or more user stories. A story is not limited to one acceptance test and may

be related to many acceptance tests (depending on the complexity of the scenario).[5]

» Release

XP promotes the concept of “small release” and “release Often”. These releases should be
made available to users or the user representative when available. This will allow early and frequent
feedback from the user representative rather than relying on the big bang approach and then

worrying about the consequences.[5]

2.4.3 Dynamic System Development Method (DSDM)

It is particularly suitable for application development projects that need to develop complex
business solutions within tight timeframes. In DSDM, time is fixed for the life of the project, and

resources are fixed as far as possible.[5]

It is based on following principles:

1. Active user involvement is imperative,

2. The team must be empowered to make decisions.
3. The focus is on frequent delivery of products.

4. Tterative and incremental development is necessary to converge on an accuraic business

solution.

5. All changes during development are reversible.

6. Requirements are base lined at a high level.
7. Testing is integrated throughout the life cycle.

8. Collaboration and cooperation between all the stakeholders is essential.

10

—

244 SCRUM

It aims to manage and control the production of software using iterative, incremental and
1ightw€ight processes. After the team completes the project scope and high-level designs, it divides
the development process into a series of short iterations called ‘sprints’. Each sprint aims to
jmplement a fixed number of backlog items. At the end of a sprint, the team reviews the sprint to
check progress. During a sprint, the teamn has a daily meeting called a scrum. Each team member
describes the work to be done that day and progress from the day before. When enough of the
packlog has been implemented so that the end users believe the release is worth putting into
production, management closes development. The team then performs integration testing, training

and documentation as necessary for product release.[5]

2.4.5 Feature Driven Development

Feature-driven development is another type of Agile Methodologies based on iteration and
incremental software development process. It is one of a number of Agile methods for developing
softwares. The advantage of using a feature driven approach is the potential for managing an agile
project, for handling the uncertainties that an agile approach introduces, for getting to grips with

monitoring and reporting on the project.[5]

FDD is a model-driven short-iteration process that consists of five basic activities which are

as follows:

+ Develop Overall Model
* Build Feature List

* Plan By Feature

* Design By Feature

* Build By Feature

2.4.6 Agile Unified Process

Agile Unified Process is a simplified version of the IBM Rational Unified Process(RUP). It

describes a simple, casy to understand approach to develop softwares using agile techniques. The

14

Agile Unified Process applies agile techniques including Test Driven Development (TDD), Agile

Modelling, agile change management, and database refectory to improve productivity.[5]
It has following disciplines:

. Model.

' Imp]emcntation.

o Test.

« Deployment.

+ Configuration Management.

+ Project Management.

Environment.

2.4.7 Crystal Clear

|
Crystal Clear can be applied to teams of up to 6 or 8 developers working on systems that arc ;
not life-critical. The Crystal family of methodologics focus on efficiency and habitability as 1

components of project safety. Crystal Clear focuses on people, not processes.[5]
Crystal Clear requires the following properties:

¢ Frequent delivery of usable code to users

* Reflective improvement

* Osmotic communication preferably by being co-located

Crystal Clear additionally includes these optional properties:

* Personal safety

Focus

* Easy access to expert users

* Automated tests, configuration management, and frequent integration

12

2.5 pifference between Agile and Traditional methods

Traditional fixed functionality approach Agile Methodologies

Functionality Times and Resources

Time and Resources Functionality

Fig 2.3: Difference between Agile and Traditional methods [5]

This fig 2.3 is showing the difference between the Traditional Methods and the Agile Methods
in terms of functionality and the time and resources. In the Traditional approach the 1
functionality is fixed throughout the project and time and resources are flexible i.c. we can P
delay the development of the project. On the other hand, In Agile Methodologies, it is just
opposite of it. In Agile approach, we can vary the functionality but the time and resources must

remain same as of the beginning of the project.[5]

In this chapter, we saw many methodologies defined under Agile Methodologies. After
understanding all the methods, we decided to implement eXtreme Programming in Academic
Resource Management System. In further chapters, we will se the implementation of eXtreme

Programming according to its lifecycle.

13

3
3

Chapter 3

3, Implementation of eXtreme Programming

3.1 User Stories

Academic Resource Management System has following requirements:

Administration will have a login Id to run the Academic Resource Management System.
Administration can enrol a newly admitted student.

Administration can add new faculty to the university.

Administration can spccify new Batch fee Structure.

Administration can edit the specified fee Structure of a batch.

Administration can view information of a student or faculty.

Administration can edit information of a student or faculty.

Administration can delete record of a student or faculty.

Administration can register a student in a semester.

Administration can create Result of a Student.

Administration can add a department to University.

Account Office will have a user id to run Academic Resource Management System.
Account Office can make payments to the Faculty.

Account Office can receive fees from Students at the time of registration.
Department will have a user id to run Academic Resource Management System.
Department can Add Courses.

Department can drop Courses.

Department can Assign Courses in the Semester.

Department can Refresh Courses Assigned to faculty afier each semester.
Department can Assign Courses to the Faculty.

Department can view Staff Information.

Department can view courses in the department.

Department can view courses Assigned to faculty.

14

3,2 Architectural Design
Two TIER CLIENT SERVER SYSTEM

In Academic Resource Management System, we need a client and a server. Everything will be
handled on the server side. So we can say that it is a Two Tier Thin Client Server System.

Design is shown in fig 3.1.

LEVEL 1

Client - servel

e

Fig 3.1: Architectural Design

3.3 Planning
The Project will be completed in 4 iterations:

Iteration 1
In this Iteration, we will complete following user stories:

« Administration can enrol a newly admitted student.

« Administration can add new faculty to the university.

« Administration can specify new Batch fee Structure.

« Administration can edit the specified fee Structure of a batch
¢ Administration can view information of a student or faculty.
» Administration can edit information of a student or faculty.

« Administration can delete record of a student or faculty.

« Administration can register a student in a semester.

« Administration can create Result of a Student.

-« Administration can add a department to University.

