

CHARACTER RECOGNITION USING GEOMETRICAL -
ANALYSIS

e s e e e e et 5

Project Report submitted in partial fulfillment of the requirement for the
degree of

Bachelor of Technology
- in .

Electronics and Communication Engineering

. under the Supervision of

Proﬁ Sunil V. Bhooshan

t _ By

| Rac]:it Khanna __(081 028)

Naveen Kr Yadav (081070)
[Gt o . A),)

" to

Jaypee University of Information and Technology

Waknaghat, Solan — 173234, Himachal Pradesh

]
§
i
H
[
i
L

CERTIFICATE

This is to certify that project report entitled “CHARACTER RECOGNITION USING
GEOMETRICAL ANALYSIS”, submitted by Rachit Khanna and Naveen Yadav in partial
fulfillment for the award of degree of Bachelor of Technology in Electronics and
Communication Engineering to Jaypee University of Information Technology, Waknaghat,

Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: . Juwne, 2012, Prof. Sunil V. Bhooshan

(Head of Department)

(Electronics and Communication)

e, | — §

P e S |

i
4

ACKNOWLEDGEMENT

The zeal to accomplish the task of formulating the project report on “CHARACTER
RECOGNITION USING GEOMETRICAL ANALYSIS” could not have been realized without

the support and cooperation of the members of the faculty.

We express our gratitude and sincere thanks to Prof. Sunil V. Bhooshan (Head of Department,
Electronics and Communication) who laid the stepping-stone to our quest of knowledge. He had

the foresight to the entire project and has been the source of inspiration and motivation.

We also thank Dr. Vinay Kumar (Asst. Prof., Electronics and Communication Department) for
providing us the opportunity to undertake the project under his able guidance. Ie helped us

develop novel solutions to every problem and emerge with good enginecring acumen.

2 /ﬁ N‘" o

Rachit Khanna Naveen Kr. Yadav

(081028) (081070)

TABLE OF CONTENTS
[TITLE Page No.
! Certificate 2
Acknowledgement 3
List of Figures and Tables 6
List of Symbols and Acronyms 8
Abstract 9
|
CHAPTER 1
INTRODUCTION 10
1.1 Existing OCR systems 10
1.2 Methodology 11
153 Benefits 12
1.4 Applications 12
CHAPTER 2
| METHODOLOGY 13
2.1 Conventional Approach 13
2.2 Approach Followed 13
2.3 Threshold Operation 16
2.4 Binarization 17
2.5 Thinning Algorithm 18
2.6 Grid Transformation 19
2arf Character Segregation ' 21
|
| CHAPTER 3
i CHARACTER RECOGNITION 24
i 3.1 Line Strokes - Horizontal and Vertical Strokes 24
E 3.1.1 Horizontal Strokes 25
4
:

3.1.2 Vertical Strokes 26
3.2 Miscellaneous Parameters 27
32.1 True Elements 2.
[3.2.2 Length 28
| CHAPTER 4
PROGRESS 31
CHAPTER 5
OUTPUT OF ALGORITHM ON MATLAB PLATFORM 36
CHAPTER 6
CONCLUSION AND FUTURE WORK 44
REFERENCES 45

'
i
#

T PTIEETET TaaE e T mam———— g

&

S. No.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure i0
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Figure 19

LIST OF FIGURES AND TABLES

Title

Original image for alphabet *A’

The input image matrix for the alphabet ‘E’

Image matrix for alphabet ‘E” after applying Threshold Operation
Image matrix of alphabet ‘E’ after Binarization

Image matrix of alphabet ‘E’ after applying Thinning Algorithm
Application of Grid Transformation on image matrix
Application of Grid Transformation on character ‘P’
Application of Grid Transformation on character ‘S’

Line Segregation

Word Segregation

Character Segregation

Character Parameters

Horizontal and Vertical strokes for character ‘E’

Flow chart for calculation of horizontal strokes

Flow chart for calculation of vertical strokes

Differentiation of characters on the basis of TE

Differentiation of characters ‘b’ and *d’

Calculation of the parameter ‘Length’ for alphabet ‘A’

Complete flow chart for the method

Page No.
14
15
16
16
18
19
20
20
21
22
23
24
24
25
26
27
28
25

30

Table 1 Parameter values for upper case alphabets 32
Table 2 Parameter values for lower case alphabets 33
f, Table 3 Parameter values for digits and special characters 34
t Figure 20 Output of algorithm for input character ‘a’ for font size 14 36
Figure 21 Output of algorithm for an input image consisting of a T

single statement of font size 14

; Figure 22 Output of algorithm for single word of font size 20 39
Figure 23 Output of algorithm for an input of multiple lines 40
Figure 24 Output of algorithm for an input of multiple lines 41

with special characters, digits and paragraph break

Figure 25 Input image of multiple lines containing large 42
amount of text and special characters

Figure 26 Command Window output for the input image shown in figure 25 42

Figure 27 The editable text file created after complete processing 43

of the input image of the figure 25

. —

Sibalagat

LIST OF SYMBOLS AND ACRONYMS

J OCR — Optical Character Recognition

| ICR — Intelligent Character Recognition

OMR — Optical Mark Recognition

ASCII — American Standard Code for Information Interchange
XML — Extensible Markup Language

TE — True Elements

NTE — Non True Elements

P e ——
<o

R e S s

ABSTRACT

Optical Character Recognition (OCR) is the mechanical or electronic translation of images of
handwritten, typewritten or printed text (usually captured by a scanner) into machine-editable
text. Character Recognition is a field of research in pattern recognition, artificial intelligence and
machine vision. Though academic research in the field continues, the focus on character

recognition has shifted to implementation of proven techniques.

In view of above-mentioned discussion, there exists a need to provide improved method of
character recognition by attribute analysis that can be applied to each character image, to achieve
high degree of success. In particular, the method discussed relates to recognition of characters in

a textual document based on certain attributes such as, strokes and size.

