

GESTURE RECOGNITION SYSTEM

Name of the Students - Sandarsh Srivastava (081231)
Mayank Goyal (081232)
Pulkita Jain (081233)

Name of the supervisor - Mr. Suman Saha

Submitted in partial fulfillment of the Degree of
Bachelor of Technology

'DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,
WAKNAGHAT

B ———————

s .ﬂ.-.-,v-V1

I

TABLE OF CONTENTS

] Chapter No. Topics Page No.
: Certificate from the Supervisor 11
i. Acknowledgement 11
|l Summary v
f List of Symbols and acronyms v
i. Introduction 1-12

1.1. Project Scope and Objectives
1.2. Project Summary

1.3. Literature Review

1.4. Existing Systems

; 2. System Requirements 13-19

" 2.1. Required system behaviour

{ 2.2. System Functionalities

f 2.3. System interfaces, inputs, and outputs 1-
2.4, Concept of Moments)

, 2.5. System models: |

i 2.5.1. Data-Flow Model

2.5.2. Behavioural Model = Use Case Diagram
2.6. Failure modes and action on failure

3. Task Analysis and Schedule of Activities 20-24
3.1. Task decomposition
3.2. Incremental Model
3.3. Project schedule

4. Detection 25-28
i 4.1. Choice Of Camera

4.2. Hardware Setup

4.3. Method Of Colour Detection

5. Recognition and Refinement 29-32
5.1. Recognition Strategy
5.2. Selection Of Gesture Set
5.3. Analysis of distortion and noise
5.4. Removal of background objects
5.5. Removal of unwanted colours
5.6. Overview of Algorithms

e g i

6. Conclusion 33-34 !
6.1. Project Goals
6.2. Further Work

|

11

7. References 35

8. Annexure 36-53
8.1. Codes and Snapshots

9. Appendix 54-55
9.1. Appendix A- Glossary
9.2. Appendix B - Entire Gesture Set

[l

CERTIFICATE

This is to certify that the work titled “Gesture Recognition System” submitted by “Pulkita Jain,
Mayank Goyal, Sandarsh Srivastava” in partial fulfillment for the award of degree of B. Tech of
Jaypee University of Information Technology, Waknaghat has been carried out under my
supervision. This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

Signature of Supervisor: S((//v b “‘“”%"“’&'ﬁ'
Name of Supervisor: Mr. Suman Saha.
Designation: Senior Lecturer.

Date: 17" May 2012.

ACKNOWLEDGEMENT

At the outset, it is our duty to acknowledge with gratitude the generous help that we received from
our supervisor Mr. Suman Saha (Senior Lecturer, Computer Science and Engineering, JUIT)
without whom the implementation of this project would not have been a success.

S

stomatilie’ofithe students: =00 o e

Name of Student: Pulkita Jain.
Sandarsh Srivastava.

Mayank Goyal.
Date: 17" May 2012.

SUMMARY

Considerable effort has been put towards developing intelligent and natural interfaces between users
and computer systems. This is done by means of a variety of modes of information (visual, audio,
pen, etc.) either used individually or in combination. The use of gestures as means to convey
information is an important part of human communication. The automatic recognition of gestures

enriches Human—Computer Interaction by offering a natural and intuitive method of data input.

This project presents a new technique for human gesture recognition, for the Human-Computer

Interaction (HCI) that can be easily is actually used in a Home Personal Computer with basic

hardware and Windows. The objective of this effort was to provide a Human Gesture Recognition

software that can be easily used to interact with computer in a fast, simple and, importantly, in a

natural way to perform various operations like opening a file, navigating to a website, moving

mouse cursor and performing left and right click, increase/decrease volume,

shutdown/hibernate/log-off/sleep a PC, changing powerpoint slides, zooming in and out of images, |
etc. The overall model is designed to be a simple and robust gestural interface prototype for various J

PC applications.

N/

KOM N a’L_@uU S(,;,Owuwzg\ﬁ Zq

Slgnature of the Students Signature of Supervisor
Name: Pulkita Jain Name: M Suman 3aha
Mayank Goyal

Sandarsh Srivastava
Date: 17™ May 2012 Date: 17" May 2012

e —

[1].
[2].
[3).
[4].
[51.
[6].
[7].
[8].
[9].

[10].
[11].
[12].
[13].
[14).

VI

LIST OF FIGURES

Figure 1: Existing systems of gesture recognition

Figure 2: Data flow diagram - Part 1

Figure 3: Data flow diagram - Part 2

Figure 4: Use Case diagram

Figure 5: Incremental Model

Figure 6: Gantt chart

Figure 7: Process of Blob Detection

Figure 8: Color filtering method

Figure 9: Channel filtering method

Figure 10: HSL filtering method

Figure 11: Euclidean filtering method

Table 1: Basic controls gestures and associated operations
Table 2: Basic controls gestures and associated operations

Table 3: Basic controls gestures and associated operations

Chapter 1: Introduction

Gesture Recognition is a topic in the field of computer science which deals with the goal of
interpreting human gestures via some mathematical algorithms. Gestures can originate from any
bodily motion or the state but do commonly originate from the face or hand of a person. The current
focuses in the field include emotion recognition from the face and the hand gesture recognition. The
identification and recognition of some posture, gait and human behaviour is also the subject of the

gesture recognition techniques.

Gesture recognition can be seen as a way for the computer to begin to understand the human body
language, thus helping to build a richer bridge between the machines and humans than the

primitive text user interfaces or even GUIs (Graphical User Interfaces), which still limit the

majority of input to keyboard and mouse.

Gesture recognition also enables humans to interface with the machine (HMI) and interact naturally

without any mechanical devices. Using the concept of gesture recognition, it is also possible to

point a finger at the computer screen so that the cursor will move accordingly. This could

potentially make the various conventional input devices such as mouse, keyboards and even touch- !
screens redundant. Gesture recognition can be conducted using techniques from computer vision

and image processing.

Some of the basic operations of the computer include closing or opening a file, making a
presentation, cursor movements, playing a game, playing a song in a media player, controlling the
volume, shut down or restart a computer ,or watching a movie. Human gesture recognition supports
all this with the use of our hand and facial gestures, thus bounding the use of mouse keyboard and

the other hardware devices and making it more user friendly and unique.

Gestures and gesture recognition are the terms which are increasingly encountered in the
discussions of human-computer interaction. For many (if not most) people this term includes

character recognition, the recognition of proof readers symbols, shorthand, Marking Interfaces. In

l fact mostly every physical action involves a gesture of some sort inorder to be articulated.

R Furthermore, the nature of that gesture is generally an important component in establishing the

(quality of feel to the action. Nevertheless, what we want to isolate for discussion in this chapter are
interactions where the gesture is what is articulated and recognized, rather than a consequence of

expressing something through a transducer.
2

There are various types of gestures that can be identified by computers and thus can be used to

perform computer operations.

Sign language recognition: Just as we know speech recognition can transcribe speech to text,
certain types of gesture recognition software can also transcribe the symbols represented through
the sign language into text.

Directional indication through pointing: Pointing has a very specific purpose in our society, to
reference to an object or location based on its position relative to ourselves. The use of gesture
recoghition to determine where a person is pointing is useful for identifying the context of
statements or instructions.

Control through facial gestures: Controlling a computer through the facial gestures is a useful
application of gesture recognition for all those users who may not physically be able to use a mouse
or keyboard. Eye tracking in particular may be of use for controlling the cursor motion or focusing
on elements of a display.

Alternative computer interfaces: Foregoing the traditional keyboard and mouse setup to interact
with a computer, strong gesture recognition could allow the users to accomplish some frequent or
common tasks using hand or face gestures to a camera.

Immersive game technology: Gestures can also be used to control interactions within video games
to try and make the game player's experience more interactive or immersive.

Virtual controllers: For systems where the act of finding or acquiring a physical controller could

} require too much time, gestures can be used as an alternative control mechanism. Controlling the

secondary devices in a car, or controlling a television set are examples of such usage.

Tracking Technologies

Gesture-only interfaces with the syntax of many gestures typically require precise hand pose
tracking. A common technique is to instrument the hand with a glove which is equipped with a
number of sensors that provide information about the hand position, orientation, and flex of the
fingers. The first commercially available hand tracker, the Dataglove, is described in Zimmerman,
Lanier, Blanchard, Bryson and Harvill (1987), and is illustrated in the video by Zacharey, G.
(1987). This uses thin fibre optic cables running down fhe back of each hand, each with a small

\ crack in it. Light is shone down the cable so when the fingers are bent, the light leaks out through
the cracks. Measuring light loss gives us an accurate reading of hand pose. The Dataglove could
measure each joint bend to an accuracy of 5 to 10 degrees (Wise et. al. 1990), but not the sideways
movement of the fingers (finger abduction). However, the CyberGlove developed by Kramer

2

(Kramer 89) uses strain gauges placed between the fingers to measure abduction as well as for
more accurate bend sensing (Figure 1). Since the development of the Dataglove and CyberGlove

many other glove based input devices have appeared as described by Sturman and Zeltzer (1994).

The keyboard and mouse are currently the main interfaces between a man and a computer. In other
areas where the 3D information is required, such as computer games, robotics and design, other
mechanical devices such as roller-balls, joysticks and data-gloves are used. Humans communicate
mainly by vision and sound, therefore, a man-machine interface would be more intuitive if it made
greater use of vision and audio recognition. Another advantage is that the user can not only
communicate from a distance, but also no need to have physical contact with the computer.
However, unlike audio commands, a visual system would be preferable in noisy environments or in
situations where the sound would cause a disturbance. The visual system chosen was the
recognition of hand gestures. The amount of computation required to process the hand gestures is
much greater than that of the mechanical devices, however the standard desktop computers are now
quick enough to make this project — hand gesture recognition using computer vision —a viable

proposition. A gesture recognition system could be used in any of the following areas:

Man-machine interface: using hand gestures to control the computer mouse and/or keyboard
functions. An example of this, which has been implemented in this project, controls various
keyboard and mouse functions using gestures alone.

3D animation: Rapid and simple conversion of the hand movements into 3D computer space for
the purposes of computer animation.

Visualization: Just as the objects can be visually examined by rotating them with the hand, so it
would be advantageous if the virtual 3D objects (displayed on the computer screen) could be
manipulated by rotating the hand in space [Bretzner & Lindeberg, 1998].

Computer games: Using the hand to interact with computer games would be more natural for
many of the applications.

Control of mechanical systems (such as robotics): Using the hand to remotely control a

manipulator.

1.1 Project Scope and Objectives

Scope: The project is a desktop application for systems running Windows Operating System using

OpenCV libraries.

-

Objectives: To provide a platform where humans can interact with computers in a way as they
interact with each other; which is also more technologically advanced, easy to use, fast and more
interactive. Computer is made to recognize and interpret various gestures made by humans and

perform an operation accordingly.