15

[teration 2
In this Iteration, we will complete following user stories:

« Department can Add Courses.
« Department can drop Courses.

« Department can Assign Courses in the Semester.

« Department can Refresh Courses Assigned to faculty after cach semester.

« Department can Assign Courses to the Faculty.

« Department can view Staff Information.

« Department can view courses in the department.

« Department can view courses Assigned to faculty.

Iteration 3
In this Iteration, we will complete following user stories:

« Account Office can reccive fees from students at the time of registration.

« Account Office can make payments to the faculty.

3.4Release Planning
3.4.11teration 1: Administration

e Use case diagram

s Sign In e
T i
// P o R e
o S Enroi Student SI)
g o ” B T R b o
G fm:_ﬁ_ Add Faculty _::_";U
C‘_w Reglster St udentm s

Edst Student Reco:d i

e ‘Edtt Facuity Record o

L 100 \,\ 3 '“"~-ﬁ.____i M e A A —
R Yo e 5= iy Vlew Student N 2
Administration ™, S - e
NN T eeeeeee————
\\"\\ G ‘-C.\,_ Vtew Facultylnfo g
\ '\\ \‘-\,\ A PP — o’
\ N NG \\\7 s et —
__\ \‘_\ b Cre Add Department e
SERE e SO
e Batch Fee Structure e
T RS

NS “‘;.':“ i;d;t Fee Stlucture .

e 81 gn Out _J)

Fig 3.2: Use Case diagram of Administration

16

Actor: Administration |
Use Cases: Sign In, Enrol Student, Add Faculty, Register Student, Edit Student, Edit Faculty
Record, View Student Information, View Faculty Information, Add Department, Batch Fee

structure, Edit Fee Structure, Sign Out.

e Class Diagram

Administration
AdminitrationGUI %d’iv?’ : String
&frame : JFrame ol Bt
; : &user : String
&jimage : Imagelcon &pass : String
SadminGUI| N e
checkAvailabilit
“enmIIStu.dentGUI() SenrolStudent() Y0
:upk}adPrcGUI() SaddFaculty()
%addFacuItyGU!(} YgetFacultylnfo()
getStudentinfoGUI() VgetStudentinf
iewStudentinfo GUIY e 3 e
SdeiFac ik vino GOl ¥changeStudentinfo) \~
Qge gcu Y’"gjl 0 “deleteStudentinfof) §
i acultyGUI() ®changeFacultylnfo() d
edit StudentinfoGUK) ®deleteFacultylnfo() |
ZedrtFacuItylnhGUl() ®addDepartment() /
QaddDepartmen!(} ; ®getStudentCourselnfo()
&atchFeeSpeuﬁcatmnGUl() Qregistersmdent(}
getFeeDetails() ®patchFeeSpecification() !
®getFeeDetails() .
*changeFeeSpeciﬁcatiun() f
i

Fig 3.3 Class diagram of Administration

After creating the use case diagram and showing the use cases of iteration I, we determine that
there will be a class named Administration on the name of the actor of the use case diagram and the
use cases will be the operations in this class. Fig 3.3 shows the class diagram of iteration 1. In this
class diagram, we can see that there are two classes in this iteration, one AdministrationGUI and the
other is Administration. In AdministrationGUT class, all the operations related to the GUI is

performed and the database work is performed in the Administration class.

17

» Sequence Diagrams

o Signin

Administration | Administration Sian in Page | System | Database | |
[Button | Fegmymen | |

| 1: Pressed i ‘

2: Updates |

3: Displays
4: Request Details|
5: Enter D_etails
6: Press Submit

7: Pressed

8: Updates

9: Verifies

10: Verified

11: Signed In |

Fig 3.4: Sequence diagram: Sign in by the Administration i

Fig 3.4 is the sequence diagram for login by the Administration in Academic Resource }

Management System.

¢ Enrol Student

| Administratiori.é | Enrol Student Enrol Student i System | Database :
tadll Button Pag i

1: F're§sed : i .: ;
| 2: Updates &
! ; 37: Display%
4: Request Details
5: Enter Details

6: Updates

7: Updates

8: Record added |

-

i : 9 Student Enrolled

Fig 3.5: Sequence diagram: Enrol Student by the Administration

Fig 3.5 is the sequence diagram of Enrolling a Student in university.

18

i « Add Faculty

Administration - Add Faculty =~ Add Faculty | System =1 Database
Button Page | i
‘t 1: Pressed I |
| 2: Updates |
|
3: Displays |

4: Request Detailsl

5: Enter Details |1
[6 Updates

7: Updates

| 8: Record added |

| e Faculty Added

Fig 3.6: Sequence diagram: Add Faculty by the Administration

Fig 3.6 is the sequence diagram of Adding the information of a faculty in the university.

¢ Register Student
|

| Administration |Register Student | Register | | System | | Database
(D% Bitioh | atiidont Pages |~ 1]|

1: Pressed

2: Updates
3: Displays :
4:Roquest atas |
Ederpatals | |
6: Updates
! 7: Updates

8: Record added
oSt Rogisteras
= | |
| |

Fig 3.7: Sequence diagram: Register Student by the Administration

Fig 3.7 is the sequence diagram of Registering a student in some semester in the university.

19

+ Add Department

Administration . Add Department Add Department System .~ Database
Button | Page :
1: Pressed L i |
l 2: Updates !
| Sl
| ; 3: Displays

4: Request Details

5: Enter Details

6: Updates

7: Updates

: 8: Record added

9: Department Added

Fig 3.8: Sequence diagram: Regisfer Student by the Administration
Fig 3.8 is the sequence diagram of adding a department (like CSE, IT, ECE etc.) in the university.

¢ View Student Info

- Administration | ‘ View Student EView Student | System Database
1 4 | bhfoButten . | InfoPage | |
1: Pr&cseq =
2: Updates
3: Displays |
| 4 Request Ral o, |-
-_-5_:____i§nter Roll No.
6: Updates X
: 7: Checks
8 Record Found }
9: Shows Student Info I ‘

Fig 3.9: Sequence diagram: View Student Information by the Administration

Fig 3.9 is the sequence diagram of Viewing information of a student in the university.