The method discloses a process of recognising characters in a textual document, the textual
document being represented as an image matrix. The method includes applying threshold
operation on the image matrix to present the intensity thereof with predefined intensity values,
converting the image matrix into single bit binary representation, reducing the thickness of the
character strokes to a single line by applying thinning operaticn on the image matrix, performing
grid transformation on the image matrix considering the basic pixel element in a virtual triangle
and reducing dependency of character recognition on character curvatures, segregating
individual character sequentially {rom the image matrix starting from a predefined location and
storing it in a character matrix, calculating horizontal strokes, vertical strokes, length, and true
clements of each character, recognising individual character of the character matrix based on
such horizontal strokes, vertical strokes, length, and true elements and repeating the above steps
until all the characters of the image matrix representing the complete text document are
recognized and an editable text file corresponding to the input text document is created. The
emphasis has been to eliminate the dependency of the recognition process on the curvatures

possessed by the characters so as to make it more reliable, accurate and less complex.

|
y
f
|

CHAPTER 1

INTRODUCTION

Optical Character Recognition (OCR) is a process that translates images of typewritten scanned
text into machine-editable text, or pictures of characters into a standard encoding scheme
representing them in ASCII or Unicode. An OCR system enable us to feed a book or a magazine
article directly into a electronic computer file, and edit the file using a word processor. Though
academic research in the field continues, the focus on OCR has shifted to implementation of
proven techniques. Optical character recognition (using optical techniques such as mirrors and
lenses) and digital character recognition (using scanners and computer algorithms) were
originally considered separate fields. Because very few applications survive that use true optical
techniques, the OCR term has now been broadened to include digital image processing as well.
Early systems required training (the provision of known samples of each character) to read a
specific font. "Intelligent" systems with a high degree of recognition accuracy for most fonts are
now common. Some systems are even capable of reproducing formatted output that closely
approximates the original scanned page including images, columns and other non-textual
components. However, this approach is sensitive to the size of the fonts and the font type. For
handwritten input, the task becomes even more formidable. Soft computing has been adopted
into the process of character recognition for its ability to create input output mapping with good
approximation. The alternative for input/output mapping may be the use of a lookup table that is

totally rigid with no room for input variations.

1.1 Existing OCR Systems

OCR concept came into picture for two main reasons: telegraphy and creating reading devices
for the blind, about a century ago. There are different type of OCR systems that are under
development or have been designed, like the desktop or server OCR softwares that consider
sequences of characters rather than whole words or phrases and then based on analysis of
sequential lines and curves, it makes 'best guesses' at characters using database look-up tables.
There are some other OCR systems that utilize a database of dictionary words for the
recoginition of words as a whole. In such OCR systems a word by word approach is followed

rather than a character by character approach.

10

4

D S S e N S T s S e -

As far as accuracy is concerned for the currently available OCR systems, character-by-character

accuracy for commercial OCR software varies from 71% to 98%; total accuracy can be

achieved only by human review.

Accuracy rates can be measured in several ways, and how they are measured can greatly affect
the reported accuracy rate. For example, if word context (basically a lexicon of words) is not
used to correct software finding non-existent words, a character error rate of 1% (99% accuracy)
may result in an error rate of 5% (95% accuracy) or worse if the measurement is based on

whether each whole word was recognized with no incorrect letters.

Depending upon the techniques that are employed to recognize text, there are some OCR
systems that recognize the patterns of the strokes of the characters and are independent of the
font size, but they produce problems with recognition of characters having same shape in
uppercase and lowercase and in other cases where size of the recognized character also plays
important role, while in some of the other systems, recognition also takes character size into

account, hence giving extra information

Thus there is still a lot of work that can be done in this fields and keeping in line with this fact.
systems under development in contemporary world use different algorithms, thus giving
favourable results in one situation but lacking in some other situation while recognising the text,
so designing a perfect systems that works in all environment is not possible but designing the
system working in a perticular domain and giving good result needs to be taken into

consideration.

1.2 Methodology

The idea on this year long project was conceived with a vision that there is a need to reduce the
complexity involved in the field of character recognition and thus we began the research for an

innovative approach to character recognization problems.

To implement this, first, thinning algorithm is applied to cach word image (o produce sub images
representing different feature components. Thinning is a structural oparation that is used to
remove selected foreground pixél from binary images. Then, statistical analysis oi stroke
patterns, including both horizontal and vertical strokes, is performed on the sub-images to
distinguish between different characters. In the process of our recognition, we have assumed the

pixel grid to be a virtual triangle rather than a square,

11

1
:

1.3 Benefits

Save data entry costs - automatic recognition by OCR/ICR/OMR/barcode engines ensure lower

manpower costs for data entry and validation.

Lower licensing cost - since the product enables distributed capture-licensing costs for OCR/ICR
engine is much lower. For instance 5 workstations may be used for scanning and indexing but
only one OCR/ICR license may be required.

Export the recognized data in XML or any other standard format for integration with any

application or database.

1.4 Applications

Industries and Institutions in which control of large amounts of paper work is critical

e Banking, Credit cards, Insurance industries

Libraries and archives
e For conservation and preservation of vulnerable documents and for the provision of

access to source documents

OCR fonts are used for several purposes where automated systems need a standard character
shape defined to properly read text without the use of barcodes. Some examples of OCR font

implementations include bank checks, passports, serial labels and postal mail.

An OCR has a variety of commercial and practical applications in reading forms, manuscripts
and their archival etc. Such a system facilitates a keyboard less user-computer interaction. Also
the text, which is either printed or hand-written, can be directly transferred to the machine. The
challenge of building an OCR system that can match the human performance also provides a

strong motivation for research in this field.

117

: CHAPTER 2

METHODOLOGY

2.1 Conventional Approach

With the need of effective and accurate approaches for extracting and retrieving information
from scanned documents and images many information retrieval techniques have been proposed
: over the years. Our technique is based on feature analysis of each individual character. The
efficiency of the algorithm increases when characters are separated in the image. The shape
properties and gradient information of the original image are usually subject to font variations

such as boldness, font size, font type, etc.

i The contents of a textual document can be broken down into individual character alphabets.
Each of these individual characters has certain attributes such as strokes, curvatures and size. It

is on the basis of these atiributes that the character recognition process is carried out.

In a conventional approach the technique of character recognition is applied based on attributes
such as horizontal and vertical strokes, slant strokes with pesitive and negative slope, left end
! and right end closed curves. However, the limitations in such approach includes if the technique
' is applied to all alphabets, it is unable to rightly recognise alphabets with similar upper case and
lower case such as C, V, O, W, K etc. Further, it also fails to distinguish between character with

equal number of all such parameters such as D and P etc.

2.2 Approach Followed

The approach that we have followed incorporates stroke pattern analysis that can be applied to
each character image, to match a set of predefined criteria for character differentiation. To study
i the characteristics of character the images arc drawn with the help of MS Paint and then their

properties are determined using MATLAB.