1.2 Project Summary

The Gesture Recognition System project sees its user using the integrated or dedicated webcam and
performs operations according to gestures by its user. It is a desktop application for Microsoft
Windows operating systems. The gestures are made using an object of a specific color. The
application tracks the colored objects and according to their color and their motion, a gesture is

recognized. The following parameters are used for detecting a gesture and performing an operation:

Color:

The color of the object to be detected has already been specified in the application. But later with an
additional functionality, this can be done by selecting the color from color dialog box or by color-

picking in the image itself.
Color Range:

A value for color variation must be specified between 0 to 255. This allows the amount of deviation
from the color selected. Whenever we select a color then as the objects move in front of the camera
its color may slightly change in every frame due in change of light conditions in room, the contrast,
the light falling on the object, a shine or reflection from the object surface, etc. Thus by specifying
the range of variation we can keep on detecting the object even after a slight color variation. This is
also the way the projects maintains its robustness, acting perfectly in all conditions. Higher color
range will allow more deviation while may also cause errors by detecting any unwanted objects.
Lower range allows less deviation but may not always detect the object. Hence values must be set

by moving the object here and there in front of the camera and then choosing the best option.

Minimum Size:

The minimum size of the object to be detected must be set. This avoids the detection of small

particles, objects, etc in the background of the same color as our specified color. This reduces errors

and noise.

1.3 Literature Review

Image Processing

The Digital image processing is the use of computer algorithms to perform image processing on
digital images. As a subcategory or the field of digital signal processing, digital image processing
has many advantages over analog image processing. It allows a much wider range of algorifhms to
be applied to the input data and thus can avoid the problems such as the build-up of noise and signal
distortion during processing. Since images are defined over two dimensions (perhaps more) digital
image processing may be modelled in the form of multidimensional systems.In electrical
engineering and computer science, image processing is any form of signal processing for which the
input is an image, such as a photograph or video frame; the output of image processing may be
either an image or, a set of characteristics or parameters related to the image. Most image-
processing techniques involve treating the image as a two-dimensional signal and applying standard

signal-processing techniques to it.

Image processing usually refers to the digital image processing, but optical and analog image
processing are also possible. This article is about the general techniques that apply to all of them.
The acquisition of images (producing the input image in the first place) is referred to as imaging,.

Typical operations:

e Euclidean geometry transformations such as enlargement, reduction, and rotation

e Color corrections such as brightness and contrast adjustments, color mapping, color
balancing, quantization, or color translation to a different color space

o Digital compositing or optical compositing (combination of two or more images), which is
used in film-making to make a "matte"

e Interpolation, demosaicing, and recovery of a full image from a raw image format using a
Bayer filter pattern

e Image registration, the alignment of two or more images

e Image differencing and morphing

e Image recognition, for example, may extract the text from the image using optical character
recognition or checkbox and bubble values using optical mark recognition

e Image segmentation

o High dynamic range imaging by combining multiple images

s Geometric hashing for 2-D object recognition with affine invariance

Computer Vision

Computer vision is the field concerned with the automated computer based processing of images to
i extract and interpret some information. It is the science and the technology of machines that see.
Here see means the machine is able to extract the information from an image, to solve some task, or

perhaps "understand" the scene in either a broad or limited sense.

As a scientific discipline, computer vision is concerned with the theory behind artificial systems
that extract useful information from the images. The image data can take various different forms,

such as the video sequences, views from the multiple cameras, or multi-dimensional data from a

medical scanner.

As a technological discipline, computer vision also seeks to apply its theories and models to the
construction of many computer vision systems. Examples of the various other applications of

computer vision include systems for:

e Controlling the processes (e.g., an industrial robot).

3

e Navigation purposes (e.g. by an autonomous vehicle or mobile robot.)

e

o Detecting the events (e.g., for visual surveillance or people counting).
o Organizing the information (e.g., for indexing databases of images and image sequences).
o Modelling the objects or environments (e.g., medical image analysis or topographical
modelling).
o Interaction (e.g., as the input to a device for computer-human interaction).
Sub-domains of the computer vision also include scene reconstruction, video tracking, event

detection, object recognition, learning, indexing, motion estimation, and image restoration.

In most of the practical computer vision applications, the computers are generally pre-programmed

for solving a particular task, but methods based on learning are now becoming increasingly

commorn.

Typical tasks of computer vision

L Each of the application areas described above employ a range of the various computer vision tasks;
more or less some well-defined measurement problems or the processing problems, which can be

solved by using a varicty of methods. Some typical computer vision tasks examples are presented

below.

S

Recognition

The classical problem in computer vision, image processing, and the machine vision is that of
determining whether or not the image data do contain some specific object, feature, or activity. This
task can normally be solved robustly and without much effort by a human, but is still not
satisfactorily solved in the field of computer vision for the general case: arbitrary objects in the
arbitrary situations. The methods existing for dealing with this type of problem can at best find a
solution only for the specific objects, such as some of the simple geometric objects (e.g.,
polyhedra), human faces, printed or hand-written characters, or the vehicles, and in some of the
specific situations, which are typically described in terms of the well-defined illumination,

background, and pose of the object relative to the camera.
Different varieties of the recognition problem are described in the literature:

Object recognition: one or the several pre-specified or the learned objects or the object classes can
be recognized, usually together in the image with their 2D positions or 3D poses in the scene.

Google Goggles does provide a stand-alone program illustration of this function.

Identification: An individual instance of an object can also be recognized. Examples: identification

of a particular person's face or fingerprint, or identification of a specifically mentioned vehicle.

Detection: the image data is scanned for some specific conditions. Examples: detection of possible
abnormal cells or tissues in the medical images or the detection of a vehicle in an automatic road
toll system. Detection which is based on relatively simple and fast computations is sometimes used
for finding the smaller regions of interesting image data that can be further analysed by some more

techniques, which are computationally demanding, to produce a correct interpretation.
Several specialized tasks based on recognition exist, such as:

Pose estimation: estimating the orientation or position of a specific object relative to the camera.
An example or the application for this technique would be assisting the arm of a robot in retrieving

the objects from a conveyor belt in an assembly line situation or picking some parts from a bin.

Optical character recognition (OCR): identifying characters in the images of some printed or
handwritten text, usually done with a view to encode the text in such a format which is more
amenable to editing or indexing (e.g. ASCII). 2D Code Reading of the 2D codes such as the data

matrix and the QR codes.

o

= ==

X

Motion analysis

Geveral tasks do relate to the motion estimation where a sequence of the images is processed to
produce an estimate velocity either at each point in the image or in the 3D scene, or maybe even of

the camera which produces the images. Examples of the various such tasks are:

Egomotion: determining the rigid 3D motion (translation and rotation) of the camera from an

image sequence which is produced by the camera.

Tracking: following the movements of usually a smaller set of the interest points or objects (e.g.,

vehicles or humans) in the image sequence.

Optical flow: to determine, for each point in the image, that how that point is moving relative to the
image plane, i.e. determining its apparent motion. This motion is a result of both how the

corresponding 3D point is moving in the scene and how the camera is moving relative to the scene.

Computer vision system methods

The organization of the computer vision system is highly application dependent. Some systems are
the stand-alone applications that solve a specific measurement or detection problem, while others
constitute a sub-system of a larger design which, for example, also contains sub-systems for the
control of mechanical actuators, planning, information databases, man-machine interfaces, etc. The
specific implementation of a computer vision system also depends on it if its functionality is pre-
specified or if some part of it can be learned or modified during the operation. Many functions are
unique to the application. However, there are typical functions which are found in many computer

vision systems.

Image acquisition: A digital image is produced by one or the several image sensors, which, besides
various types of the light-sensitive cameras, also include the range sensors, tomography devices,
radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is either
an ordinary 2D image, a 3D volume, or an image sequence. The pixel values typically correspond to
the light intensity in one or the several spectral bands (gray images or colour images), but can also
be related to the various physical measures, such as depth, absorption or reflectance of sonic or

electromagnetic waves, or nuclear magnetic resonance.

Pre-processing: Before any of the computer vision method can be applied to the image data in
mder to extract some specific piece of information, it is usually necessary to process the data in

order to assure that it satisfies the certain assumptions implied by the method. Examples are

Re-sampling in order to assure that the image coordinate system is correct.

Noise reduction in order to assure that the sensor noise does not introduce false information.
Contrast enhancement to assure that the relevant information can be detected.

Scale-space representation to enhance the image structures at locally appropriate scales.
Feature extraction: Image features at the various levels of complexity are extracted from the
image data. Typical examples of such features are:

Lines, edges and ridges.

Localized interest points such as corners, blobs or points.

More complex features may be related to texture, shape or motion.

Detection/segmentation: At some point in the processing a decision is made regarding which

image points or regions of the image are relevant for the further processing. Examples are

Selection of some specific set of interest points

Segmentation of one or multiple image regions which contain a specific object of interest.
High-level processing: At this step the input is typically a small set of data, for example a set
of points or an image region which is assumed to contain a specific object.

Verification that the data satisfy model-based and application specific assumptions.
Estimation of application specific parameters, such as object pose or object size.

Image recognition: classifying a detected object into different categories.

Image registration: comparing and combining two different views of the same object.
Decision making the final decision required for the application,[3] for example:

Pass/fail on automatic inspection applications

Match / no-match in recognition applications

Flag for further human review in medical, military, security and recognition applications

| Applications for computer vision

One of the most prominent application fields in the field of computer vision is the medical computer

vision or the medical image processing. This area is characterized by the extraction of information
from the image data for the purpose of making the medical diagnosis of a patient. Generally, the

image data is in the form of microscopy images, X-ray images, angiography images, ultrasonic

9

images, and tomography images. An example of information that can be extracted from such image
data is the detection of tumours, arteriosclerosis or other malign changes. It can also be the
measurements of organ dimensions, blood flow, etc. This application area also supports the medical
research by providing new information, e.g., about the structure of the brain, or about the quality of

medical treatments etc.

A second application area in the field of computer vision is in industry, sometimes also known as
machine vision, where the information is extracted for the purpose of supporting a manufacturing
process. One example is quality control where the details of the final products are being
automatically inspected in order to find the defects. Machine vision is also used heavily in the

agricultural process to remove the undesirable food stuff from bulk material, a process called

optical sorting.

Military applications are probably one of the largest areas for computer vision. The obvious
examples are the detection of enemy soldiers or the vehicles and the missile guidance. Modern
military concepts, such as "battlefield awareness", imply that the various sensors, including image
sensors, provide a rich set of information about a combat scene that can be used to support the
strategic decisions. In this case, automatic processing of the data is used to reduce the complexity

and to fuse the information from multiple sensors to increase reliability.