20

-
" o
P Wt ce ‘-':."’-u‘
i el U
S

SN

Acc. No..SPe. 02y, \
l // Ay

SPoBI2O LY o/

« View faculty Info

‘ [t T Y N
1/""“!m‘rghal. 5012~
IAdmin&straliom View Facullv' Info% | View Fa'c“:b'l'ty - ! Sy' stem =y Dﬁt'abés"é'
| ‘ Button 5 | Info Page i
1: Pressed i
2. Updates I

~ 3: Displays

4: Request faculty _i
5: Enter faculty _id

6: Updates

7: Checks

: 8: Record Found

9: Shows Faculty Info

Fig 3.10: Sequence diagram: View Faculty Information by the Administration

Fig 3.10 is the sequence diagram of Viewing information of a faculty member in the university. }
: il
¢ Edit Student Info
‘ Administration | |Edil Student Info | | Edit Student_ | Svstem ! | Database
Button i Info Paqge i 1 i

1: Pressed

2: Updates

3 Displays
4: Request Roll no.

5: Enter Roll no.
6: Updates

10: Request Details

s ‘
9: Displays Records

11: Enter Details
|
|
|

12: Updates

i
i | 13: Updates
| |
14: Record Upated

15: Details Edited

Fig 3.11: Sequence diagram: Edit Student Information by the Administration

Fig 3.11 is the sequence diagram of Editing the information of a student in the university.

21

Fig 3.12 is the sequence diagram of Editing information of a faculty member in the university.

Edit Faculty Info

| Administration | |Edit Faculty Info_| | Edit Faculty | | System Database
H H Button i | Info Page i i
i 1: Pressed | I
! 2: Updates l
} : 3: Displays
4: Request faculty_id |
5: Enter Faculty_id
6: Updates
7: Checks

8: Record Found
9: Displays Records
10: Request Details

11: Enter Details
12: Updates
13: Updates

14: Record Upaled

15: Details Edited

Fig 3.12: Sequence diagram: Edit Faculty Information by the Administration

Delete Student Record '
\ Administration | |[Edit Student Info | | Edit Student. | | Delete Button | ['system | | Database
L Button | | lofoPage | | i i

| 1: Pressed

Al

2: Updates }
_ 3: Displays !
4: Request Roll no.

5: Enter Roll no.
6: Updates

7: Checks

9: Displays Records

10: |Press Delete Button

11: Pressed |

8: Record Found I

|

[

12: Updates ‘
|

13: Deletes Record

14: Updates

15: Record Deleted i |

‘|z | | | i'

Fig 3.13: Sequence diagram: Delete Student Record by the Administration

Fig 3.13 is the sequence diagram of Deleting Record of a student in the university.

22

« Delete Faculty info

| Administration | | Edit Fac Info_| Edit Facully Del ul vt System Database
: Button i Info Page | {

| 1: Pressed |

2: Updates E
i 3: Displays

A: Request facullyﬁid‘ I
| i
|
| # 6: Updates

5: Enter faculty_id

7: Checks

|
8: Record Found

; 9: Displays| Records
| I 5
10: |Press Delete Button |

11: Pressed

12: Updates
13: Deletes Record

14: Updates

15: Record Deleted

Fig 3.14: Sequence diagram: Delete Faculty Record by the Administration

Fig 3.14 is the sequence diagram of Deleting Record of a faculty in the university.

o Activity Diagrams i
¢ SignIn

; b :
/ Press administration
S Button =
i

3 NV
Enter Sign in S

De_'iails <
]
I
Authorize
NG If not found in database

\" If found in database

Signed in 5
Fig 3.15: Activity diagram: Sign In by the Administration

Fig 3.15 is the activity diagram of login by the Administration in the Academic Resource

Management System.

23

¢« Enrol Student

.~ Press Enrol
. Student Button

~ Enter Details

Updates
__Database

R ..‘.i‘.f...._..._... -t
Student
~._ Enrolled
|

Fig 3.16: Activity diagram: Enrol Student by the Administration

Fig 3.16 is the activity diagram of Enrolling a student by the Administration in the university.

« Add Faculty

~Press Add ",
‘._Faculty Button .’
|

\b

/" Enter Details ™

“Updates
Database ./
]

~“Faculty Added

i

\é
Fig 3.17: Activity diagram: Add Faculty by the Administration

Fig 3.17 is the activity diagram of Adding a faculty member by the Administration in the university.

24

. Register student

. Press R'egister
*._Student Button -

“ Enter Details

7 Updates
.. Database
U
/7 Student J
Registered -~

J

W

Fig 3.18: Activity diagram: Register Student of Administration

Fig 3.18 is the activity diagram of Registering a student in a semester by the Administration in the

university.

« Add department A

Updates
\.__Database _/
|

7 " Department
. Added

Fig 3.19: Activity diagram: Add Department of Administration

Fig 3.19 is the activity diagram of Adding a department (like CSE, IT, ECE etc.) by the

Administration in the university.

25

o View Student Info

. Press View Student
Info Button

.Enter Roll no. -

_Database
}
s _ Ifnot found in database

., If found in database

y

Fig 3.20: Activity diagram: View Student Info of Administration

Fig 3.20 is the activity diagram of Viewing the information of a student by the Administration in \

the university.

* View Faculty Info

]
|
iy

¢ Press View Faculty
X Info Button /
1k

. Enter faculty id
{ e

4

Checks N !

Database i
!
% _ If not found in database ;

i If found in database

Shows Faculty
Info

i ¥
Fig 3.21: Activity diagram: View Student Info of Administration

Fig 3.21 is the activity diagram of Viewing the information of a faculty member by the

Administration in the university.