The text in a document can be broken down into individual characters — the basic building block

of a textual documeni. Each of these individual characters have certain attributes — strokes,

curvatures, length, widih, etc. It is on the basis of these attributes that the character recognition

13

| |

b e ——

process is carried out. The approach that we have followed incorporates attribute analysis that

can be applied to each character image, to match a set of predefined criteria for character

differentiation.

f The emphasis has been to eliminate the dependency of the recognition process on the curvatures
f possessed by the characters so as to make it more reliable, accurate and less complex. Also, to do
away with the ambiguity experienced while dealing with similar upper case and lower case

characters such as C, V, O, W, etc, the method takes into consideration parameters relating to the

size of the character.

Although when it comes to OCR systems total accuracy can only be achieved by human review,

the method discussed tries to provide an error free final product to the user that recognizes both

upper case and lower case alphabets, special characters, word spacing, line breaks and even

paragraph breaks, so that minimal formatting is required.

Figure 1: Original image for alphabet *A’

We consider that the textual document is scanned and saved as an image. Let this image matrix

be called I, which consists of 8-bit per pixel intensity values (ranging from 0-255). Such an
& g

image matrix is shown below for the alphabet *E’.

i
i Ideally, the intensity values for the pixels forming the character elements should be 0 (black)
while the rest of the pixels should correspond to the intensity value 255 (white). However, the
: intensity values representing individual pixels may at some points take values between 0 and 255
(for the non ideal case when there is edge distortion, shadow projection, unwanted noise and
other such factors).
; The proposed process to recognize each individual character from a textual document consists of
E a series of operations. The complete methodology is explained stepwise.
255 285255 255 255 255 255 255 255 255 255 255 255 255 255 255 258056 955 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
6o 0 0SB0 S R0R0E 0 0. 000 00065055088 085, 058 nERUNSRENERLAES
Bhges () 0550520520700 550505505 25552557255 255 255508500 5 aR DA SEI 8 &
65 0 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
65 0 2355 255 255 255 255 255 255 285 255 2550088 955 986 965 05K 955 568 HEs
657 0 255 285255 255 255 255 2550255 255 2585 255.255 255 255 255 958 255 955
65 0 255 255 255 255 255 255 255 255 255255255 255 255 255 255 255 255 255
65 0 0= 00 08 0 0B 0 R0 0805580850065 985 055 0E8 9sc skl g
I 63550 Q0 0 S QO SR 0 0 s 05 s ORI 5R0550088 965 955 055 984 i 9ssin s
65 0 255 255 255 255 255 255 255 .055 055255 085 265 255 955 088 956 NE5 368 i
65 0 255 255 255 255 255 255 285 255 255 255 235 255 255 255 255 955 2585 255
65 0255 255°255:255:2552255 285 8600565055 955°055 168 58§ 068 985 968 ks
g 65 0 255255 255 255 255 255 255255 255:255:255 255 255 255 255 255 255 355
| 655005 2 0 08 00T 08 DR 0200 D26559555055 2555255 5055195650550555 ’
6980 0 Qi (i 0 = B e O 28) 0:52057255:255-255 2552557056 255 985
255255 255 255-255:255 2552555255 05552 55505559551 955. 388,088 988 955 nEsinsE
255 255-255 2557255255255 255 255 055 255505500585 055 065958055 766.0E8 568
i : Figure 2: The input image matrix for the alphabet ‘E’
t
|
E ‘
3 ‘
i
i

fF 2.3 Threshold Operation
i
|

Image matrix I consists of 256 intensity values. We apply thresholding operation to restrict I to
: only two intensity values — 0 and 255. All values greater than or equal to 75 are changed to 255,
? while all values below 75 are converted to O (this value is chosen as threshold since it is suitable
with respect to shadows, external noise and retention of relevant information). This way the
image matrix I is now reduced to black and white with no shades of grey in between. The result
i can be seen below for the alphabet ‘E’. The intensity values (below 75) near the edges of the

character and elsewhere have been changed to ‘0°.

R55°255 255 255255 255255 255 255 255 255 255 255 255 255 2551255 255 2851255

D55-255 955 385 985 085 985 255:255 956 055055 D55 255 255 255 D55°965LA56. 085
(L=, Qs (e (e R R O hn () st) e (v) 90 5 65725 5755520550 5 5B RIS SIS 68)0 h

0 0. 00 0 0 00GE0R 000025502550 255 255 255 285 25572558055

0 255255 255 :255:25512552550255:25572558:055.055 955 255 DES-A550085 088

095859 55 <0555 50 SHUIKSIO S § NSO SNEIBHEOSSBI 551D 3 LI FHUIS§ VIS SRS 56055

0 255 255 255 055 255:255- 265085 D550550055 2565 255 255 258 2557255 255

0225528 55055825550 5852558055528 5525585532 568255520 8 25 5T25 SRS RIS 6255

0 O 05 O feie O O 3 Ot) B () DF2551255°255° 255 255 25592557255 285

0200 0 0n 080 002 05255 2551255 255 255 255 285 255 258

0

0

0

0

0

255 2551255 255 255°265 258 255055955 255 055 255 255 95579551 255 255
255 258 255 2552555255 2557255025550255 1255255255 2551255255255 255
255 255 255 255255255 2580265 2555255 2558 2557255 2557250 255 1255 255
255 255 258 285 255255 255 255 2557255 255 258 258 2551255 255! 255 255

D=z O O Din O (s O 0 052557255 2552552552551 255 258 255

O 0 e 0w () aaes O pel) e () e () i () e (] 08255 285255 2556 265 255 255 2557455
285 255 255.255 255 255 255.255 255.255 2550985 D55 245 255125656 055 255265205
255-255 255 255-255-255-255-285 355 255 958255 255255 255 255 255 255 255 255

R 0000 0O 0 O O O

|
el e e e R

Figure 3: Image matiix for alphabet *E" after applying Threshold Operation.

o

e ——

2.4 Binarization

The image matrix I, after applying the threshold operation, still consists of 8-bit intensity values
— 0 and 255. To convert I into a binary image containing only 1-bit values, Binarization is
carried out. 0’s (8-bit) are converted to 0’s (1-bit) and 2555 (8-bit) are converted to 1’s (1-bit).
The image matrix I now has 0’s — which make up the character part (True Elements), and 1’s —
which make up the non-character part (Non-True Elements). FEach pixel value of the image

matrix I has a single bit representation in the form of 0 (TE) or 1 (NTE).