One of the newer application areas is the autonomous vehicles, which include submersibles, land-
based vehicles (small robots with wheels, cars or trucks), aerial vehicles, and unmanned aerial
vehicles (UAV). The level of autonomy ranges from fully autonomous (unmanned) vehicles to the
vehicles where the computer vision based system can support a driver or a pilot in various
situations. Fully autonomous vehicles typically use computer vision for navigation purpose, i.e. for
knowing where it is, or for producing a map of its environment (SLAM) and for detecting the
obstacles. There are ample examples of military autonomous vehicles ranging from the advanced
missiles, to UAVs for recon missions or missile guidance. Space exploration is already being made

with autonomous vehicles using computer vision, e. g., NASA's Mars Exploration Rover and ESA's

ExoMars Rover.

Design features

Interoperability: Because mostly the computer systems commonly require interaction between the
new and older applications, the NET Framework provides the means to access functionality which

is implemented in the programs that execute outside the .NET environment. Access to COM
10

—_——

components is provided in the System.Runtime.lmeropServices and the System.EnterpriseServices
namespaces of the framework: access to any other functionality is provided using the P/Invoke

feature.

Common Language Runtime Engine: The Common Language Runtime (CLR) is the execution
engine of the NET Framework. All the NET programs execute under the supervision of the CLR,
guaranteeing certain properties and behaviours in the areas of memory management, security, and

exception handling.

Language Independence: The .NET Framework introduces a Common Type System, or CTS. The
CTS specification defines all the possible programming constructs and data types supported by the
CLR and how they may or may not interact with each other conforming to the Common Language
Infrastructure (CLI) specification. Because of this feature, the .NET Framework also supports the
exchange of types and object instances between the libraries and applications written using any

conforming .NET language.

Base Class Library: The Base Class Library (BCL), part of the Framework Class Library (FCL), is
a library of functionality available to all languages using the NET Framework. The BCL provides
classes which encapsulate a number of common functions, including file reading and writing,

graphic rendering, database interaction, XML document manipulation and so on.

Simplified Deployment: The NET Framework also includes some design features and tools that
help to manage the installation of a computer software to ensure that it does not interfere with

previously installed software, and that it conforms to security requirements.

Portability: While Microsoft has never implemented the full framework on any system except
Microsoft Windows, the framework is engineered to be platform agnostic and some cross-platform
implementations are available for other operating systems (see Silverlight and the Alternative
implementations section below). Microsoft submitted the specifications for the Common Language
Infrastructure (which includes the core class libraries, Common Type System, and the Common
Intermediate Language), the C# language and the C++CLI language to both ECMA and the ISO,
making them available as open standards. This makes it possible for third parties to create

compatible implementations of the framework and-its languages-en-other platforms.

Common Language Infrastructure (CLI-Amer)

14

' \

i'iﬁ

The purpose of the Common Language Infrastructure (CLI) is to provide a language-neutral
platform for the application development and execution, including the functions for Exception
handling, Garbage Collection, security, and interoperability. By implementing the core aspects of
the NET Framework within the scope of the CLI, this functionality will not be tied not only to a
single language but will be available across the many languages supported by the framework.

Microsoft's implementation of the CLI s called the Common Language Runtime, or CLR.

1.4 Existing Systermns

A simplification used in this project, which was not found in any of the recognition methods
researched, is the use of a wrist band to remove the several degrees of freedom. This enabled the
three new recognition methods to be devised. The recognition frame rate achieved is comparable to
most of the systems in existence (after allowance for processor speed) but the number of different
gestures recognised and the recognition accuracy are amongst the best found. Figure below shows

several of the existing gesture recognition systems along with recognition statistics and method.

nary et Nurber of | Barkgrousd | Adifitionsl | Number of Ay
| ol recogniion gestures | fogesture P VES trakning e .
recogrised | omges roquired (sach | imiages i
Hidden Makov | 97 | Goneral Mulii- 1-haurs TRED
Mudels ' cojusel igning
e s 4
idden Markoy | 40 { General No 400 91E% 11

Models iraiiing
| Pe SERENCES
4 1oog] .
| [Boywden & B Linear bi Bluescrem | Ko 1441
| Sarhadi, | approximation Imges
E Wi | o poadinesr i
” grabril

| disribatinn
- | | iedels
A Davis & YFinke e} 7 Statie | Markers on | 10 U8% H
| Stah, 1994] i machine i glave SPUETICES
| model nstchleg of 200
' E ‘ § faaiws {
 — st - each ks

Figure 2: Existing systems of gesture recognition

12

Chapter 2 : System Requirements and

Specifications

2.1 Required system behaviour
The following are the features and the facilities which a user expects of the system.

The software must be efficient enough to recognize the gestures correctly. Such softwares are often
not perfect and are good enough only for the demonstration purposes. This system is expected to be

actually useful for a Home PC. Thus perfection is the greatest requirement.

There must not be any constraints on the background color. Usually whatever color we specify for
an object also appears somewhere in the background too in most of the cases. Thus there is always a
restriction of using a plain single colored background and not a multicolored background and the
use of an object of such a color so that it can easily be seen again the background. Such a restriction
must not be present because a user cannot always appear in front of a plain background just to make

a gesture.

It must be robust enough to cope with the illumination conditions and the contrast changes.
Whenever we select a color then as the object moves in front of the camera its color may change
slightly in every frame due to the change of light conditions in the room, the contrast, the light
falling on the object, a shine or reflection from the object surface, etc. This will cause some problem
in the color detection and hence the object would not be successfully tracked, thereby spoiling the

performance.

Algorithms must be speedy enough to process the frames with high speed so that the software
doesn’t lag behind. When we take lower frame rate from the camera to process the gesture, the
application doesn’t look to be of real time. But with the higher frame rate the computer has to
process more number of frames in a given time. This slows down the performance of the system. In
such a case whenever we make a gesture it takes a significant amount of time to appear in the video

and then an operation is performed.

2.2 System Functionalities

13

e

.

All the functionalities of the project can be categorized into 3 types:
e Basic operations
¢« Mouse Control
¢ Keyboard Functionalities
We are providing a separate area for switching between these operations.

BASIC OPERATIONS:

This category includes various operations like opening Web Browser, Microsoft PowerPoint,
Calculator, Notepad, Increasing/Decreasing Volume, Shutting/Hibernating/Sleeping/Logging-Off

the computer, etc.

Certain gesture is allocated to each action so as to perform that action. When that gesture is

appeared in front of the camera, it detects that and performs that certain action which is allocated to

that gesture in the program.
MOUSE CONTROL:

These include the motion and the clicks of the mouse; moving the mouse cursor, performing left

and right clicks.

It is a very typical process because it requires a lot of precision and also continuous scanning is
required for performing it. When any selected object is moved in front of the camera then the mouse
pointer moves accordingly and the left click and right click is also done by performing a certain

gesture with that object.
KEYBOARD FUNCTIONALITIES:

In this we are controlling the arrow keys of keyboard by a certain gesture like moving our hand in a
particular direction so as to press the arrow key of that direction. We are then sending the key
presses to a selected running application. Hence we can change the PowerPoint presentation slides,

zoom in and out of the images, play games, navigate with gestures instead of arrow keys.

2.3 System interfaces, inputs, and outputs

Gestures and corresponding action performed:

14

The system can interpret a total of 13 gestures.

For Keyboard:
Maximum no. of objects can be 1.
Total no of directions = 4

So total gestures = 1*%4 = 4

For Mouse:

Maximum no. of objects can be 3.
Total no of directions = 4

Right Click = 1

Left Click = 1

So total gestures = 1¥4+2 = 6

For Basic Gestures:

Total gestures = No. of objects scanned. f«’
Maximum no. of scanned objects can be 3.

So total gestures = 3.

In case of the basic gestures we can set the action performed by a particular gesture by an option

provided in software.

Moreover we can also give our own process name, URL, folder path or any such things to make a

function of your own.

2.4 Concept of moments

A lot of useful information about a binary object can be gained from the momentsof the object.
o Area of the object (Zeroth order moments)
e Centre of mass (First order moments)

e Its Orientation in the image (Second order moments)

Zeroth order moment (IMo,0):

15

The Zeroth order moment is the area:A=yyl(x,y)

This is analogous to calculating areas of continuous surfaces using double integral.

First order moment:

The center of mass can be found by the first order moments (Mo and My o).
Mio- yx X[I(x.y)]

Mo,= w3 Y [I(%y)]

The coordinates of the center of mass are calculated as:

Xcom = Mi,o/Mog

Ycom = Mo, /Moo

Now with the coordinates of the center of mass, we can have a reference point to track.

2.5 System models:

Data-Flow Model

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an
information system, modelling its process aspects. Often DFDs are a preliminary step used to create
an overview of the system which can later be elaborated. DFDs can also be used for the

visualization of data processing (structured design).

A DFD shows what kinds of data will be input to and output from the system, and where the data
will come from and go to, and where the data will be stored. It does not show information about the
timing of processes, or information about whether processes will operate in sequence or in parallel

(which is shown on a flowchart).

16

SR BERNED
LANERA DER ALY :
DR SRS f i

VIDED FRALE ; = g
EVER
vigbstaug
PEICIINET

&
OF SODRaTER OO,

i B B
3 Bt dns

ST A5
it LEARD A DR
2 = |
SLECT 3 TRACED ‘ |

VRRNEES AR 3ET

h 4

stimuet : |
; REOGRTED | |

Figure 2: Data flow diagram - Part |

17

i§ ZOATEARE W TR

sEFRDASD

b1 $ gt .

sREDEEED BTV

LOMBARE WM BAEE

CPORARS BRI INED : : !

Conmag N OV |

FREDESNED GLITVME

/ b L4 13 ﬂitmg.fi/

BTG 08 A0LTED

140

F Ragin

\\\'f;m:-

Figure 3: Data flow diagram - Part 2
18

— ——
—

Behavioural Model — Use case Diagram

A use case diagram in the Unified Modelling Language (UML) is a type of behavioural diagram
defined by and created from a Use-case analysis. The main purpose of a use case diagram is to

show what system functions are performed for which actor. Roles of the actors in the system can be

depicted.

gesturs Rscognitcion
Systam
s
i BAMCORERATION R
o v SO it
Mt —~(' REvEOARD e
o, - OFERATION o
e T et it
“~ AN
.
\”s,
e
.\"'N.. w_,w"‘““ 3 i, W
‘if MADLISE DPERATION \‘]

Use case diagram

Figure 4: Use Case diagram

2.6 Failure modes and action on failure

Gestures appear differently from different points of view and even a human being cannot recognize

or can mistake certain gestures if they are seen from an unusual point of view.

Quality of camera is a big concern, resolution, sensitivity to light, color tone, etc. Lower camera
resolution would provide inferior images in which it would be difficult to recognize gestures,
shapes and the other attributes. Higher resolution images will take a lot of time to process. To

handle this, the resolution was set to 640x480 and FPS was set to 15.Robustness to the image noise

(background and foreground) and occlusions (partial or full) are also challenging issues.