26

« Edit Faculty Info

Press Edit Faculty
Details Button

N

Enter faculty id

Checks
Database

If not found in database
If found in database
. Shows Faculty
Info

N
Edit Details N

]
N
Press Save
button

Details Edited

N

(-
Fig 3.22: Activity diagram: View Student Info of Administration

Fig 3.22 is the activity diagram of Editing the information of a faculty member by the

Administration in the university.

¢ Delete Student Info /

1
|

¥ st §
Press Edit Student 5
Details Button

W
¢/ Enter Roll no. .

it
Checks
Database
o If not found in database

E b If found in database

“Shows Student
e Info

¢ Press Delete
b button
1
Record ~
Deleted 4

s

Fig 3.23: Activity diagram: View Student Info of Administration

Fig 3.23 is the activity diagram of Deleting the information of a student by the Administration in

the university.

27

« Delete Faculty Info

Press Edi’t Faculty
Details Button

Enter faculty id

Checks
Database

If not found in database
If found in database

Shows faculty
Info

Press Delete
button

N
Record
Delsted

g

@
N r

Fig 3.24: Activity diagram: View Student Info of Administration

Fig 3.24 is the activity diagram of Deleting the information of a faculty member by the

Administration in the university.

» Edit Student Info

TR
Press Edit Student
2 Details Button

Enter Roll no. S
74
i 5
\;:/
7, Checks
Database

S If not found in database

., i found In database

/ Shows Student

Inlfo

L
snore: . ¥
Edit Details
7 Press Sawe
8 button
J

Deatails Edited .

o

L)

Fig 3.25: Activity diagram: View Student Info of Administration

Fig 3.25 is the activity diagram of Editing the information of a student by the Administration in the

University.

28

o ER Diagram

sl por el) : siud acad detal . stud hastel detal i stud repirl
ﬁ»FK Suud Ercl wehafl$) U WIK Sud Brol swrcha1S U (‘bﬂ\ Stud Envoll wrcharl U hF AR St ol varclor]
i Sud Genler varchuif gS?&i Baich mleger() £ ud | Hosiler(ayscholar vamhar(H) : xi ‘s(;i'é.l)
LStu;i DO date {;S}adrﬁém () Lsmd HoskelNo varchar(?] EI_ t_\rgi Q(,PA? fhal(}) {
bl Mobertane varchr) L — Esmd Block vasha?) [|| Sud SO0 gt
Fl Fa{hu‘*;;jx_ varchar)) £ Sl Pera £ xludmRﬂw\o vanha) i || Sl $GPA 4_ _ﬂml{!l &
Sl Pbtkeuin varur)) Cond 1NNy intgeth . WSt
Slud Fhafh inieges10) b \E Sead Percentagel? () i ! ESLd %PM Nal) i(
'l okl) H : e ESul SOA7 D) [
Sl Tophdl vachar2l) | e i Polsons tuy) &
gmd TempPh nieger10)) —~ e : Eond SGPAY)
hﬂ Pm&d ;Mcm@ﬂﬂ] H . ﬁm Sfﬂ:ffﬂ! yluaneunuwueeanaauls :;mnspr la ﬂmi 7 I‘l
Egrawp:rm?h : I‘mcg‘q“‘ﬁ}m | dsasaaerpnansrsredd ?Smd !.‘Emu }m’hlr(iSJ has ‘E%ﬂ C(IPA ﬂm:;{ s ;
¢ T i
) f:stud ?mmc sarchar 3)
Ebtud Laamf archar$l)
E‘imd i’r@gram Carhafll) ‘ \
(" Sudont Comrseoffornys) WA Dipt e 1) b
K Smseess—) : i W Techer id vl
SEK Sud Brall varcharls) T
iyl e " i} [Tca&scr Gendr . '\mhgﬂ\h]
%FMmm u;f& uw;s! /] ehrads :
? i SR ! belangs fo E Teacher Deh e \
: - ’ 1 E]cathcr MarlalSaus yarchat$) |
“Cnm (e %‘Jffhai{fl t . i |
= wosssraversenenl{ Department : Tescher "Ealhcmamc yarchar) Ik)
x' : ’s? Degtaame varcharl) b ! Teacher Fathcrmme varchar 1) j, /
iy il e / [Ifa;hcr ftachum*ul vachu$l)
f‘“ Q”’HEJ : : -: " 2 igvbés-’,étﬂé%qsvsqvvuﬁ ETNEIK’ [tl'ﬂ[ﬂdd V&Khanﬁm} il -
: i i Warks For : ETcaLhcr Temphane imcgtr{l(l [
' | ’ ' vkt
e ; i i [l b et T
1 Tl \ eacher crp x lméy.'ﬂ'l] ;
S Dept ame_ varchar(1f) i : 4
k]|, Tladerid vacha(lf)
: Y “hrere Teacher Em'uls wehll) | g TS \
i o S
m‘}?ﬂ{ : ﬁhamc w0 [1’ WK Teaher il varcharf)
t[;g"ln;ﬁwi‘. k“rﬂfbfr (ll|€ Yare . _hluiuunaauxwaaak ETfafhf.I mthl]) = IﬂleﬂH]”
mf; ﬂj 4 dm: Teacher penentgeld float)
varchag 10} ﬁ i Depf W{ wrahiriffi; EI‘taehtr%’lhp} mlcgerﬁl
N'ﬂ“ s Teaehcr;mttnugel’ floatd)
i §Teacher UGy iegen)
_ is offered i é‘ﬂ’"’*’i Efcazhcr }\wenuﬁelf M4
- | Teacher Course afferings | tcher iy et
“%M Teucher :é varchar([f) r ke ?{m“ﬁcp(' ﬂmi
%H\ Course code vamchar (203

Fig 3.26 Entity Relationship diagram

29

3.4.21teration 2: Department

e Use case diagram

e e SR RS

e

/ /,;:“"'_i_: Add Course >

¥ ///7 R v p Course e

s / g e
////’// {’/ Allot Coursesin
i BTl Semester (,)
e AT S

o
/}/ i S e Refresh Assignment
e AR o o i of Courses
w0V COUrses
e e e, i
e e R g Assign Courses to
\ Faculty
e e
M\“\(’ View Staff
s dlisic) Information
e L O RO