el Bisead Bag i 0 U oot Bt et el L Vo b ol e et Bl o4 10 g Bl |
{Beet] el liEa el e ot | wanl] e ot oot | o e Lol | TR B = s (e |
QR0 Sba) B85 O veie () e () e O BP0k O e (586) Tendn] o | sl B e B [| e |
Qa0 A0 e Ot (e 0 e 0080 0 Sen (Vies S8El) Pl i) vl anain] Sl RiaR] et e |
00 1 I e e | e [N L e [o Ve | T e B A e [l |
050 1 L e e | e | | e | e e] e e]
02520 1 L | L | s | e I | G s | Ten | e e i | ot e |
0 0 1 laais=nmi] S | Gla i] s opn lgab | e 1R | =i | <o i] coie 1 A | i |
0 0 O (s (e et (e) s e D (e et [En | = o= e B LR [
0 0 O a0nsE0RR OB OiER 0 S 0 sen O @ e 0 e d i] | Ll sl L T |
0 0 1 16mee | Shr e | e | 0 L mnsl | i L i | et s [[e | B e | RS AR | e]
) 1 L R e | | e] | | sl
0 0 1] e et 180 | s | HEE (MR | i vt | (V0 | & ot | i | GG] RN Tl {00
0==0 1 =251 1 bl b e e e fe R e e bt e
00 Sl O R0 O R ORad R0 SRS () SO S S S e TR | B T | k]
0==0 e U] | e | B U e el I e b s v b el =]

1] e e [g | S | e O) e B B e e | ! 15 aeal

| St e aa | A | e | e | e | L e B e g PR o

Figure 4: Image matrix of alphabet ‘L=” after Binarization.

17

i e e e s

By S

R

2.5 Thinning Operation

In the character image matrix of Figure 4, it can be seen that the alphabet ‘E’ is made up of line
strokes (horizontal strokes and vertical strokes). In the figure, each of the horizontal and vertical
strokes are represented by 2 consecutive rows and columns made up of true elements. The
thinning operation is applied in order to reduce these strokes to a single line thickness. This is
represented in Figure 5 where the strokes contained in alphabet ‘E’ have been narrowed down to
a single line. The purpose of this operation is to retain the relevant information required for the
recognition process and to do away with any superfluous information. In this case, a thick line
stroke provides the same information as a single line thickness line stroke. Therefore, no useful

information is lost on application of thinning operation.

Igienlesal 1 seanibest ben b ool 18] L v] S | Beam | E | o | S|
e B Ll e Sy L] 1222 | i) S| &) [ot i | o | et i] OUMGR T Sl | SRS |
b=t (DiEROEEr) O (e Qe O res O B () i | e Ao T L e e | |
150 1 I o s | e vt 00 | it Bt o6 | 5 1 Isehng] =i sle] 1 §Es]
Heee 1 e e | s S S | B | e | i o e Tl el Tt i | =it
HEED 1 (e e (S S et [T | e e el v e L e e |
Tl 1 Tiail=a] L0 | P S | Bl TRl L] o]] 12t | Eepeiy} ||
Ll 1 i AR I SR] B e | B e | S | SR (S R R | Te |] e |
1 O R e () 5 O as (158 O 3 () Salis () e] Bves | 76 1] S Suea] s Ui] 0]
2Rt il euna] niss] facies | el e | bl | {§ERa] Ssna | ol] L e e [R i |
ER) 1 e e T e e e B e B | 1 Vmesr| EEs Pt e |
i==0 1 Igtel senle] Sonloam e | SR | B | kE e | wee e a | S Tomeen |] o]
1) 1 { =) e R e e s o P T EE R | 1ehar] 1 |l |
1 1 sl e ag! b el i s s B il e Tl !
Pt 0 i O O, O i) it U200 5 OB O S O B e o i sais e L L] e |
| pe]l epees] womer| sy | saomre] s | e) e B (e B B e ey
Do) [veany USSR I PR | 1 |2l | teie] s e | Jhaizi] L=ttty | S |
| St bkl g b | T e] Tl] | | S SRR e |

Figure 5: Iimage matrix of alphabet ‘F* after applying Thinning Algorithm.

18

B

:

b

e e

2.6 Grid Transformation

The image matrix I obtained after applying the thinning operation is now made to undergo Grid
Transformation (GT). The basic pixel element is assumed to be a virtual triangle rather than a
square. This is carried out by clubbing two consecutive horizontal pixel intensity values and
replacing it with the average of the two. Thus, a ‘0 is stored for two consecutive 0’s and a ‘1’

for consecutive 1’s. The values that remain after the application of GT are 0, 0.5 and 1. Since the

U ————

image matrix needs to be binary, 0.5 is changed to a 0. The pixel grid of I, now having half the
number of columns it was having initially, is again reduced to TE’s and NTE’s. The step-by-step

process is illustrated in Figure 6.

Sl S et e B 0 0
1o e |:J_I> 10
: DLel08S Sl 50 e 1 0
it o] 0
T[T e
L]
|
| e
il ; s
1 é 1 0
= <:Z| 05 |1
0 et 0 08

Figure 6: Application of
Grid Transformation on : —1 0.5

image matrix

19

After application of grid transformation by implementing horizontal averaging there is no loss of
significant information with regard to our recognition algorithm. Grid transformation is helpful
in reducing the dependency of character recognition on character curvatures, thereby making the
process much more accurate. This is illustrated in Figure 7 and Figure 8 that serpentine curves

have been reduced to horizontal and vertical strokes.

; 00 5000l ololo
0 (AT g o OH
0 1 1 1 1 0 0 1 0
OO0 o 000
EEE s s D[l
00 [l e et [00 17 el
00 Lo e e e 0|l

Figure 7: Application of Grid Transformation on character ‘P’

_ - <
> -
(i lojfolo]lo]y o [oo
0| 1| s 8 kel)
| =3
0| 1| e T 4] oudlieial
i 1 0 0 0 0 1 0 0 0
1 1|4 |1 EElE) | e
|
0 1 1 1 1 0 0 1 0
i t o |0 |0 [05] ==
E sl | ES— aats | bdveastid|
Figure 8: Application of Grid Transformation on character ‘S’
l 20

2.7 Character Segregation

A textual document might contain numerous paragraphs, lines and words of text. Each character

contained in the textual document image matrix I, after the application of above explained

e — i v g | M

operations, needs to be processed individually and correctly recognized. For this, the character is
studied separately from the paragraph, statement or word that it might be a part of. This is

implemented in a series of steps —

e The textual document imagé matrix I (made up of several lines) is segregated line by line.
Starting from the top end, the intensity values representing the first text line are copied
and stored as a new image matrix T. The image matrix T now represents one complete

text line from the image matrix I.

e The intensity values representing the text line copied from I to form the new image
matrix T are erased from I. The image matrix I now contains intensity values from the

second text line onwards.