The speed of detected gestures is usually related to the frame-rate: we cannot expect recognizing

rapid gestures with an insufficient frame-rate (e.g. four frames per second 1s required for detecting

the blink of an eye).

For reducing the errors the application is programmed to ask for the repetition of gesture to confirm

execution.

19

— o

. S "

Chapter 3 : Task Analysis and Schedule of
Activities

Task analysis is the analysis of how a task is accomplished, including a detailed description of both
the manual and mental activities, task and element durations, task frequency, task allocation, task
complexity, environmental conditions, necessary clothing and equipment, and any other unique
factors involved in or required for one or more people to perform a given task. Task analysis
emerged from research in applied behaviour analysis and still has considerable research in that area.
Stepl. Creating a list of expected users and tasks

Step2. Validating the tasks

Step3. Deciding upon key users and a tentative list of requirements

Step4. Brainstorm design alternatives

StepS. Develop low fidelity protofypes

Step6. Task-centred walkthrough

Step7. Evaluation with users

3.1 Task decomposition

Decomposition of project scope generally involves the following activities:

e Gather information on major project deliverables and analyse related tasks

e Start development of work breakdown structure(WBS) at the highest level

¢ Decompose the upper WBS levels into lower level detailed components

e Identify each work package & WBS components with unique code, and

e Verify if the degree of decomposition of the work is necessary and sufficient

¢ No. of Levels of WBS need not be same for all deliverables
But excessive decomposition may lead to more work without much value for the time spent. It can
also leads to incfficient usc of resources, and decreased work efficiency. So, knowing few basics
about work package helps us in deciding the level of decomposition. Few of them are:

o Work package is the lowest level of WBS.

e Usually, a work package is the quantum of work which is assigned to a single resource as a

whole and produces a verifiable outcome.

20

e Project’s cost and schedule estimation is done at work package level.
e The accuracy of these estimations depends on the level of detailed work package that is
defined.

e The level to which work packages need to be detailed vary from project to project.

In Time Management, each work package within the WBS is decomposed into the activities
required to produce the work package deliverables. Decomposition is a technique used in project
management that breaks down the workload and tasks before the creation of the work breakdown

structure. This important step can save time in the long run.

Overview of the Decomposition Process
Once you have determined the project objectives, you will need to gather the information involving
the project’s deliverables and the tasks that have already been determined. Knowing what needs to
be produced as the end products and knowing the important milestones will help guide the project
to keep it on course.

Stepl. Identify Project Deliverables

Step2. Give each Deliverable its own Sheet of Paper
Step3. Deal with Each Deliverable Individually

Ace. No,SP0 603>b
«:,,)\Q‘POBl? Oj}:&(@

%9" at, S0'a%

Step4. Know When to Stop

Step5. Estimate Durations and Arrange Tasks into Work Packages
Step6. Estimate Costs

3.2 Incremental Model

Iterative and Incremental development is the heart of a cyclic software development process which
was q'%‘eloped in response to the weaknesses of the waterfall model. It generally starts with an
initial planning and ends with deployment with the cyclic interactions in between. The basic idea
behind the agile method is to develop a system through the repeated cycles (iterative) and in the
smaller portions at a time (incremental), allowing the software developers to take advantage of what
was learnt during the development of earlier parts or versions of the system. Learning comes from
both the development and-the-use-of the system, where the possible key steps in the process start
with a simple implementation of a subset of the software requirements and then iteratively enhance
the evolving versions until the full system is implemented. At each iteration, the design

modifications are made and some new functional capabilities are added.

21

Reqguiremenls Anaslysis & Design

{rpinmentation

Plasring

Daployment

| initial
Planning

Evaluation

|
|

Figure 5: Incremental model

The procedure itself consists of the initialization step, the iteration step, and the Project Control
List. The initialization step creates a base version of the system. The goal for this initial
implementation is to create a product to which the user can react. It should offer a sampling of the
key aspects of the problem and provide a solution that is simple enough to understand and easily
implement. To guide the iteration process, a project control list is created that contains a record of
all those tasks that are needed to be performed. It includes such items as the new features to be
implemented and the areas of redesign of the existing solution. The control list is constantly being
revised as a result of the analysis phase.

The iteration involves the redesign and implementation of a task from the project control list, and
the analysis of the current version of the system. The analysis of iteration involves analysis of the
structure, modularity, usability, reliability, efficiency, & achievement of the goals. Incremental
development slices the system functionality into increments (portions). In each increment, a slice of
functionality is delivered through cross-discipline work, from the requirements to the deployment.
The r?ﬁed process groups increments/iterations into different phases: inception, elaboration,
constiliction, and transition.

Inception identifies the project scope, risks, and the requirements (functional and non-functional) at
a high level but in enough detail that the work can be estimated.

Elaboration delivers a working architecture that mitigates the top risks and fulfils the non-functional
requirements.

Construction incrementally fills-in the architecture with the production-ready code produced from
analysis, design, implementation, and testing of all the functional requirements. Each of the phases
may be divided into 1 or more iterations, which are usually time-boxed rather than feature-boxed.
Architects and analysts work one iteration ahead of the developers and testers to keep their work-

product backlog full. Guidelines that drive the implementation and analysis include:

22

Any difficulty in the design, coding and testing a modification should signal the need for
redesign or re-coding.

Modifications should fit easily into the isolated and easy-to-find modules. If they do not,
some redesign is possibly needed.

Modifications to the tables should be especially easy to make. If any table modification is
not quickly and easily done, then the redesign is indicated.

Modifications should become easier to be made as the iterations progress. If they are not,
there is a basic problem such as a design flaw or a proliferation of patches.

Patches should normally be allowed to exist for only one or two iterations. Patches may be
necessary to avoid the redesigning during an implementation phase.

The existing implementation should be analysed frequently to determine how well it
measures up to the project goals.

Program analysis facilities should be used whenever available to aid in the analysis of partial
implementations.

User reaction should be solicited and analysed for the indications of deficiencies in the

current implementation.

Advantages
1. After every iteration any faulty piece software can be easily identified as very few
changes are done after every iteration.
2i It is easier to test and debug as testing and debugging can be performed after each
iteration.
3. This model does not affect anyone's business values because they provide core of the

software which a customer needs, which will indeed help that person to run his business.
63

After establishing an overall architecture, the system is developed and delivered in

increments.

Disadvantages

1.

If initially, the requirements are thought to be stable but at later stages are realized to be
unstable then the increments have to be withdrawn and have o be reworked.
The resulting cost may exceed the cost of the organization.

Problems may arise related to the system architecture.

23

—— ———;/)

3.3 Project schedule

- 02/08/2011
- 16/08/2011
- 30/08/2011
13/09/2011
27/09/2011,
- 11/10/2011
- 25/10/2011
08/11/2011
22/11/2011
06/12/2011
20/12/2011
03/01/2012
L 17/01/2012
31/01/2012
14/02/2012,
28/02/2012
- 13/03/2012
27/03/2012
L 10/04/2012

|
!
d

24/04/2012

Project Overview, Approach, Requirements,
Roadmap

Litrature Survey, System Configuration and
installation of S/W & lib.

Test cades run- RGB to grey, negative image,
thresholding,etc.

Simple Mouse operations, minimize & maximize
any window

Study on Multi-blob & Prototype will be shown

GUI design and Testing

Final Implementation & Presentation

Figure 6: Gantt chart

A

;“F

24

| Chapter 4: Detection

4.1 Choice of Camera |

Quality of camera is a big concern. Its resolution, sensitivity to light, color tone, etc. have to be
optimum (neither too high nor too low) for the optimal detection of the object. When we take lower

frame rate from the camera to process the gesture, the application doesn’t look real time. We
perform a gesture but the video in the application does not look like going smooth. Thus we have to
take the higher frame rate i.e., >=20. But with the higher frame rate the computer has to process ,
more number of frames in a given time. This slows down the performance of the system. In such a |
case whenever we make a gesture it takes a significant amount of time to appear in the video and !
then an operation is performed. Lower camera resolution would provide inferior images in which it |
would be difficult to recognize gestures, shapes and other attributes. Higher resolution images will

take a lot of time to process thus the software lags behind. It should be robust enough to cope with

the illumination conditions and contrast changes. Whenever we select a color then as the objects |
move in front of the camera its color may change slightly in every frame due to the change of the
light conditions in the room, the contrast, the light falling on the object, a shine or reflection from \
the object surface, etc. This will cause a problem in the color detection and hence the object would

not be successfully tracked, thereby spoiling the performance. Robustness to *image noise

(background and foreground) and **occlusions (partial or full) are also challenging issues.

There is no perfect low-level vision algorithm.

Image Noise: Image noise is the random variation of brightness or the color information in the

images produced by the sensor and circuitry of a scanner or digital camera.
L
Ocelusion: Occlusion means that there is something you want to see, but can't due to some property

of your sensor setup, or some event.

4.2 Hardware Setup
Apart from the camera the other minimum hardware requirements for the application are as follows:
e RAM at least 512MB

e Hard disk at least 10GB

25

e Processor at least Pentium 4, 1.2GHz

e Integrated/Dedicated camera

The above hardware requirements are the minimum requirements for the .NET framework 3.0
which is an essential requirement for running NET applications. Hence these hardware

specifications have been also taken as the minimum requirements for our project.

4.3 Method of Colour Detection

Blob Detection

In the area of computer vision, blob detection refers to the visual

modules that are aimed at detecting the points and/or the regions in

the image that differ in the properties like brightness or color
5 il = Acquim lq

compared to the surrounding. There are two main classes of blob

detectors (i) differential methods based on derivative expressions } F‘rﬁcess

and (ii) methods based on local extrema in the intensity landscape. f .—--? “ %
With the more recent terminology used in the field, these operators : &M =
can also be referred to as the interest point operators, or ' o §

- Track

alternatively the interest region operators (see also interest point

detection and corner detection).
Figure 7: Process of Blob Detection

There are several motivations for studying and developing the blob

detectors. One main reason is to provide some complementary information about the regions, which
is not obtained from the edge detectors or corner detectors. In early work in the area, blob detection
was used to obtain the regions of interest for further processing. These regions could signal the
presence of the objects or the parts of objects in the image domain with application to the object
recognition and/or object tracking. In other domains, such as histogram analysis, blob descriptors
can also be used for peak detection by applying the concept of segmentation. Another common use
of blob descriptors is as the main primitives for texture analysis and texture recognition. In more
recent work, blob descriptors are being increasingly popular and used as interest points for wide
bascline stereo matching and to signal the presence of informative image features for appearance-
based object recognition based on the local image statistics. There is also the related notion of ridge

detection to signal the presence of elongated objects.