View Courses

Department

View Courses
Assigned to Faculty

N signout >
Fig 3.27: Use Case diagram of Department

Actor: Department

Use Cases: Sign In, Add Course, Drop Course, Allot Courses in Semester, Refresh Assignment of
Courses, Assign Courses to faculty, Refresh Assignment of Courses, Assign Courses to Faculty,

View Staff Information, View Courses, View Courses Assigned to Faculty, Sign Out.

e (Class Diagram

After creating the use case diagram and showing the use cases of iteration 2, we determine

that there will be a class named Department on the name of the actor of the use case diagram and

_ the use cases will be the operations in this class. Fig 3.28 shows the class diagram of iteration 2. In
this class diagram, we can see that there are two classes in this iteration, one DepartmentGUI and
the other is Department. In DepartmentGUI class, all the operations related to the GUI is performed

and the database work is performed in the Department class.

30

Department
DepartmentGUI %driiv_ersz alfing
g;frame - JFrame Erse-r -tgtnrigng
image - Imagelcon 2o
&deptName : String Sopaes Sy
®addc
. addCourse()
@dgg&GUl() i ®dropCourse()
%a ourseGUI() ©getDepartmentiames()
diopCaumeGUIN o e s : ©getCourseName()
QallotCourseSemesterGUI() ‘%getFacuIty!d()
QgetCourseCodeGUI() ®getCourselnfo()
‘%’refrgshRecordGUK} QallotcourseSemester)
Qa.smgnCoursesGUI() YrefreshRecord()
SviewStaffinfoGUI() RassignCourses()
YviewCoursesGUI() SviewStaffinfo()
iewCoursesToFacultyGUI() iewCourses()
%iewCorsesTuFacultyU

Fig 3.28 Class diagram of Department

e Sequence Diagrams

——

¢ Add Course

| Department | Drop course Drop Course | | Sysfem | Database
; i Bution : : Page i i i
: i
i 1 i
i i] {
i : et i ‘ :
! i intois o > R = RS R !
i 3: Displays
4: Requast Details 1 :
- ol |
l 5: Entar details
H g - - " Arossneane - v 3 |
I | ; » 6: updates
il i 4 I
i} i 14 7: updates
{ : | &lrecord deloted
i ; i 9. course doleted
B ‘

Fig 3.29: Sequence diagram: Add course by the Department

Fig 3.29 is the sequence diagram of Add Course by a Department (like CSE, IT, ECE etc.) in

Academic Resource Management System.

31

¢ Allot Courses

Department allof courses course alfotment Allotnent courses page System Database
button dialog box i
1: pressed
2. updates
| 3
3. Displays
- ;
4: Request Course Code
o i
5: Enter, Course Code

i i b 8: updales H
P 3 -
b 7: Display
8 8: Request Delails Lk et
|
i 9: Enter Detais

10: updates

11: updates H
1 ! 13: Information Stored i S 3
i 4 | 13 12: record added
; 1 P o

Fig 3.30: Sequence diagram: Allot courses by the Department

Fig 3.30 is the sequence diagram of Allot Courses in semester by a Department in Academic

Resource Management System.

* Refresh assignment of Courses

[Department | © Refresh ; . Refrash Record | | System | Database |
i i . Assignment of . Confirmation : i i
{ Courses Button | | . Diafog Box !
1: pressed : 2: updates
b . >
| 3: Displays
4: Request Confirmation { Rl
5: R;&spﬂlma {
i 6: updates i
..... : .

7: updates
8: records refreshed

9: records updated

Fig 3.31: Sequence diagram: refresh assignment of courses by the Department

Fig 3.31 is the sequence diagram of Refresh Assignment of Courses in the beginning of every

semester by a Department in Academic Resource Management System.

32

« Assign Courses to faculty

Department assign courses Assign courses | System . Database |
to faculty Button Page |
1: pressed 2: updates
| 4 b
3: Displays
4. Request Dolails
i

5 Enter delails
&: updates
7 updates
8: record added
9: course added

Fig 3.32: Sequence diagram: Assign courses to faculty in department

Fig 3.32 is the sequence diagram of Assign Courses to faculty by a Department in Academic

Resource Management System.

¢ View Staff info)

Departmant View staff info View stafl Page | Systam Databasg

1: pressed 2: updates ‘

> j »
| i 3: checks
4: gathers info

5: Displays

Fig 3.33: Sequence diagram: View Staff info by the Department

Fig 3.33 is the sequence diagram of View Staff information by a Department in Academic Resource

Management System.

33

s view courses

Department View courses View courses System Database
buton Page
1. pressed 2 updates
-
3; checks

4: gathers info

5: Displays

Fig 3.34: Sequence diagram: View courses info by the Department

Fig 3.34 is the sequence diagram of View Courses Information by a Department in Academic

Resource Management System.

¢ View Courses Assigned to Faculty

| Department | | View courses | Viewcourses | .| System | | Database
% | . assned to facully 1 Page |] :]
1: pressed 2: updates
; P ; P

3. ehecks
4: gathars info

S: Displays

Fig 3.35: Sequence diagram: View Courses Assigned to Faculty by the Department

Fig 3.35 is the sequence diagram of View Courses Assigned to Faculty by a Department in

Academic Resource Management System.

34

o Activity Diagram
o Add Course

Pross Add Course Button |

Enfer detalls

Updates database |

Course Added
®

Fig 3.36: Activity diagram: Add Course by the Department

Fig 3.36 is the activity diagram of Add Course by the department in the Academic Resource

Management System.

* Drop Course

Enlo.r .delal is
o e
Course Qropwd
®
Fig 3.37: Activity diagram: Drop Course by the Department

Fig 3.37 is the activity diagram of Drop Course by the Department in the Academic Resource

Management System.