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog)
The quick brown fox jJumps over the lazy dog
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog S
The quick brown fox jumps over the lazy dog “ang Resourc,
The quick brown fox jumps over the lazy dog {\, :

i i - n“: L J o
The quick brown fox jumps over the lazy dog ‘ < ¢. No,_SfoB0g
The quick brown fox jumps over the lazy dog %;?_!;_0@/2/0/
The quick brown fox jumps over the lazy dog Ly

Figure 9: Line segregation

e The image matrix T, which is made up of several words is now segregated character by

character, wherein a space occulting between words is utilized to differentiate between

21

j words. Starting from the left, the intensity values representing the first character are
copied and stored as a new image matrix C. After finding the location of the first TE
from the left end, the algorithm searches for one complete column of NTE. This complete
column of NTE represents the gap between the characters. Once the coordinates
corresponding to these two pixel values are located, the values in between are copied to
form the new image matrix C. The image 11'1atrix C represents a single character extracted

from T.

quick brown fox jumps over the lazy dog

Figure 10: Word segregation

e To differentiate between words, the algorithm looks for spaces present in between words.

Depending on the font size, the program searches for a minimum number of consecutive

columns of NTE. For example the minimum value is 5 for font size 14. This value
increases as the font size increases. These columns represent the gap between words.

Wherever such consecutive columns of NTE are encountered, it is recognized as a space.

o The intensity values representing the individual character copied from T to form the new |
|
image matrix C are erased from T. The image matrix T now contains intensity values of ;

the line from the second character onwards. i

22

S e TS

S

PrE e———

1
|

N -

Figure 11: Character segregation

The above steps are repeated until each character is stored in the matrix C individually.
The segregation of the text document into constituent lines, the lines into constituent
words and the woids into constituent individual characters is carried out for the entire
document. This way each character can be processed and recognized individually by the

character recognition steps to follow.

23

CHAPTER 3

CHARACTER RECOGNITION

We take an image matrix C, containing an individual character element. C is processed in order
to determine the character parameters/attributes on the basis of which a particular character is
correctly recognized. We have considered 4 different parameters to differentiate one character
from another — Horizontal Strokes, Vertical Strokes, Length and True Elements. Each of these

has been explained below.

CHARACTER

e T

& B

Horizontal Strokes Vertical Strokes Miscellaneous Parameters

True Elements Length

Figure 12: Character parameters

3.1 Line strokes — Horizontal and Vertical Strokes

Each character when represented in its matrix form is made up of true and non-true elements. In
order to recognize vertical and horizontal strokes the algorithm starts scanning the image matrix
vertically and horizontally respectively. On encountering a line stroke the value of the

corresponding line stroke variable (H or V) is incremented by one. The process continues till all

the constituent line strokes of the character are identified.

i i Koo i bl i
{{0 & (s taml) i i
to i {25 A
fEhoHEi {171 4 SR Tl T)
5%
110 t imE 1=k 5E] ‘\.'\\
i°16 i i i i 1 i i H 1
1|05l T L B R P
ala lp £ e iy A AR
i i I — .5 NONZ00d|
L L d A "~ strokes
116 1 i i 1o) i
1le i 1 H Nt d sacics £ s ¥
116 i 1 i i E}_,A A
1 1 H i :, i 5
i 0 0 001

Tt 1 Verlical stroke

Figure 13: Horizontal and Vertical strokes for character *E’

24

;.a
|

3.1.1 Horizontal Strokes

On finding the first true element while traversing the image matrix C from left to right and top to

bottom, the algorithm determines the existence of a horizontal stroke (H) by checking for

adjacent columns for a true value. I

f the number of consecutive TE are 2 or greater than 2, then it

is identified as a horizontal stroke and the value of H (initially 0) is incremented by 1. The

algorithm then moves on to the next row, and the process is repeated. The flow chart for the

calculation of horizontal strokes ha

s been depicted in Figure 14,

A 3
(sTART

| H=0

|

g X=1

| p=0

|

STy
e \\.\ Yis S enme

// . ey . \
e IFX>mli(1) o PRINTH |
e o J
[Sy o v
e S (STOP)
| N i
y=1
;
s L
s \\\ YES e 5
o ; IF Y>mi{2)-1 = ,.// I P>=1 =R
—)K.\\ /)--—)-‘ 2 e
s o e s
\'\‘\\ ,/// \\“_ o e
i I NO YES NO
I g /-/,’ \\\\‘\‘ PSRRI, S
- e
A R0 B —
< 1X.Y+1)=0 Wy Retits
\\-k‘\,\ ’///]
J s
N S e,
|
| - P=Pi1 WG X=X+1 I
| YiY+1 o
]
Figure 14: Flow chart for calculation of horizontal strokes.
25
1

3.1.2 Vertical Strokes

To calculate the number of vertical strokes (V), the character image matrix C is traversed from

:
|

top to bottom and left to right. If the number of consecutive true elements in the same column

comes out to be 3 or greater than 3 (The value is 2 while working with horizontal strokes since
the horizontal extent of a character is less than the vertical extent), it is recognized as a vertical
stroke and the value of V(initially 0) is incremented by 1. The control then passes on to the next
column and the process is repeated until all the columns are scanned for vertical strokes. The

flow chart for the calculation of horizontal strokes has been depicted in Figure 15.

START |
V=0]
Y=1
P=0 l
,/J\
//,/ ‘\\\ YES U ,,,,W,.WM__\
- IF Ysmi(2) ~ PRINCUE eVioi i
Sk T Vi
‘\I/’ i B, 2
e < STOP
{ A P A
!
1

- o -
i i S = S
ey e[e S : IF P>=2
.......“...)/ (] ///'—><\\ />——-—
B = s *\\\\ /-'
b2 0
NO 1 YES NO
g
b v]"o&\\\ s
G HX+1,Y)=0 >‘““ 3 YRyl
i _\ =
3 g
k - 1 wes
i R
] I YES .
i . AT — o, =11
| | | l
£ 0 P=P+1 | | Y=Y+1 f
! [i NO ; r,
| i
B l Y=Y+l ‘
E

Figure 15: Flow chart for calculation of vertical strokes.

i 26

ey e o |

3.2 Miscellaneous Parameters

Not all characters can be differentiated on the basis of line strokes alone. It is a possibility that
two or more characters might have the same value for H and V. For e.g. both upper case ‘I’ and
lower case ‘i’ have H=0 and V=1. In such cases miscellaneous parameters are utilized to

differentiate between the characters.