26

[Define ¢ aeqm;am; |

'I"

4 Pixel filtering by color

OpenCV provides a number of image processing filters, which allow to filter pixels depending on
their color values. These image processing filters may be used to keep the pixels, which color falls

inside or outside of specified range, and fill the rest of pixels with specified color.

Below is the list of implemented pixel filters and the result of their application to the source image.

Color Filtering

The image processing filter filters pixels inside/outside of the specified RGB color range - it keeps
pixels with colors inside/outside of specified range and fills

the rest with specified color.

// create filter

ColorFiltering filter = new ColorFiltering();
{/ set color ranges to keep

filter.Red = new IntRange(100, 255);
filter.Green = new IntRange(0, 75);

filter.Blue = new IntRange(0, 75);

figure 8: Color filtering method

/I apply the filter
filter. ApplyInPlace(image),

Channel Filtering

The channel filtering filter is similar to the above color filtering. It also operates in RGB color
space, but does filtering of not entire pixels, but their RGB
values. This means that pixel itself may not be filtered (will
be kept), but one of its RGB values may be filtered if they

are inside/outside of specified range.

/l-create filter

ChannelFiltering filter = new ChannelFiltering();

// set channels' ranges to keep
filter.Red = new IntRange(0, 255);
filter.Green = new IntRange(100, 255);

Figure 9: Channel filtering method

filter.Blue = new IntRange(100, 255);
27

: ;

// apply the filter
filter.ApplylnPlace(image);

HSL Filtering

The image processing filter operates in the HSL color space and filters pixels, which color is
inside/outside of the specified HSL range - it keeps pixels with
colors inside/outside of the specified range and fills the rest with

specified color.

// create filter
HSLFiltering filter = new HSLFiltering();
// set color ranges to keep

filter.Hue = new IntRange(335, 0);

filter.Saturation = new Range(0.6f, 1);

= Figure 10: HSL filtering method
filter.Luminance = new Range(0.1f, 1);
{/ apply the filter A

filter. ApplylnPlace(image);

Euclidean Color Filtering

The image processing filter filters pixels, which color is inside/outside of RGB sphere with
specified center and radius - it keeps pixels with colors
inside/outside of the specified sphere and fills the rest with

specified color.

// create filter

EuclideanColorFiltering filter = new EuclideanColorFiltering();
// set center colol and radius

filter.CenterColor = Color.FromArgb(215, 30, 30);
filter.Radius = 100;

Fipure 11: Euclidean filtering metho

/1 apply the filter
filter. ApplylnPlace(image);

28

Chapter 5: Recognition and Refinement

5.1 Recognition Strategy

Direct method based on geometry: Knowing that the hand is made up of bones of fixed width
connected by joints which can only flex in certain directions and by limited angles it would be
possible to calculate the silhouettes for a large number of hand gestures. Thus, it would be possible
to take the silhouette information provided by the detection method and find the most likely gesture
that corresponds to it by direct comparison. The benefit of this method is that it would require very
little training and would be easy to extend to any number of gestures as required. However, the
model for calculating the silhouette for any given gesture would be hard to construct and in order to‘
attain a high degree of accuracy it would be necessary to model the effect of all light sources in the

room on the shadows cast on the hand by itself.

Learning method: With this method the gesture set to be recognised would be “taught” to the
system beforehand. Any given gesture could then be compared with the stored gestures and a match
score calculated. The highest scoring gesture could then be displayed if its score was greater than
some match quality threshold. The advantage of this system is that no prior information is required
about the lighting conditions or the geometry of the hand for the system to work, as this information
would be encoded into the system during training. The system would be faster than the above
method if the gesture set was kept small. The disadvantage with this system is that each gesture
would need to be trained at least once and for any degree of accuracy, several times. The gesture set

is also likely to be user specific.

Another method was to take up a few parameters and make different combinations of it to perform
different gestures. Number of objects, relative positions of objects, horizontal motion direction,
vertical motion direction, speed of motion and distance of motion are the parameters whose

different combinations mean different gestures. We decided to take up this method.

5.2 Selection of Gesture Set

In order to test any comparison metric devised it is important to have a constant set of easily

reproducible gestures. It is also important to ensure that the gestures are not chosen to be as

29

dissimilar as possible so that the chances of confusion for the system and user and probability of

errors are reduced.

5.3 Analysis of distortion and noise

Image distortion: If the camera’s visual axis is not perpendicular to the floor plane, a given gesture
would appear different depending on the position and yaw of the hand (a given length in one area of
the frame would appear longer or shorter in another area of the frame). This is termed as projective
distortion. Also, if the camera lens is of poor quality then the straight sides of a true square in the

frame would appear to be curved. This is termed radial as distortion.

Image mnoise is random (not present in the object imaged) variation of brightness or color
information in the images, and is usually an aspect of electronic noise. It can be produced by the
sensor and circuitry of a scanner or digital camera. Image noise can also originate in film grain and

in the unavoidable shot noise of an ideal photon detector.

Image noise is an undesirable by-product while capturing image that adds spurious and extraneous

information. |

The original meaning of "noise" was and remains "unwanted sound"; unwanted electrical
fluctuations in the signals received by AM radios caused audible acoustic noise ("static"). By

analogy unwanted electrical fluctuations themselves came to be known as "noise”.

Image noise reduction

Most algorithms for converting the image sensor data to an image, whether in-camera or on a
computer, involve some form of noise reduction. There are many procedures for this, but all attempt
to determine whether the actual differences in pixel values constitute noise or real photographic
detail, and average out the former while attempting to preserve the latter. However, no algorithm
can make this judgment perfectly, so there is often a tradeoff made between noise removal and
preservation of fine, low-contrast detail that may have characteristics similar to noise. Many

cameras have settings-to-control-the aggressiveness of the in-camera noise reduction.

A simplified example of the impossibility of unambiguous noise reduction: an area of uniform red
in an image might have a very small black part. If this is a single pixel, it is likely (but not certain)
to be spurious and noise; if it covers a few pixels in an absolutely regular shape, it may be a defect

in a group of pixels in the image-taking sensor (spurious and unwanted, but not strictly noise); if it

30

is irregular, it may be more likely to be a true feature of the image. But a definitive answer is not

available.

This decision can be assisted by knowing the characteristics of the source image and of the human
vision. Most noise reduction algorithms perform much more aggressive chroma noise reduction,
since there is the little important fine chroma detail that one risks losing. Furthermore, many people
find luminance noise less objectionable to the eye, since its textured appearance mimics the

appearance of film grain.

The high sensitivity image quality of a given camera (OF RAW development workflow) may depend
greatly on the quality of the algorithm used for the noise reduction. Since noise levels increase as
the ISO sensitivity is increased, most camera manufacturers increase the noise reduction
aggressiveness automatically at higher sensitivities. This leads to the breakdown of image quality at
higher gensitivities in two ways: noise levels increase and fine detail is smoothed out by the more

aggressive noise reduction.

In cases of extreme noise, such as the astronomical images of very distant objects, it is not o much
a matter of noise reduction as of extracting a little information buried in a lot of noise; techniques |

are different, seeking small regularities in massively random data. !

5.4 Removal of background objects

The application has an adjustment for the minimum size of the objects to be detected. The size is
defined in terms of pixels. If any object (of the same color as our specified color) is detected and its
size does not satisfy the minimum height and minimum width parameters then this object is not
detected. Often it happens that there are several objects in the background that happen to match
with our specified color and are hence detected causing a complete misinterpretation of the gesture.

Thus by specifying these size parameters, we can get rid of the background objects.

5.5 Removal of unwanted colours

The color of the object t0 be detected must be specified in the application. This can be done by

selecting the color from the color dialog box or by color-picking in the image itself.

A value for color variation must be specified between 0 to 250. This allows the amount of deviation

from the selected color. Whenever we select a color then as the objects move in front of the camera
31

its color may change slightly in every frame due to the change of light conditions in the room, the
contrast, the light falling on the object, a shine or reflection from the object surface, etc. Thus by
specifying the range of variation we can keep on detecting the object even after a slight color
variation. This is also the way the projects maintains its robustness, acting perfectly in all
conditions. Higher color range will allow more deviation while may also cause errors by detecting
any unwanted objects. Lower range allows less deviation but may not always detect the object.
Hence values must be set by moving the object here and there in front of the camera and then

choosing the best value.

5.6 Overview of Algorithms

(See annexure 1 for the codes.)

32

Chapter 6: Conclusion

6.1 Project Goals

The goal of this project was to create a system to recognise a set of gestures, 3 for basic controls, 4
gestures for keyboard control and 6 gestures for mouse control.

It was considered that a modern computer system with Microsoft Windows operating system would

allow the project goals to be exceeded.

6.2 Further Work

Collection of additional gesture information: The final system developed can recognised gestures
using silhouette information alone. Although this was sufficient for the number of trained gestures,
the accuracy would doubtless suffer if the number of gestures were increased. In order to remedy
this, extra information about the test gesture would have to be gathered, such as edge information.
Removal of coloured object: The system relies on the using a coloured object to remove various
degrees of freedom, making recognition, via comparison, possible. It would be advantageous if this
were not the case. There are methods that could be used to perform the recognition without any
object directly with the hand but they would be unlikely to be as accurate.

Detection of more than one color: If the system is able to detect more than one color then we will
have one more parameter of color which can be used to increase the number of gestures by a factor
of ‘n’ where n is the no. of different colors that can be detected.

Increase of the number of recognised gestures: For the purposes of a man-machine interface a
relatively small set of gestures (=100) would be sufficient. However, if detection of hand gestures
for coinputer animation is needed (for instance), then the no. of trained gestures required would be
around thousands. A system which relies on both training and comparison of all gestures used
would not be sufficient for this task..

Multi-stage gestures: It would be possible to represent a much larger number of gestures if each
consisted of two or more gestures combined with hand position changes. For instance, the “wave
hello” label could correspond to the open hand gesture with an alternating increase and decrease of
hand yaw angle and the “thumbs-up” label could correspond to some other operation followed by
the space gesture.

Two-handed gestures: [t would be possible to detect the gesture signed by both hands in the frame.
A method would have to be devised to detect a gesture (or range of gestures) that is represented by

a partially occluded hand. This method would be considerably harder to implement. It should be

33

recognition of the full gesture.