35

* Allot Courses

Press Allot Course Bullon

Enter detalls

Update database
|

|

Course Alloted
|

®
Fig 3.38: Activity diagram: Allot Courses by the Department

Fig 3.38 is the activity diagram of Allotment of Courses by the Department in Academic Resource

Management System.

¢ Refresh Assignment of Courses

| Pross Refresh Courses Bution

3 Conflrmation

Reacords Refreshed
@
Fig 3.39: Activity diagram: Refresh Assignment of Courses by the Department

Fig 3.39 is the activity diagram of Refresh the assignment of Courses to the faculty in the beginning

of every semester by the Department in Academic Resource Management System.
36

"'i -

« Assign Courses to Faculty

i Press Add courses to faculty

Enter detalls
Updatos database

Cowrse addead

i

.

Fig 3.40: Activity diagram: Assignment of Courses to Faculty by the Department

Fig 3.40 is the activity diagram of Assign Course to Faculty by the department in Academic

Resource Management System.

* View Staff info

{ Press View staff info Button |

Gathers Info from database |

shows staff info

Fig 3.41: Activity diagram:View staff info in department

Fig 3.41 is the activity diagram of Viewing the information of a faculty member by the department

in the university.

37

¢« View Courses

Pross View courses Button

Gathers info from database

shows courses Info

Fig 3.42: Activity diagram:View Courses in Department

Fig 3.42 is the activity diagram of Viewing the Courses in the department by the department in the

university.

3.4.31teration 3: Account Office

e Use case diagram

Submit Fees of
Student
/ ——
j s Payment of Salary
e of Faculty

\

Account Office \N(—S_!g:\ﬂout

Fig 3.43: Use Case diagram of Account Office

Actor: Account Office

Use Cases: Sign In, Submit Fees of Student, Payment of Salary of Faculty, Sign Out.
38

I’

e C(Class Diagram

AccountOfficeGUI %d_ ACC(;:nAtOﬂice
: river - String
&frame - JFrame el

&image : Imagelcon &St SiinG

&pass : String

“accountOfficeGUI{)
SgetErrNo GUI()
CsubmitStudentFeeGUI()

¥getStudentDetails()

CsubmitStudentF
LqotF submitStudentFee()
ﬁggyFaaccuLmdsglggeuu} QgetFacultyDetails()
' ®payFacultySalary()

Fig 3.44 Class diagram of Account Office

After creating the use case diagram and showing the use cases of iteration 3, we determine
that there will be a class named AccountOffice on the name of the actor of the use case diagram and
the use cases will be the operations in this class. Fig 3.44 shows the class diagram of iteration 3. In
this class diagram, we can see that there are two classes in this iteration, one AccountOfficeGUI
and the other is AccountOffice. In AccountOfficeGUI class, all the operations related to the GUI is

performed and the database work is performed in the AccountOffice class.

e Sequence Diagrams

¢« Submit Fees of Student

account | submit fees butlon {enol no dinkyg | “sludonl foes pago i Bystam Dalobase
office H i i box H i
1: pressed | :
‘.x’ b. 2: updales :
- » 3. chicks i
i 4: gathers info i
; ; 5: Display il
€: Reguést Details o o ﬁ i
7: Ender delals J i
8: chacka n database
PREt s I ——— »
9: data found i
¢ 15 isplay
11: requesl {4 1
- . b
12: press submil butlon i i
i > i
H 13 epdales i
o
14: fees submilled
4 ;

Fig 3.45: Sequence diagram: Submit Fees of Student in Account Office

Fig 3.45 is the sequence diagram of Submit Fees of Student by the Account Office in Academic

Resource Management System.

a1

« Pay Salary to Faculty

account salary of faculty faculty i dialog faculty salary Syslem Database
office box page
1: pressed
2 ppdales
> £ 1S 3: checks
R
4. gathers info]
5: Displays
S ;
6: Reqquest Detaiis
4
7. Enter delails
i » i
i 8: checks in database
! : b
{ ! 9: data found
i : 10: display
11: request B
“ 3
{ 12: press submit button H
Lo i 13: updates
i i 4 »
i 15: salary paid
i

Fig 3.46: Sequence diagram: Pay Salary to Faculty in Account Office

Fig 3.46 is the sequence diagram of Payment of Salary to faculty by the Account Office in

Academic Resource Management System.

e Activity Diagrams

e Submit Fees of Student
®
| Pross Submitfees Bullon i

i Enter snroll numbaer

checks database i if not found |

if found in databasa

Feoes Submitted

Fig 3.47: Activity diagram:Submit Fees of Student in Account Office

40

Fig 3.47 is the activity diagram of Submit Fees of Student by the Account Office in Academic

Resource management System.

* Pay Salary to Faculty
®

Pross payment of salary button

Enter facully id

checks database
i if not found

if found in database

salary pald

@
Fig 3.48: Activity diagram : Pay Salary to Faculty in Account Office module

Fig 3.48 is the activity diagram of Payment of Salary to Faculty by the Account Office in Academic

Resource management System.

In this chapter, we implement eXtreme Programming. We design many UML diagrams like Use
Case diagram, Class diagram, Sequence diagram and Activity diagram. After completing the design
of all the iterations, we move to the coding (implementation) part of that iteration. The coding and
the snapshots of the implementation are shown in Appendix A and Appendix B. The testing of the

implementation goes hand in hand with the implementation.

41

Chapter 4

4. Conclusion and Future Scope

4.1 Conclusion

Academic Resource Management System is developed as a part of the degree completion
process in the fourth year. It was really tricky initially as the group was naive when it came to the
implementation of the Agile Methodology of the software development process.The task in hand
was to develop the system and thereby to widen our horizons in the field of Agile Methodologics.
The best practice was to go step by step and sticking to the basics learnt in the past 3 years which

really worked well for the group. After going through a lot of research, there came a belief that we

can implement eXtreme Programming methodology on our project, Academic Resource

Management System.