3.2.1 True Elements (TE)

The image matrix of the particular character is scanned from top to bottom, left to right and the
total number of TE that the matrix is comprised of are counted, that is to say the total elements
that make up the relevant information in the image matrix are calculated. Taking the above
example of ‘I’ and ‘i’, both of which have the same number of horizontal and vertical strokes,
the number of TE are utilized to differentiate between the two. Upper case ‘I’ having more
number of TE is quite natural, since it is larger in size than its lower case counterpart ‘i’. Thus,

on this basis the characters having equal ‘H’ and ‘V’ values are differentiated.

1 0 1 1 1 1 § 1 1 0
1 0 1 : : - _0 ; 1 : :
1 0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1 0
S 0 1 1 0O 1 1 1 0
1 0 1 1 0 1 1 1 0
Il 0 |1 L O e (R
1 0 1 1 0 1 1 1 0
= 1 0 1 3 1 0 1 1 0 1
" i i
True Elements=9 True Elements=7 True Elements=8

Figure 16: Differentiation of characters on the basis of TE

27

0 1 _*1— 1 1 0
13l a k| o i
0 1 1 1 1 0
00| 0 0. "0 0
0 1 0 | 0 1 0
0 1 0 0 1 0
0o 0o

Figure 17: The characters ‘b’ and ‘d” are essentially mirror images of each other, hence cannot

be differentiated on the basis of H and V.

3.2.2 Length (L)

It might happen that the value of all the parameters discussed up till now comes out to be the
same for a particular combination of characters i.e. the values of ‘H’, *V’, and number of TE all
come out to be the same. For e.g. the characters “T” and ‘L.” have the same number of horizontal
strokes (1), vertical strokes (1) and number of TE (17). In such cases, another miscellaneous
parameter ‘Length’ is taken into account. Two coordinate positions corresponding to the top left
and bottom left TE of the characier are calculated. The variable L(initially 0) traverses through
each column between these two coordinates and on encountering two consecutive vertically
placed TE, value of L is incremented. This procedure has been illustrated in Figure 17 for the

character ‘A’.

28

i
9

ey —

i =
1 1 0 1 1
1 1 0 1 1
1 0 0 0 1
, ST
1 0 1 0 1
0 0 0 0 0
— il
0 1 1 1 0
0 1 1 1 0

Figure 18: Calculation of the parameter ‘Length’ for alphabet ‘A’

The four parameters — Horizontal Strokes (H), Vertical Strokes (V), Length (L) and True
Elements (TE) are calcuiated for each individual character of the document image matrix 1. One
by one each constituent character of the document image matrix I is extracted and stored in the
character matrix C. C is overwritten each time a new character is extracted from I, but before
that the character contained in C it is recognized by the character recognition algorithm and

exported to a text file.

29

4 64

\.
{ srary)

P
j pMCERLE f

CHIRESHOLD |
OPERATION

THINNING
OPERATION

i
TRANSFORMATION

¥

X
5 S
e \\\
T T NO
< MULTINLE el e
: o

‘«\ LINES 7

NO

5
N OWORDS e
oo g

N, o
S e

l YES

z

l YES

YO OF
HARACTER

0N OF
HV.L&ETE

{ T ALt
Y

PAIRAM
C TION OF
(HARAUTER

b

A R SiLAY N
< R/

\ CHARALCY
g

£ Y
§ MASKING OF CHARACTER |
% FROM LINE IMAGE MATRIX |

; , P
. :‘ sT0P /}

Figure 19: Complete flow chart for the method
= 30

CHAPTER 4

PROGRESS

The objective that we had undertaken was to implement the concept of Optical Character
Recognition (OCR) to a whole document. While working with *Arial’ font with font sizes
ranging from ‘14°, *16’, 18’ and 20, we have reached a stage where we are able to recognize all
individual characters with 100% precision, that is to say all 52 alphabet characters (26 upper case
and 26 lower case), 31 special characters (For example ~, !, @, etc.) and 10 digits have been
recognized. The algorithm also correctly recognises line breaks, word spacing and paragraph

breaks. Following steps have been implemented for achieving the same:
I. Application of “Threshold Operation’ on the original image matrix.

2. “Binarization Operation’ for converting the image matrix from 8-bit intensity values to 1-bit

intensity values.
3. Application of ‘Thinning Algorithm’ for conversion of thick strokes to single pixel thickness.

4. Application of ‘Grid Transformation Technique’ to change the original rectangular pixel grid

to a virtual triangle. Horizontal averaging has been applied to perform grid transformation.
5. Segregation of the textual document into individual lines.

6. Segregation of individual characters from the individual lines extracted.

7. Determination of number of Horizontal Strokes And Vertical Strokes.

8. Determination of Miscellaneous Parameters i.e. Length of Characters and number of TE.
9. Recognition of all individual characters based on the 4 determined parameters.

10. Generating an editable text file corresponding to the input text document.

31

Ao Horizontal Vertical Strokes SR True Elements
Strokes (H) V) (Zeroes)

A 3 5 10 47
B 3 3 12 32
C 3 2 I 24
D 2 3 12 30
: 3 I 12 24
K 2 I 12 19
G 3 2 0 26
H 1 2 12 29
I 0 1 13 14
J 1 l 12 17
K, 3 3 13 30
L 1 1 13 17
M 7/ 6 12 44
N 4 4 12 33
(0] 3 2 1 29
P 2 2 12 25
Q 3 2 0 30
R 2 3 12 31
S 4 2 8 25
T 1] 12 17
U 1 2 12 27
\Y% 7 6 11 26
W 4 8 29 47
X 3) 2 26
3¢ 0 5 11 20
Z 2 3 4 20

Table 1: Parameter values for upper case alphabets for font size 14

N Horizontal Vertical Strokes Length (L) True Elements
Strokes (H) (V) (Zeroes)

: 4 ! I 21
b 3 2 13 26
; : ! 1 14
d 3 2 1 55
: 3 - 1 21
L 0 i 10 13
g 5 3 1 79
l 2 13 24

i 0 1 10 12
J 0 1 3 e
k 6 3 13 25
: 0 I 13 14
o < 3 9 31
n 1 5 9 50
2 ¢ 3 1 19
P 3 2 13 2%
q 3 3 10 2%
§ ! 1 9 1
| ; < I 17
; g 1 12 13
u l 2 9 22
. : 4 8 18
b i 6 7 29
i 3 3 3 13
Y 4 4 3 2
- Z 2 3 13

Table 2: Parameter values for lower case alphabets for font size 14

33

Horizontal

Vertical Strokes

True Elements

Character Length (L)
Strokes (H) (V) (Zeroes)

