Jaypee University of Information Technology, Waknaghat

Test-3 Examination, May 2018

Course Title: Probability Theory and Random Processes

Program: B.Tech (ECE/CSE/IT)

Course Code: 10B11MA411

Marks: 35 marks

Semester: IV

Time: 2 hours

Note: Answer all the questions. Describe random variables along with range where applicable. Scientific calculators are allowed.

- 1. Suppose that 2 batteries are randomly chosen without replacement from the following group of 12 batteries: 3 new, 4 used (working), 5 defective. Let X denote the number of new batteries chosen and Y denote the number of used batteries chosen (4 Marks) [CO2]
 - (a) Determine the joint pmf of (X, Y).
 - (b) Find $\mathbb{P}[\mathbf{X} + \mathbf{Y} < 2]$.
- 2. (a) Consider the uncorrelated random variables X, Y and Z with zero mean and standard deviations 5, 12 and 9 respectively. Suppose that U = X + Y and V = Y + Z. Determine the correlation coefficient between U and V. (2 Marks) [CO3]
 - (b) Suppose that $\mathcal{M}_{\mathbf{X}}(\mathbf{t}) = (0.6 + 0.4e^{\mathbf{t}})^8$. What is the mgf of $3\mathbf{X} + 2$? (2 Marks) [CO2]
- 3. An aptitude test for pilots requires a series of operations to be performed quickly. Suppose that time needed to complete the test is normally distributed with mean 90 minutes and standard deviation 20 minutes. (4 Marks) [CO3]
 - (a) Find the probability that it takes a randomly selected pilot between 95 and 100 minutes to complete the test.
 - (b) The top 5% of pilots get an honor certificate. How fast must a pilot complete the test to get the certificate?
- 4. The time till failure T (in years) of a device has the density function: (4 Marks) [CO2]

$$\mathbf{f}(\mathbf{t}) = \begin{cases} 3\mathbf{t}^{-4} & , & 1 < \mathbf{t} < \infty \\ 0 & , & \text{else} \end{cases}$$

- (a) Find the reliability function.
- (b) Determine the hazard rate function.
- 5. Customers arrive to a restaurant according to a Poisson process $\mathcal{N}(t)$ with rate of arrival being 20 per hour. The restaurant opens for business at 11:00 am. Let \mathbf{X}_n denote the time (in minutess) of the arrival of the n^{th} customer. (4 Marks) [CO4]
 - (a) Find the probability of having 20 customers in the restaurant at 11:12 am given that there were 18 customers at 11:07 am.
 - (b) Compute $\mathbb{P}(\mathbf{X}_3 > 15)$.
- 6. Consider the WSS process given by $\mathbf{X}(\mathbf{t}) = 10\cos(100\mathbf{t} + \theta)$, where θ is uniformly distributed over $(-\pi, \pi)$. Suppose that $\mathcal{R}_{\mathbf{XX}}(\mathbf{t}, \mathbf{t} + \tau) = 50\cos(100\tau)$. (4 Marks) [CO4]
 - (a) Determine the time-averaged correlation function of X(t).

- (b) Can you say that **X**(t) is *ergodic* in correlation? Justify your answer.
- 7. A computer device can be either in a busy mode (state 1) processing a task, or in an idle mode (state 2), when there are no tasks to process. Being in a busy mode, it can finish a task and enter an idle mode any minute with the probability 0.2. Being in an idle mode, it receives a new task any minute with the probability 0.1 and enters a busy mode. The initial state is idle. Let X_n be the state of the device after n minutes. (6 Marks) [CO4]
 - (a) Write down the transition probability matrix.
 - (b) Compute $\mathbb{P}(\mathbf{X}_2 = \text{idle'}, \mathbf{X}_1 = \text{busy'}, \mathbf{X}_0 = \text{idle'})$.
 - (c) Find the steady-state distribution of X_n .
- 8. Stochastic process $\mathbf{X}(t)$ is WSS and Gaussian with $\mathcal{R}_{\mathbf{XX}}(\tau) = 4e^{-2|\tau|}$. (5 Marks) [CO4]
 - (a) Find $\mathbb{P}[\mathbf{X}(t) \leq 3]$.
 - (b) Find $E\{[X(t+1)-X(t-1)]^2\}.$

(Standard) Normal probability table to compute $\mathbb{P}(\mathbf{Z} \leq \mathbf{z})$

·	Curroll probal	diffy (
	<u> </u>	.00	.01	.02	03	.04	.05	.06	.07	.08	<u>.</u> 09
-	-2.0	.0228	.0222	.0217 🦠	.0212	.0207	.0202	.0197	.0192	.0188	.0183
- Cooper	-1.8	,0359	.0351	0344	.0386	.0329	.0322	,0314	,0307	.0301	.0294
- September	-1.6	.0548	,0537 \	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1 2000000	-1.4	.0808	10793	4,0778	:0764	.0749	.0735	.0721	.0708	.0694	.0681
	-1.2	.1151	1131	.1112	1093	.1075	.1056	.1038	.1020	.1003	.0985
	-1,0 <i>₫</i>	1587	1562	.1539	.1515	.1492	.1469	.1446	.1423	,1401	,1379
	-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
	-0 ₁ 6	2743	.2709	.2676	.2643	.2611	.2578	.25 4 6	.2514	.2483	.2451
	0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
	-0.2	.4207	.4168	.4129	4090	.4052	.4013	.3974	.3936	.3897	,3859
	-0,0	,5000	, 49 60	. 4 920	.4880	,4840	, 4 801	.4761	. 4 721	.4681	.4641