After completing this project, we can proudly declare that we have learned how to go for a
project systematically by first analysing the things around us and learning from the mistakes to give
the best possible output. We hope that it will definitely help us in future and help us to reach heights

in our professional careers
The skills learned in through this project can be summarized as:

e XP which is one of the Agile Methodologies to develop a project.

e How to work on JAVA Swings and how diffecrent components in that can be used as and
when required.

e JAVA classes.

e Had a very good experience of working on Netbeans IDE 7.0.

e Oracle Database 10g Express Edition, in which database of the project is created and
managed.

e JDBC connectivity to the Oracle Database 10g Express Edition.

4.2 Future Scope

Academic Resource Management System is a very vast project. In this project, we have
completed the administration and department related work and some work of accounts department.

42

In future, the project can be extended by including some more entities like faculty which is an
essential part of academics. When faculty work will be added, one more feature of administration
that is creating results can also be added in the project. The accounts department is itself a very big
part of academics. That can also be added in the project. Then library management and hostel
management arc also a part of academics on which we can think. By doing all this, a person or

student can get knowledge of programming and many other things that are used in this project.

43

j
‘ Appendix A

Codes

1. ARMS.java

public class ARMS !

{
public static void main(String[] args) {}

public void loginFormGUI() {}

}

2. Login.java

public class Login
| (
| public ArrayList<String> matchLoginDetails(){ }

3. AdministrationGUI.java

public class AdministrationGUI

{
public void adminGUI() { }
public void enrolStudentGUI() { }
public void uploadPicGUI() { }
public void addFacultyGUI() { }
public void getStudentInfoGUI() { }
public void viewStudentInfoGUI() { }
public void getFacultyInfoGUI() { }
public void viewFacultyInfoGUI() { }
public void editStudentInfoGUI() { }

public void editFacultyinfoGUI() { }
44

public void addDepartmentGUI() { }
public void batchFeeSpecificationGUI() { }

public void getFeeDetails() { }

}

| 4. Administration.java

I public class Administration

{

_f public int checkAvailability() {}

i public boolean enrolStudent() {}
public boolean addFaculty() {}
public int getStudentInfo() {}
public int getFacultylnfo() {}
public boolean changeStudentinfo() {}
public boolean deleteStudentinfo() {}
public boolean changeFacultyinfo() {}
public boolean deleteFacultyinfo() {}
public boolean addDepartment() {}
public int getStudentCourseinfo() {}
public int registerStudent() {}
public int batchFeeSpecification() {}
public String getFeeDetails() {}

public int changeFeeSpecification(String str[]) {}

45

5. DepartmentGUILjava |
public class DepartmentGUI
(

public void deptGUI(){}

public void addCourseGUI(){}

public void dropCourseGUI() {}

public void allotCourseSemesterGUI() { }

public void getCourseCodeGUI(){}

public void refreshRecordGUI(){ }

public void assignCoursesGUI() { }

public void viewStaffInfoGUI() {}

public void viewCoursesGUI() {}

public void viewCoursesToFacultyGUI(){}
i

6. Department.java
public class Department
{

public int addCourse(){ }

public int dropCourse(){}

public String[] getDepartmentNames() {}
public String-getCourseName(){}

public String[] getFacultyld(){}

public String[] getCourselnfo(){}

public boolean allotCourseSemester(){}
46

| public boolean refreshRecord(){}

public boolean assignCourses(){}

public ArrayList<String> viewStaffInfo() {}
public ArrayList<String> viewCourses(){}

public ArrayList<String> viewCoursesToFaculty(){}

7. AccountOfficeGUIjava

public class AccountOfficeGUI

| {
public void AccOfficeGUI(){}
. public void getErrNoGUI() {}
public void submitStudFeeGUI(){}
public void getFacultyldGUI(){}
public void payFacultySalaryGUI(){}
}

8. AccountOffice.java

public class AccountOffice

{
public String getStudDetails(){}
public int submitStudFee(){}
public String getFacultyDetails() {}
public int payFacultySalary(j{}

}

47

Appendix B

Snapshots

Login Form

a8 35 o 335 Ao = R AR R e

Every entity in the Academic Resource Management System will first login into the system.

Administration Form

dministration

copbdithagitydofe o e |

. Edit Faa Structure |

Ragister studant il I
Viaw Studant Info. . |
| Visw Faculty Info |
Pes sl S i
e
|
!

Wheh administration login into the system, he will be shown administration form.

48

Student Enrolment Form

{8 Student Enrciment

*Enralment Number
*Program Name

*Semester

*Branch

Personal Details | cadamic Information | Hostal Detal

*Flrst Name :‘_‘ Last Name “
*Gender 3 Mals £ Famale *Data of Birth ;:06 d .;- mmv wrv v'
Father's Namie. - IKI Mother's Name o : L___—'——__l
Huier:': o.c:.\matlnn : l:] Father's P!_m Mur_!_ll‘ter m
's..,;.'nts._n;.,._m : :'Ew] G {iEnbever Shi]
-r:._mu',.,r;_m.ﬂ..mu; . s ey p;,_.,....;.;._ggiawgs_ o o T
SEETEE L L .

When the Enrol Student Button is presses this form will be shown. It stores the record of newly

addmitted student.

Department Form

SE/IT Department

1 rop Courl

pllot Courses In 5

N @D

! T View Staff infy ; l
fi o 1

Viaw Coursas |
|ikis S |
l Migw Courses assignad to F_ac_uktf

When a department like CSE/IT login into the System, this form with department name will be

shown.
49

Course Allotment Dialog Box

|
. |
]
|
i

4
|
|
{
{

Course Allotment

Enter Course Code
[

When any department presses the Allot Courses in Semester Button this dialog box will be shown.

Allotment of Courses in Semester Form

When the course code will be entered in the previous dialog box this form will be shown.