= 2, 0 2 7
0 1 2 3

! 0 1 11 13
@ 1 7 4 64
2 3 12 29
$ 5 8 2 23
% 3 5 7/ 38
4 2 3 7 12
& 5 4 2 30
: 1 1 0 7
(0 1 0 16
) 0 2 6 18
- 1 0 0 2
) 1 0 0 5
= 2 ; 0 0 8
+ 1 1 9 13
{ 0 2 11 17
} 0 1 1 17
[0 1 16 17
] 0 1 1 17
\ 0 2 9 12
[0 1 17 18
0 1 2 “

. 0 ! 2 S
: 0 1 4 5
= 5 3 4] 14

34

Character

Horizontal

Strokes (H)

Vertical Strokes

&

Length (L)

4

—_—

o

True Elements
(Zeroes)

11

16

2
3
)

12

26

—

—
b

16

20

22

22

o o A Wn

21

W] W[M W N W W O

27

—_—

N W N R W N N RN W

15

27

O e Qf N W B W N

29

1

I [[ST

ol Of | W

Ol O N N DY

Ao

Table 3: Parameter values for digits and special characters for font size 14

35

CHAPTER 5

OUTPUT OF ALGORITHM ON MATLAB PLATFORM

Each of the following figures represents an output+of experimentation where images were drawn
in MS Paint and saved as BMP files. It is to be noted that all the experiments have been
performed on Windows 7 OS and the software version of MATLAB used is 7.5.0.342. All the

inputs have been accepted in monochrome bitmap file format.

o MATLAR 750200
file Edit Dibug Distibuted n.smp Window Help
'J z& HEd ﬂl H ik i B/ fﬂ cunmuumry E\am\w (‘cpy

Sharteuts #] How fo Add] What's New
%&;.;M ﬁvr;\‘wgggm ey

ONmummuwnwm ummvmdmmsm x

ELER T i

Namg + . {iEnter the font size:l4
HiH 4) .

HoP 1 1 1 out =

[Hro 1 1 1

AT <tdxS5 dostle> 0 1 a

HY 2 gabd E

[Ha 15 15 15 1SS

Mans [} 0220

[Ho 1 1 1

Eﬁrst'.rue‘ﬂ

2 2 2
i firstx 5 b oih
Hi firsbd 4 4 4
[Bifirsty 11 11551
[Bfirst 5 5 5
H3 fortsizevar 14 14 14
g 4 4 4

Figure 20: Output of algorithm for input character ‘a’ for font size 14,

For the input image of a single character (‘a’ in the above case), the algorithm does not require
any segregation in terms of words or lines. The character is straight away recognized on the basis

of the four parameters calculated (H, V, L and TE).

36

o N SRR A, s M SRR 1

Erdes

w 0o+ % Command Windews

The above image is showing the image matrix corresponding to the character ‘a’ after
application threshold operation, binarization operation, thinning operation and finally grid
transformation. All the parameters i.e. H, V, L and TE are calculated with the help of this matrix

only, which is generated again and again for all the characters encountered.

S

A\ MATLAB 7.5.0 (R20070) Lo @B
bl Daibe | Dbtbuted - Dechop Wikides bl i srs il - R S R e B e
DA EMB 2 o B D0 Cunntbincton: _-,m_u—'auy
Shorteuts] Howta Add 1E) What's New
i e e S 2 Ty 5 a0 8 X
@D New to MATLAR? Watch this Yideg see Damas, of resd Eating Sarted) : S
an {|enter the font size:ld H !
[3H 1 1 1 . i |
Hor 62 82 82 out =
tHP 2 2152 i
FHPO 1 1 1 |2 |JaYpEe UnlvErsily oF iINfOrMaTion TeChNeLoGy . SclaN , BiHaChAL
Ha 21 21 A .
87 «IhSdoitls> O 1 >
EHTL1 <120 double> 7 20 * : P
1L <10doddles 2 4 74 juypeshimbrp - Picasa Photo Viewsr
iy ; 3 : 4 e b e R
Ha 23 23 =008
H 22 piyfie2 - Notepad | ;

ESr Fommat e Helg

fe UnivErsiTy oF INforMar

TechkoLoGy , SoLan , HiMachaL

JaYpEe UnlvErSiTy of INfOrMaTiOn TeChNoLoGy , SoLaN , HiMaChAL

i" Xivd

H firstix 18 16 18
[Bfrstiy 648 848 646
Hifirstyue ty 642 642 642
H firsttruex 14 14 14
Hfirsttruex 3 Pt
Efrstiruey 42 42 42

APV LI]

Figure 21: Output of algorithm for an input image consisting of a single statement of font size 14.

The recognition of a textual document consisting of a single statement containing both special
characters and alphabets is depicted in Figure 21. The algorithm first works to segregate the
statement character by character and works to provide spacing wherever occurring in between

words. The output is provided in an editable text file.

38

: s Mg e DR X e e S e S B A B S a8 SRR
LY BEY B Wateh i Yides, see Dumos, o reud Gating Staded: A I T X
Yalue i Enter the font size:Z0
2. 2 2
8 Bl out =
1 1 1
«24%6 double> 0 1 Ericsson
2 2 2 &
2% 25 -
UJ és é‘- i 1 evicssonbang - Picets Photo Viewer [
i : 1 : : : : T
e - SRS . "
H countal £ myfile? - Notepad & i L_‘«_W
[Hcounte] [Fle £ Formm View hep = P
R4 4 {Ericsson S
tHe
He 5
it Ericsson
Hfirstix
HHfirstty
HH firsttrug
[ow’

Figure 22: Output of algorithm for single word of font size 20.

The above output shows single word input to the program for the font size 20. F‘or this BMP file
the algorithm extracts each character on a one to one basis and with the help of character
parameters calculated thereafter, the output is exported to the editable text file. There are no
spaces present between the characters. This is determined by the program with the help of the
number of blank columns (having Non-True Elements) present between the two characters, as

discussed in the methodology.

