Dr RIK Bajay

## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT SUMMER SEMSTER (JUNE - JULY 2018) MID TERM EXAMINATION

COURSE CODE: 10B11MA411

COURSE NAME: Probability Theory & Random Processes

**COURSE CREDITS: 4** 

MAX. TIME: 2 Hr

MAX. MARKS: 50

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Use of scientific calculator is allowed.

1. Answer the following questions:

(2x5 = 10 Marks)

- (a) What is the expected number of throws of a die to get first 6?
- (b) What is P(A XOR B)?
- (c) If  $A \subseteq B$  then P(B|A) =\_\_\_\_\_.
- (d) State Baye's theorem.
- (e) If it true that if A and B are independent events, then  $\overline{A}$  and  $\overline{B}$  are also independent? Justify your answer with proof.
- 2. Consider the joint probability density function of X and Y:

(7)

$$f(x,y) = \begin{cases} \frac{1}{8}x(x-y), & 0 < x < 2 \text{ and } -x < y < x \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the marginal density function  $f_X(x)$  (b) Determine the conditional density function  $f_{Y|X}(y|x)$ .
- 3. Let X and Y be continuous random variables having joint density function

$$f(x,y) = \begin{cases} c(x^2 + y^2) & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0, & otherwise \end{cases}$$

Determine (a) the constant c

(b) 
$$P(X < 1/2, Y > 1/2)$$

(c) 
$$P(Y < 1/2)$$

- (d) whether X and Y are independent.
- 4. An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. 2 balls are drawn at random from the first urn and placed in the second urn and then 1 ball is drawn at random from the (5)second urn. What is the probability that it is white?
- 5. If X and Y be independent random variables with probability density functions  $e^{-x}$ ,  $x \ge 0$  and  $e^{-y}$ ,  $y \ge 0$ , find the PDF of U = X/(X+Y) and V = X+Y. Are they independent? (6)
- 6. If (X, Y) is uniformly distributed 2D random variable over the triangular region R bounded by y = 0, x = 3, (6)and 3y = 4x.

Find 
$$f_X(x), f_Y(x), E(X), E(Y), Var(X), Var(Y), Cov(X,Y), \rho(X,Y)$$
.

- 7. Assume that on the average one telephone number out of fifteen called between 2 pm and 3 pm on a week days is busy. What is the probability that if 6 randomly selected telephone numbers are called (a) Not more than three (b) at least three of them will be busy? (4)
- 8. In an urn there are r red balls and b blue balls. Balls are selected at random with replacement so that the first blue ball is obtained. What is the probability that exactly k draws needed for the first blue ball? What is the (4) probability that at least m draws are needed for the first blue ball?