50

Faculty 1D

Semester

| Courss List 1| Cayrse List 2| Course List 3
Course Name (Course Code) For Dept. Semester

| DATA STRUCTURES AND COMPUTER PROGRAMMING LAB (07821€1702) 1T 2

: DATA STRUCTURES {07B21C1102) ! m 2
NETWORK MANAGEMENT (118 1WC1836) T 2
INTRODUCTION TO COMPUTERS AND PROGRAMMING (07811C1101) 8l 2
| INTRODUCTION TO COMPUTERS AND FROGRAMMING (07B11C1101) a1 2
NETWORK MANAGEMENT {1181V/C1836) = CSE- 2

| INTRODUCTION TO COMPUTERS AND PROGRAMMING (0781 1c11o.u CIviL 2

1 'COMPUTER PROGRAMMING LAB (07B11C1701) Bl 2

] 'comm'sn PROGRAMMING LAB (07811CI701) LR R A

| COMPUTER PROGRAMMING LAB (07811C1701) : CIvIL 3

| [DATA STRUCTURES AND COMPUTER PROGRAMMING LAB (ommcmz} HESE 2

] DATA STRUCTURES AND COMPUTER PRDGRAMM]NG Le (ovsucnaz} ECE i 3

| DATASTRUCTURES (07821C1102) -~ ! cse 2

| DATA STRUCTURES (07821C1102) .~ i ECE 2

| ADVANCED SOFTWARE ENGINEERING (mm:crzla) et ST 2
ADVANCED SOFTWARE EHGlNEERiNG (10M11€1213) CSE 2
UNIX PRDGRAMM[NG LAB (a7831C1705) i ECE 4

» dn i 4

Au;ommms A8 (10B17C1471) e m 4.
N.Gommns LAB [mn?cun) i ek CSE 4

- B.Jech.

Cldeh
BJech: |

‘M.Tech.

Program Select
B.Tech.
B.Tach,
M.Tech.
B.Tech,
8.Tech.
M.Tech.
B.Tech.
8.Tech.

8.Tech.
B.Tech. -

sTech,

MTech.
B.Tech.
8.Tech,
B.Tech.

BTech.

When department presses the assign courses to faculty button this form will be shown. In this form

if we click on the even radio button then subjects only in even semester will be shown.

Accounts Department Form

Accounts Depa rtment .

| Submit Foes of student

| Paymant of salary to Faculty

51

Student Fee Form

|

| Enroliment No. 081215 Name
Current Sem. 8 Branch
Pragram B.Tech. Batch
Tution Fee 30000
Hostel Fee 27500
Total - 57500

. Submie.

Rajat Kumar Jain
CSE
2012

Authority Signature

When Submit Student Fee Button is pressed, this form is shown.

Faculty Salary form

- Facul

Faculty 14

: Ni;l‘iq S
ﬁu;:ii't_rﬁ{.em' :
S_nlnry .

Puvme.nt. Dl.nle

When Payment of Faculty Salary Button is pressed this form is shown.

52

References

(1]. Jeffrey A. Livermore, “Factors that Significantly Impact the Implementation of an Agile

Software Development Methodology”, Journal of Software, Vol. 3(4), pp. 31-36, April 2008

[2]. Boris Matijasevi, Hrvoje Ronevi, Ognjen Orel, “Agile Software Development Supporting
Higher Education Reform”. International Conference on Information Technology Interfaces,

pp.375-380, Junc 2007
[3]. Scott W. Ambler, “Agile Databasc Techniques”, Wiley Publishing Inc, 2003.

[4]. D. Wells, “Extreme Programming; A gentle introduction”,

http://www.extremeprogramming.org, March 2007
[5]. J. Hunt, Agile Software Construction, London: Springer-Verlag press, 2006

[6]. D. Wells, “The Rules of Extreme Programming”, http://www.extremeprogramming.org,

September 28, 2009

[7]. Sheetal Sharma, Darothi Sarkar, Divya Gupta, “Agile Processes and Methodologies: A
Conceptual Study”, International Journal on Computer Science and Engineering, Vol. 4(5), pp. 892-
898, May 2012

[8] e DesE LayrancepsslisssManoligs e Extrome == Prograniming=e and it oA piler = Processest!

http://princetonacm.acm.org/downloads/extreme_agile.html, December 19, 2002

[9]. Indika, “Difference Between Agile and Traditional Software Development Mecthodology™,
http://www.differencebetween.com/difference-between-agile-and-vs-traditional-softwarc-

development-methodology, Jul 10th, 2011

[10]. Beck, K., Extreme Programming Explained: Embrace Change: Addison-Wesley, 2000, ISBN
201-61641-6.

[11]. Erickson, J., Lyytinen, K., and Siau, K., “Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Rescarch,” Journal of Database Management, no. 4, vol. 16,

pp. 88=100,2005:

[12]. Kalra, B., Thomson, C., and Holcombe, M., “The Software Hut - a Student Experience of

Extreme Programming with Real Commercial Clients,” XP, 2005.
[13]. Schneider, J. G. and Jehnston, L., “Extreme Programming — Helpful or Harmful in Educating

05

E 3

Undergraduates,” Journal of Systems and Software, vol. 74, pp. 121-132, 2005,

[14]. Shukla, A. and Williams, L., “Adapting Extreme Programming for a Core Software
Engineering Course,” in Proceedings. 15th Conference on Software Engineering Education and

Training (Csee&T), 2002, pp. 184-191.

[15]. Stephens, M. and Rosenberg, D., “Extreme Programming Refactored: The Case against XP”,
Berkeley, CA: Apress, 2003, ISBN 1-59059-096-1.

[16]. T. Gaddis, Starting out with JAVA, New Delhi: Wiley Dreamtech India Pvt. Ltd., 2005

[17]. H. Schildt, The Complete Reference JAVA, 7th edition. New Delhi: Tata McGraw-Hill
Publishing Company, 2007

[18]. “Creating a Frame”, http://www.roseindia.net/java/example/java/swing/Swing index.shtml,
April 17, 2011.

[19]. “Java Swing Tutorials”, http://www.roseindia.net/java/example/java/swing, March 20, 2008.

[20].“Create a JRadioButton Component in Java”

http://www.roseindia.net/java/example/java/swing/CreateRadioButton.shtml, April 14, 2007.

54