=

noted that although the gesture of both hands could be recognised this would not permit the »

34

m

5 7. References
Websites:
[1]. http://www.cs.iit.edu/~agam/cs5 12/ lect-notes/opencyv-intro/
2] http://www.roborealm.com/tutorial/color_object tracking_2/slide010.php

[3]. hitp://www.scholarpedia.org/article/Multiple_object tracking
[4]. http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/COHEN/gesture_overvie l
w.html
[5]. http://channel,‘).msdn.comicoding4't.‘un/ki11cct/()nen—sourcc—£(inect-gesture-re-cognition—
project-Kinect-DTW |
[6]. http://philosophe.com/design/requirements/ }
[7]. http:/www.brighthub.com/of fice/project-management/articles/15314.aspx ‘
[8]. http://www.fdsc.net/deveiopment—Eifec-vcles-and—models/incremental-modei.hl‘ml
[9]. http://www.softdevteam.com/Incremental-lifecycle.asp
[10]. http://www.smartdraw.com/resources/tutorials/data~ﬂow-cliagrams/
[11]. http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
[12]. http://www.sprawls.org/ppmi2/NOISE/
[13]. http://www.cambridgeincolour.com/tutorials/image-noise.htm
[14]. hitp://www.sciencedaily.com/releases/2010/06/10061713221 8.htm |
[15]. hitp://www.imagemagick.org/ Usage/distorts/ ‘,
[16]. http://www.cosmin.com/colordetector/ |

Books:

[1]. Face Detection and Gesture Recognition for Human-Computer Interaction - by Ming-
Hsuan Yang (Author), Narendra Ahuja (Author).

[2]. Learning OpenCV; computer vision with OpenCV library — Gary Bradski, Adrian
Kaehler.

[3]). Hidden Markov Models for Gesture Recognition by - Donald O. Tanguay, Jr.

[4]. Digital Image Processing (Second Edition) by Rafael C. Gonzalez, MedData
Interactive.

35

Chapter 8: Annexure

Codes and Snapshots:

// Segmentation : Scribbling Application

#include "stdafx.h"
#include <opencv2\opencv.hpp>

Ipllmage* GetThresholdedImage (Iplimage* img)

Ipllmage* imgHSV = cvCreatelmage(cvGetSize(img), 8, 3);
cvCvtColor(img, imgHSV, CV_BGR2HSV);
Iplimage* imgThreshed = cvCreatelmage(cvGetSize(img), 8, 1);
cvInRangeS(imgHSV, cvScalar(109, 100, 100), cvScalar(111, 255, 255), imgThreshed);
cvReleaselmage(&imgHSV);

return imgThreshed;

}

int main()

{ |
// Initialize capturing live feed from the camera]
CvCapture* capture = 0; /
capture = cvCaptureFromCAM(0);
if(!capture)

{
printf("Could not initialize capturing..\n");
return -1;

}

cvNamedWindow("video");
cvNamedWindow("ThreshWin");
Iplimage* imgScribble = NULL;
while(true)

Iplimage* frame = 0;
frame = cvQueryFrame(capture);
if(!frame)

break;
if(imgScribble == NULL)
{
imgScribble = cvCreatelmage(cvGetSize(frame), 8, 3);
}

Iplimage* imgBlueThresh = GetThresholdedImage(frame);
CvMoments ¥*moments = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(imgBlueThresh, moments, 1);
double moment10 = cvGetSpatialMoment(moments, 1, 0);
double moment01 = cvGetSpatialMoment(moments, 0, 1);
double area = cvGetCentralMoment(moments, 0, 0);
36

T T————

static int Xpos = 0;

static int Ypos = 0;

int Xlast = Xpos;

int Ylast = Ypos;

Xpos = (moment10/area),

Ypos = moment01/area;

printf("position (%d, %d)\n", Xpos, Ypos);

if(Xlast>0 && Ylast>0 && Xpos>0 && Ypos>0 && area>225)

{
cvLine(imgScribble, cvPoint(Xpos, Ypos), cvPoint(Xlast, Ylast), cvScalar(255,0,0), 5);

cvAdd(frame, imgScribble, frame);
cvShowImage("ThreshWin", imgBlueThresh);
cvShowlImage("video",frame);

int ¢ = cvWaitKey(10);

if(c!=-1)

{

break;

}
cvReleaselmage(&imgYellowThresh);
delete moments;

}

cvReleaseCapture(&capture);
return 0;

{asn
B ¥ el ¢ Sagr s praviad iRl g P Terew plel
il {ngbo-tiede, axbolei(pait v, vdbeiniCinnd, Bandvh. edela PR A0 e

37

// Multi-Blob detection

#include "stdafx.h"

#include <opencv2\opencv.hpp>
#include <stdlib.h>

#include <stdio.h>

#finclude <math.h>

#include <cv.h>

#include <highgui.h>

#finclude <time.h>

Iplimage* GetThresholdedImageYellow(Ipllmage* img)

{
Iplimage* imgHSV1 = cvCreatelmage(cvGetSize(img), 8, 3);
cvCvtColor(img, imgHSV1, CV_BGR2HSV);
Iplimage* imgThreshedl = cvCreatelmage(cvGetSize(img), 8, 1);
cvInRangeS(imgHS V1, cvScalar(30, 100, 100), cvScalar(60, 255, 298);
imgThreshed1);//yellow
cvReleaselmage(&imgHSV1);
return imgThreshed1;

}

Iplimage* GetThresholdedImageBlue(Iplimage* img)

Iplimage* imgHSV2 = cvCreatelmage(cvGetSize(img), 8, 3);

cvCvtColor(img, imgHSV2, CV_BGR2HSV); /
Iplimage* imgThreshed2 = cvCreatelmage(cvGetSize(img), 8, 1);

cvInRangeS(imgHSV 1, cvScalar(140, 100, 100), cvScalar(160, 25552557,

imgThreshed2);//blue

cvReleaselmage(&imgHSV2);

return imgThreshed2;

)

Iplimage* GetThresholdedImagePink(Iplimage* img)

{
Ipllmage* imgHSV3 = cvCreatelmage(cvGetSize(img), 8, 3);
cvCvtColor(img, imgHSV3, CV_BGR2HSV);
Iplimage* imgThreshed3 = cvCreateImage(cvGetSize(img), 8, 1);
cvInRangeS(imgHSV3, cvScalar(160, 100, 100), cvScalar(200, 255, 255),
imgThreshed3);//pink
cvReleaselmage(&imgHSV3);
return imgThreshed3;

}

int main()
{
CvCapture* capture = 0;
capture = cvCaptureFromCAM(1);
if(!capture)
{

printf("Could not initialize capturing...\n");

38

return -1;

}
cvNamedWindow("video",CV_WINDOW_AUTOSIZE);
chamedWindow("ThreshWin",CV___WINDOW_AUTOSIZE);
while(true)
{
Iplimage* frame = 0;
frame = cvQueryFrame(capture);
if(1frame)
break;
Iplimage* imgYellowThresh = GetThresholdedImageY ellow(frame);
Iplimage* imgBlueThresh = GetThresholdedimageBlue(frame);
Iplimage* imgPink Thresh = GetThresholdedimagePink(frame);
CvMoments *moments] = (CvMoments*)malloc(sizeof(CvMoments));
CvMoments *moments2 = (CvMoments*)malloc(sizeof(CvMoments));
CvMoments *moments3 = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(imgYellowThresh, moments1, 1);
cvMoments(imgBlueThresh, moments2, 1);
cvMoments(imgPink Thresh, moments3, 1);
int moment10a = cvGetSpatialMoment(momentsl, 1, 0);
int moment01a = cvGetSpatialMoment(momentsl, 0, 1);
int moment10b = cvGetSpatialMoment(moments2, 1, 0);
int moment01b = cvGetSpatialMoment(moments2, 0, 1);
int moment10c = cvGetSpatialMoment(moments3, 0, 1);
int moment01c = cvGetSpatialMoment(moments3, 0, 1);
double areal = cvGetCentralMoment(moments1, 0, 0);
double area? = cvGetCentralMoment(moments2, 0, 0);
double area3 = cvGetCentralMoment(moments3, 0, 0);
static int Xposl = 0;
static int Xpos2 = 0;
static int Yposl =0;
static int Ypos2 = 0;
static int Xpos3 = 0;
static int Ypos3 = 0;
int Xlastl = Xposl1;
int Xlast2 = Xpos2;
int Ylastl = Yposl;
int Ylast2 = Ypos2;
int Xlast3 = Xpos3;
int Ylast3 = Ypos3;
Xpos1 = (moment10a/areal);
Xpos2 = (moment10b/area2);
Yposl = (moment0la/areal);
Ypos2 = (moment01b/area2);
Xpos3 = (momentlOc/area3);
| Ypos3 = (moment0lc/areal);
' if(Xlast1>0 && Ylast]>0 && Xpos1>0 && Ypos1>0 && areal>100)
= {
| chircle(frame,choint(Xpos2,Yp052),30,cchalar(O,0,255),3,8,0);
| }
if(Xlast2>0 && Ylast2>0 && Xpos2>0 && Ypos2>0 && area2>100)

39

cvCircle(frame,cvPoint(Xpos2,Ypos2),30,cvScalar(0,0,255),3,8,0);

!
if(Xlast3>0 && Ylast3>0 && Xpos3>0 && Ypos3>0 && area3>100)
{
cvCircle(frame,cvPoint(Xpos2,Ypos2),30,cvScalar(0,0,255),3,8,0);
}

cvAdd(imgYellowThresh, imgBlueThresh, imgY ellowThresh);
cvAdd(imgYellowThresh, imgPinkThresh, imgYellowThresh);
cvShowImage(" ThreshWin", imgYellowThresh);
cvShowlmage("video", frame);

int ¢ = cvWaitKey(10);

if(c!=-1)
{

break;
}

cvReleaselmage(&imgBlueThresh);
cvReleaselmage(&imgPink Thresh);
delete momentsl;
delete moments2;
delete moments3;

cvReleaseCapture(&capture);
return 0;

eshnd
//Mouse Movements

finclude "stdafx.h"
#include <opencv2\opency.hpp>
#include <stdlib.h>
#include <stdio.h>
tinclude <math.h>

40

#inciudc <cv.h>
include <highgui.h>
ﬁi;wlude LT b

LONG Get_ScreenWidth()

¢ RECT rect;
GetWindowRect(GetDesktopWindow(),&rect); /7 Get Desktop rectangle
return rect.right - rect.left;

h

LONG Get_ScreenHight()

{ RECT rect;
GetWindowRect(GetDesktop Window(),&rect), /f Get Desktop rectangle
return rect.bottom - rect.top;

}

yoid Mouse Move(DWORD dx,DWORD dy)

{ DWORD event=0;
event = MOUSEEVENTF_ABSOLUTEMOUSEEVENTF_MOVE;
mouse_event(event, dx*65535/Get_ScreenWidth(), dy*65535/Get_ScreenHight(), 0, 0);

j

yoid Left_Click(DWORD dx,DWORD dy)

{ DWORD event=0;
event = MOUSEEVENTF ABSOLUTEMOUSEEVENTF_LEFTDOWN;
mouse_event(event, dx*65535/Get_ScreenWidth(), dy*65535/Get_ScreenHight(), 0, 0);
event = MOUSEEVENTF_ABSOLUTE|MOUSEEVENTF_LEFTUP;
mouse_event(event, dx*65535/Get_ScreenWidth(), dy*65535/Get_ScreenHight(), 0, 0);