39

UATLAB? Watch thes Vi, see Dama, o« redd Sethng Sared. ;

Enter the font size:20
out =
1 V

T <20xd double> 0 1 |prof. sunil V. Bhooshan
Hv 1 1 1 e
tHe 30 30 a0
tHans 0] 0 tillout =
Hb 1) 1 :
:HCC 309 9 30 f Dr. Vinay Kumar
HH counter1 2 2 2 # :
H counter2 15 15718 e . 19 surehviniay bmp - Picats Photo Vitwet
tHd 1 1SUEEY : :
tHe 11 doubl o 23 i
it

[Hfid | [Fe Gt o View bl oo Prof. Sunil V. Bhooshan
FHfirst1xd [Prof. sumi® v. shooshan
Hfrstivl lor. vinay Kumar

FH frstry Dr. Vinay Kumar

H firstiruls

EH firstir . ¥
Arshr i B

H firstyubyr z T

H firstx 8 3 39

H firstd $ 9 9

Hifirsty 2

Figure 23: Output of algorithm for an input of multiple lines

The above image shows the output for multiple lines for font size 20. When multiple lines are
encountered then the program extracts each lines individually from the document. When
program starts searching for the true element while traversing the program from the top left, it
takes into account the vertical coordinate value of that first true element encountered and then it
further searches for a complete rows of non true elements while moving vertically downwards,
and as that row is encountered it again takes into account the vertical coordinate value of the row
and then copies all the values in between and this part is used to make one more matrix which is

a simple line matrix and can be processed as discussed in the methodology.

40

Help ; S o E gt

trent Directony: | EAdesi 1oy ity Ll
; G SRl A R e R i R
Bl% iR B PWakch s Yidso e Damas orresd Setbopted. L
o \.’n’u i Enter the font size:l4 %
1 1 1
18 15 18 4 jout =
1 1 1 8
<ifS doudle> O 1 11 .Rachit Xhanna
b z b
19 19 13 o ot i ki
0 Q 9 rachitsaveend bp - Picasa Phato Viewer
1 1 1 " _
110,401 4. 14Q.
; o @
B Toima View b I 1 .Rachit Khanna :
chit Kharna s i % 2. Naveen Yadav 2
Maveen Yadav out =
= &
i e
pLoati) JLice : : 3. Jaypee University
s ! 4. Himchal Pradesh
3. Jaypse University
v fout =
: 187 167 187 : 4. Himchal Pradesh
K, o 5. £ E

Figure 24: Output of algorithm for an input of multiple lines with special characters, digits and

paragraph break

The above image shows the output generated by the program for input image having special
character, digits and paragraph breaks i.e. multiple lines with spacing in between few lines so as
to make a new paragraph. When such image input is provided, the program identifies the spacing
in between the lines and print the same in the text file so that the user don’t have to do the

formatting explicitly for paragraphs.

41-

MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment
where problems and solutions are expressed in familiar mathematical notation.

You can watch the Getting started with MATLAB video demo for an overview

of the major functionality.

If you have an active Internet connection, you can also watch the Working in
the Development Environment video demo, and the Writing
a MATLAB Program video demo.

Figure 25: Input image of multiple lines containing large amount of text and special characters.

d Deiktop Window Help
189 ¥ | 9 CumntDictor: EAdesion : Copy

fHce
HH counter1
H counter2

Hitd

HH first1x
Hfirsty
H firstiue 1y
EH fiesttruex
H firstruexd
Hi firstiruey
H firstirueyt
H fiestx

FH firstd
Ftirsty

Min
1]
28
4
<222 double> O
[o
23 23
g 1]
1 1
234} 4
4 4
28 26
1 1
[15.16} 15
22 2
3 3
15 15
n 322
322 322
13 13
15 15
45 46
2 2
15 15
15 15

322 322

[N
o

P

@

W) = A B = DR D e e
o L

E out =

S |MATLAE is a high-performance language for technical cemputing. lt integrates

Enter the font size:ld

oue =

computation, visualization, and programming in an sasy-to-use envirenment

out =

where problems and solutions are expressed in familiar mathematical notation.

out =

You can watch the Getting started with MATLAD video demo for an oveview

out =

of the major functicnality,

Figure 26: Command Window output for the input image shown in figure 25.

As explained in the methodology that each line of the document is extracted and processed
individually like it was a single line input, the command window output produced in the

MATLARB is shows all lines of the input image as different output.

42

DF File Edt Fomat View Help 2 : 3 ARG 5
{liaTiab 15 a high-performance language for technical computing. Tt {ntegrates
il cosputation, visualization, v-dngr:gramt in an easg‘:?u-uﬂ envir

ng onment
[xtiere probless and solutfons are expressed in familiar sathematfcal notation.

You can watch the certing started with MamLAB video demo Tor an oveview
of the major funcrionality.

If you have an active Internet connection, you can also watch the working in
the pevelopment Environment video dewo, and the writing
il 2 MATLAB Program video demo.

Figure 27: The editable text file created after complete processing of the input image of the

figure 25.

When each line of the input document containing multiple lines is processed individually, the
output produced is exported to the text file, and as the program moves on to the next lines, it
appends the recognized text to the text file. Hence after complete processing of the input image

file shown in figure 25, the text file produced has all the data (multiple lines) exported to it.

43

CHAPTER 6

CONCLUSION AND FUTURE WORK

Simulations run to test the proposed method for the 52 alphabet characters (26 upper case and 26
lower case), 31 special characters (For example ~, !, @, etc.) and 10 digits shows positive results
without any errors or loss of information. The experiment of character recognition has been
performed while working with ‘Arial’ font having the font sizes 14, 16, 18 and 20. It is to be
noted that once an alphabet is correctly recognized, it will always be recognized on infinite
repeats and therefore the method of accuracy checking, i.e, counting the number of errors per

1000 trials has not been used.

The success of the project work lies in the high levels of accuracy obtained when the
experiments are performed for a complete document containing numerous characters, words,

lines or even paragraphs.

The project has been successfully completed within the stipulated time frame. We have achieved
high accuracy on all results and have documented the project work in the form of a research
paper. The future implications of this novel approach seem to be bright. The concept can be

extended for recognition of sans serif fonts other than Arial, serif fonts and hand written text.

44

REFERENCES

‘Character Recognition using Geometrical Features of Alphabet: A Novel Technique’ -

Sunil Bhooshan, Vinay Kumar, Ateendra K. Singh, Tanupriya Negi, Jyoti Miglani, JUIT.

Scalisi, Corrie. MMCR: A Mathematical Character Recognition System for MATLAB,
University of California, May 2006. :

. http://en.wikipedia.org/wiki/Optical_character_recognition

. J. Mantas, “An Overview of Character Recognition Methodologies”; Pattern
4

Recognition, vol. 19, no. 6, pp. 425-430, 1986.

. V. K. Govindan and A.P. Shivaprasad, “Character Recognition - A Review”, Pattern
Recognition, vol. 23, no. 7, pp. 671-683, 1990.

C. Y. Suen, “Character Recognition by Computer and Application”, in Handbook of
pattern recognition and image processing, pp. 569-586, 1986.

. S. Mori, “A non-metric model of hand printed characters”, Res. Electrotech. Lab. Tokyo,

vol. 798, August 1979.

45