J

yoid Right_Click(DWORD dx,DWORD dy)

¢ DWORD event=0;
event = MOUSEEVENTF_ABSOLUTEMOUSEEVENTF_RIGHTDOWN;
mouse_event(event, dx*65535/Get_ScreenWidth(), dy*65535/Get_ScreenHight(), 0, 0);
event = MOUSEEVENTF_ABSOLUTE|MOUSEEVENTF_RIGHTUP;
mouse_event(event, dx*65535/Get_ScreenWidth(), dy*65535/Get_ScreenHight(), 0, 0);

j

!numage* GetThresholdedimageYellow(Ipllmage* img)

{

// Same as in the above code
%pllmage* GetThresholdedImageBlue(Iplimage* img)

¢ /{ Same as in the above code }
Ipllmage* GetThresholdedImagePink(Ipllmage™ img)

41

{
}

/I Same as in the above code

int main()
{
CvCapture* capture = 0,
capture = cvCaptureFromCAM(1);
if(!capture)
{
printf("Could not initialize capturing...\n");
return -1;
}
cvNamedWindow("video",CV_WINDOW_AUTOSIZE);
cvNamedWindow(" ThreshWin",CV_WINDOW_AUTOSIZE);
time_t initial, finnal, initialp, finnalp;
int flag=0, flagp=0;
double initime, fintime,dtime=0, initimep, fintimep,dtimep=0;
while(true)
{
Ipllmage* frame = 0;
frame = cvQueryFrame(capture);
if(!frame)
break;
Iplimage* imgYellowThresh = GetThresholdedimageYellow(frame);
Iplimage* imgBlueThresh = GetThresholdedimageBlue(frame);
Iplimage* imgPinkThresh = GetThresholdedImagePink(frame);
CvMoments *moments] = (CvMoments*)malloc(sizeof(CvMoments));
CvMoments *moments2 = (CvMoments*)malloc(sizeof(CvMoments));
CvMoments *moments3 = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(imgYellowThresh, moments1, 1);
cvMoments(imgBlueThresh, moments2, 1);
cvMoments(imgPinkThresh, moments3, 1);
int moment10a = cvGetSpatialMoment(moments1, 1, 0);
int moment01a = cvGetSpatialMoment(moments1, 0, 1);
int moment10b = cvGetSpatialMoment(moments2, 1, 0);
int moment01b = cvGetSpatialMoment(moments2, 0, 1);
int moment01c = cvGetSpatialMoment(moments3, 0, 1);
int moment10c = cvGetSpatialMoment(moments3, 0, 1);
double areal = cvGetCentralMoment(moments1, 0, 0);
double area2 = cvGetCentralMoment(moments2, 0, 0);
double area3 = cvGetCentralMoment(moments3, 0, 0);
static int Xposl = 0; static int Xpos2 = 0;
static int Yposl =0; static int Ypos2 = 0;
| static int Xpos3 = 0; static int Ypos3 = 0,
, int Xlastl = Xposl; int Xlast2 = Xpos2;
int Ylastl = Yposl; int Ylast2 = Ypos2;
int Xlast3 = Xpos3; int Ylast3 = Ypos3;

Xposl = (moment10a/areal); Xpos2 = (momentl0b/area2);

Yposl = (moment0la/areal); Ypos2 = (moment01b/area);

Xpos3 = (moment10c/area3); Ypos3 = (momentQlc/area3);
42

I

if(Xpos1<0 || Ypos1<0)
{

Xpos1=0; Yposl=0;

}

if(Xlast2>0 && Ylast2>0 && Xpos2>0 && Ypos2>0 && area2>100)

{
cvCircle(frame,cvPoint(Xpos2,Ypos2),30,cvScalar(0,0,255),3,8,0);
Mouse Move(((1366/640)* Xpos2),((1024/480)* Y pos2));

}

if(Xposl!=0 && Yposl!=0 && flag==0 && areal>100)

{
initime=time(&initial);
dtime=0; flag=1;
cvCircle(frame,cvPoint(Xposl,Yposl),30,cvScalar(0,0,255),3,8,0);

}
if(Xpos1==0 && Ypos==0 && flag=1)
{
fintime=time(&finnal);
dtime = fintime-initime;
}

if(Xpos1==0 && Yposl==0 && (dtime<] || dtime>=3))
{

flag=0;

)

if(dtime>=1 && flag==1)

{
printf("Left Click Occured, %t",dtime);
Left Click(((1366/640)* Xpos2),((1024/480)* Y pos2));
flag=0;

¥

if(Xpos3<0 || Ypos3<0)

{
Xpos3=0; Ypos3=0;

}

if(Xpos3!=0 && Ypos3!=0 && flagp==0 && area3>100)

{
initimep=time(&initialp);
dtimep=0; flagp=1;
cvCircle(frame,cvPoint(Xpos3,Ypos3),30,cvScalar(0,0,255),3,8,0);

}
if(Xpos3==0 && Ypos3==0 && flagp==1)
{
fintimep=time(&finnalp);
dtimep = fintimep-initimep;
¥

if(Xpos3==0 && Ypos3==0 && (dtimep<1 || dtimep>=3))
{

flagp=0;
}
if(dtimep>=1 && flagp==1)
{

43

printf("Right Click Occured. %{",dtimep);
Right Click(((1366/640)* Xpos3),((1024/480)* Ypos3));
-i flagp=0;

}

cvAdd(imgYellowThresh, imgBlueThresh, imgYellowThresh);

cvAdd(imgYellowThresh, imgPinkThresh, imgYellowThresh); ;
cvShowImage(" ThreshWin", imgYellowThresh); |
cvShowImage("video", frame); ‘
int ¢ = cvWaitKey(10); ‘
if(c!=-1)

{ break; }

cvReleaselmage(&imgBlueThresh);

cvReleaselmage(&imgPink Thresh);

delete moments|;

delete moments2;

delete moments3;

}

cvReleaseCapture(&capture);
return 0;

44

C

3 R B :
sxmmm_m;' #ikts TPy s o et erw o Rile
SR TREMBA Aphonat(S)y Twrmek $hrs o waan yia FLA Fidw
4 Fift s T $DeR 4 ke T4 TOF W30

many
e TR AR v
S (b i bon. ik
g e L R

// Basic Operations

#include"stdafx.h"

#include <opencv2\opencv.hpp> .
#include <stdlib.h> '
#include <stdio.h>

#include <math.h>

#include <cv.h>

#include <highgui.h>

ffinclude <time.h>

LONG Get_ScreenWidth()

{
RECT rect;
GetWindowRect(GetDesktopWindow(),&rect); /I Get Desktop rectangle
return rect.right - rect.left;

H

LONG Get_ScreenHight()

{

RECT rect;
GetWindowRect(GetDesktopWindow(),&rect); // Get Desktop rectangle
return rect.bottom - rect.top;

:

5

void Mouse_Move(DWORD dx,DWORD dy)
{

// Same as in the above code }

void Left_Click(DWORD dx,DWORD dy)
{

45

// Same as in the above code

}

void Right_Click(DWORD dx,DWORD dy)

// Same as in the above code

}

Iplimage* GetThresholdedimage Yellow(Iplimage* img)

// Same as in the above code

}
Iplimage* GetThresholdedImageBlue(Iplimage* img)

// Same as in the above code

}
Iplimage* GetThresholdedimagePink(Iplimage* img)

// Same as in the above code

}

int main()

{
CvCapture* capture = 0, .
capture = cvCaptureFromCAM(1); i
if(!capture)
{
printf("Could not initialize capturing...\n");
return -1;

}
cvNamedWindow("video",CV_WINDOW_AUTOSIZE);
cvNamedWindow("ThreshWin",CV_WINDOW_AUTOSIZE);
time_t initial, finnal, initialp, finnalp;
int flag=0, flagp=0;
double initime, fintime,dtime=0, initimep, fintimep,dtimep=0, initime3, fintime3,dtime3=0;
while(true)
{
Ipllmage* frame = 0,
frame = cvQueryFrame(capture);
if(frame)
break;
Iplimage* imgYellowThresh = GetThresholdedImageYellow(frame);
Iplimage* imgBlueThresh = GetThresholdedImageBlue(frame);
Iplimage* imgPinkThresh = GetThresholdedImagePink(frame);
CvMoments *moments| = ((,‘VMoments*)ma]loc(sizeuf(CvI\/ionm115))',
CvMoments *moments2 = (CvMoments*)malloc(sizeof(CvMoments));
CvMoments *moments3 = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(imgYellowThresh, moments1, 1);
cvMoments(imgBlueThresh, moments2, 1);
cvMoments(imgPink Thresh, moments3, 1);
int moment10a = cvGetSpatialMoment(moments1, 1, 0);

46

YPOS3=0))

int moment0la = cvGetSpatialMoment(momentsl, 0, 1);
int moment10b = cvGetSpatialMoment(moments2, 1, 0);
int moment01b = cvGetSpatialMoment(moments2, 0, 1);
int moment01c = cvGetSpatialMoment(moments3, 0, 1);
int moment10c = cvGetSpatialMoment(moments3, 0, 1);
double areal = cvGetCentralMoment(moments|, 0, 0);
double area2 = cvGetCentralMoment(moments2, 0, 0);
double area3 = cvGetCentralMoment(moments3, 0, 0);
static int Xpos] = 0; static int Xpos2 = 0;

static int Yposl =0; static int Ypos2 = 0;

static int Xpos3 =0; static int Ypos3 =0,

int Xlastl = Xposl; int Xlast2 = Xpos2;

int Ylastl =Yposl; int Ylast2 = Ypos2;

int Xlast3 = Xpos3; int Ylast3 = Ypos3;

Xpos1 = (moment10a/areal); Xpos2 = (moment10b/area2);
Yposl = (moment0la/areal); Ypos2 = (moment01b/area2);
Xpos3 = (moment10c/area3); Ypos3 = (moment01c/area3);
if(Xpos1<0 || Ypos1<0)

{

}
if(Xpos3<0 || Ypos3<0)

Xposl1=0; Ypos1=0;

Xpos3=0; Ypos3=0;

)
if(Xpos2<0 || Ypos2<0)
{
Xpos2=0; Ypos2=0;
j

if(Xpos1!=0 && Yposl!=0 && flag==0 & & areal>100 && (Xpos3==0 ||

{
initime=time(&initial);
dtime=0; flag=1;
cvCircle(frame,cvPoint(Xposl1, Ypos1),30,cvScalar(0,0,255),3,8,0);

}
if(Xpos1==0 && Yposl==0 && flag==1)
{
fintime=time(&finnal);
dtime = fintime-initime;
)
if(Xposl==0 && Yposl==0 && (dtime<l1 || dtime>=3))
{

flag=0;
)
if(dtime>=1 && flag==1)
{
printf("1");
gest=1;
flag=0;
}

47

if(Xpos3!=0 && Ypos3!=0 && flagp==0 && area3>100 && areal>100 &&
Xpos1!=0 && Yposl!=0 && Xpos2==0 && Ypos2==0)

{
initimep=time(&initialp);
dtimep=0; flagp=1;
}
if(Xpos3==0 && Ypos3==0 && Xpos1==0 && Ypos!==0 && flagp==1)
{

fintimep=time(&finnalp);
dtimep = fintimep-initimep;

}
if(Xpos3==0 && Ypos3==0 && Xpos1==0 && Ypos1==0 && (dtimep<l ||
dtimep>=3))

{
flagp=0;

}
if(dtimep>=1 && flagp==1)
{

printf("2");

gest=2;

flagp=0;

}
if(Xpos3!=0 && Ypos3!=0 && flag3==0 && area3>100 && areal>100 &&
Xpos1!=0 && Yposl!=0 && area2>100 && Xpos2!=0 && Ypos2!=0)
{
initime3=time(&initial3);
dtime3=0; flag3=1;
}
ifiXpos3==0 && Ypos3==0 && Xpos1==0 && Yposl==0 && Xpos2=—=0 &&
Ypos2=—=0 && flag3==1)
{
fintime3=time(&finnal3);
dtime3 = fintime3-initime3;
3
if(Xpos3==0 && Ypos3==0 && Xpos1==0 && Ypos]==0 && Xpos2=—=0 &&
Ypos2==0 && (dtime3<I || dtime3>=3))

{
flag3=0;
}
if(dtime3>=1 && flag3==1)
{
printf("3");
gest=3;
flag3=0;
h
switch(gest)
{
case 0: break;
case 1: {
(void) system("F://final.ppt");
break;

48

}

case 2: {
(void)system(“C://Users//AJEET//AppData//Local//Google/fChrome//Applic
ation//chrome http://www.google.com");

break;
}
case 3: {
(void) system("calc");
break; |
}
)
gest=0;

cvAdd(imgYellowThresh, imgBlueThresh, imgYellowThresh);
cvAdd(imgYellowThresh, imgPinkThresh, imgYellowThresh);
cvShowImage(" ThreshWin", imgYellowThresh);
cvShowlmage("video", frame);
int ¢ = cvWaitKey(10);
if(c==27)
{

break;

}
cvReleaselmage(&imgBlueThresh);
cvReleaseImage(&imgPink Thresh);
delete moments1;

delete moments2;

delete moments3;

cvReleaseCapture(&capture);
return 0;

Micrsadt’ .
PowerPoint 2010

]

L e B et R
Wt RE

e b el i § T B 1 B 0§
B R T

Wk Beh, b sk 00 NS f R)

%S

T

g st

iy s ssiomel but
futwrn fovd el © terk Ay

]
LropiE IS e IS s NNy}
i

ek ¢ 10

£ dn GuaETER fIE

Sy bodng buedn

50

k¥

B T T
mim ey Baewe b oM E IS
i

ps S B N T I W3
ni g

g s

// SWIPING (KEYBOARD ARROW KEYS)

#include "stdafx.h"

#include <opencv2\opencv.hpp>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <cv.h>

#include <highgui.h>

#include <time.h>

Iplimage* GetThresholdedImageYellow(Ipllmage* img)
{

[§
// Same as in the above code

}

int main()

CvCapture* capture = 0;
capture = cvCaptureFromCAM(1),

51

if(!capture)

printf("Could not initialize capturing...\n");
return -1;

}
cvNamed Window("video",CV_WINDOW_AUTOSIZE);

cvNamedWindow("ThreshWin",CV_WINDOW_AUTOSIZE);

time _t initial, finnal, initialp, finnalp, initial3, finnal3;

int flag1=0, gest=0, Xlast1=0, Ylast1=0, secXlast1=0, secYlast1=0;

double initime, fintime,dtime=0, initimep, fintimep,dtimep=0, initime3, fintime3,dtime3=0;
while(true)

Iplimage* frame = 0;
frame = cvQueryFrame(capture);
if(!frame)
break;
Iplimage* imgYellowThresh = GetThresholdedImageYellow(frame);
CvMoments *moments1 = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(imgYellowThresh, momentsl, 1);
int moment10a = cvGetSpatialMoment(moments1, 1, 0);
int moment01a = cvGetSpatialMoment(moments1, 0, 1);
double areal = cvGetCentralMoment(moments1, 0, 0);
static int Xposl = 0;
static int Yposl = 0;
Xposl = (momentl0a/areal);
Yposl = (moment01la/areal);
if(Xpos1<0 || Ypos1<0 || Xpos1>640 || Ypos1>480)
{
Xpos1=0,
Ypos1=0;
)
if(areal>400 && secXlast1>Xlast] && ((secXlast1-Xlast1)*(secXlast1-Xlast1)>(secYlastl-
Ylast1)*(secYlast1-Ylast1)) && Xpos1!=0 && Ypos1!=0)
{
flagl=1; //HL
}
if(areal>400 && Xlast1>secXlast] && ((secXlast1-Xlast1)*(secXlast1-Xlast1)>(secY last1-
Ylast])*(secYlast1-Ylast])) && Xpos1!=0 && Ypos1!=0)
{
flagl=2; //HR
}
if(areal>400 && secYlasti>Ylastl-&& ((secYlast] -YlastD*(secYlast1-Ylast1)y>(secXlast]-
Xlast])*(secXlast1-Xlast1)) && Xpos1!=0 && Ypos1!=0)
{
flagl=3; //VU
}
if(areal>400 && secYlastl<Ylastl && ((sechastl—Ylastl)*(sechast1‘--Ylastl)>(sechastI-
Xlast])*(secXlast1-Xlast])) && Xpos!!=0 && Ypos1!=0)

52

flagl=4; //VD
i
if(flagl==1 && Xpos1==0 && Ypos1=0)
{
printf("\nRight to lefi"),
flag1=0;
keybd_event(VK_RIGHT,0x27,0,0);
keybd_event(VK._RlGHT,0x27,KEYEVENTF_wKEYUP,0);

}
if(flagl==2 && Xpos1==0 && Ypos1=0)

{
printf("\nLeft to Right");
flag1=0;
keybd_event(VK_LEFT,0x25,0,0);
keybd_event(VK_‘LEFT,OﬂS,K.EYEVENTF_KEYUP,O);
}
if(flagl==3 && Xposl==0 && Ypos1=0)
{
printf("\nDown to Up");
flag1=0;
keybd__event(VK_DOWN,Oﬂ8,0,0);
keybdmevent(VK._DOWN,Oxzs,KEYEVENTF_KEYUP,O);
}
if(flagl==4 && Xposl==0 && Ypos1==0)
{
printf("\nUp to Down");
flag1=0;
keybd_event(VK_UP,0x26,0,0);
keybd__event(VK_UP,0x26,KEYEVENTF_‘KEYUP,O);
}

secXlast1=Xlast1;
secYlast1=Ylastl;

Xlast] = Xposl;

Ylastl = Yposl;

switch(gest)

{

case 0: break;

case 1: {
printf("\nDown");
break;

}
case 2: {

53

printf("\nUp");

break;
}
case 3: {
printf("\nRight");
break;
}
case 4: {
printf("\nLeft");
break;
}
}
gest=0;

cvShowImage(" ThreshWin", imgYellowThresh);
cvShowlmage("video", frame);
int ¢ = cvWaitKey(10);

if(c==27)
{
break;
}
delete moments];
}
cvReleaseCapture(&capture),
return 0;
}

Chapter 9: Appendix

Appendix A- Glossary

e Artifact: artificial defect in the image, due to problems in sensing equipment (scratches in
Xray digitized films), or during examinations (patient motion)

o Binary image: image where pixels have only two values, generally 0 and 1

e Brightness: The gray level value of a pixel within an image that corresponds to energy
intensity. The larger the gray level value, the greater the brightness.

e Clustering: concept of grouping data in classes based upon the similarity of the data

o Compression: removal of any redundant data that may be present within the image, to
reduce amount of data to manipulate or store.

e Contrast: the amount of gray level variation within an image

54

e Digitizer: electronic circuit that converts analog or continuous signals into discrete or digital

data

« Dilation: a morphological operation that enlarges the geometrical size of objects within an
image

« Discrete convolution: process where 2 images are combined using a shift, multiply and add
operation.

e Enhancement: algorithms and processes that improve an image based on subjective
measures. The aim is to accentuate certain image features for display or for subsequent
analysis.

s Erosion: morphological operation that reduces the geometrical size of objects within an
image

o Feature: any of the properties that are characteristic of an image, from which a description,
interpretation or understanding of the scene can be provided by a machine.

o Graylevel: value of gray from a black and white (monochrome) image

e Grayscale: range of gray shades, or gray levels corresponding to pixel values that a
monochrome image incorporates

e Histogram: distribution of pixel graylevel values. A graph of number of pixels at each
graylevel possible in an image.

e Mask: refers to a small image used to specify the area of operation to take place on a larger
image in an algorithm

o Noise: degradation of image due to equipment (i.e. Sensor, camera misfocus), type of
modality, motion, turbulence. :

¢ Object boundaries: linked edges that characterize the shape of an object

e Pixel: slang for picture element, the smallest element if an image

s Quantization: range of values that a pixel can represent
Region of interest (ROI): zone under study within the image (2D or 3D) representation:
characterization of the quantity that each pixel represents. For example an image could
represent the absorption characteristics of the body tissue (Xray imaging) or the temperature
profile of a region (infrared imaging)

o Resolution: smallest feature (spatial) or graylevel value (quantization) that an image system
can resolve.

e Restoration: algorithms or processes that attempt to remove a degradation (noise, blurring,
and defocusing effects) based on an objective criterion

e Sampling: used to describe spatial resolution of an image

o Segmentation: separation of different objects in the image (for example by extracting their

e Boundaries).

o Slice: 2D image often described as part of a 3D volume

e Skeletonization: algorithm used to identify the central axis (skeleton) of an image object

e Structuring set: set of pixels used to describe the structuring function used in the
morphological erosion and dilation

e Texture: structural patterns of surfaces of objects such as wood, grain, sand, grass, cloth. It
generally refers to repetition of basic texture elements known as texels. A texel contains
several pixels whose placement could be periodic or random. Texture may be coarse, fine ,
smooth,

' ¢ Granulated, regular, irregular, linear, etc...threshold: a value used to segment the graylevel
values of an image into two different regions. Also called the binarization of an image.

e Voxel: 3D pixel

Appendix B - Entire Gesture Set

55

Basic Controls:

Table 1: Basic controls gestures and associated operations

Keyboard Control:

Table 2: Basic controls gestures and associated operations

Mouse Control:

YELLOW OBJECT | Left Click
COMES IN FRAME
FOR 1-2 SEC

Table 3: Basic controls gestures and associated operations

56

