£

2

oo i
¥ e

Opinion Mining and Sentiment Analysis: User Categorization in
Social Networks

SUBMITTED BY:

Siddharth Srivastava (081203)
Devashish Gupta (081207)
Abhinav Raj (081258)

SUPERVISED BY:

MAY 2012

Submitted in partial fulfilment of the degree of

BACHELOR OF TECHNOLOGY
IN

COMPUTER SCIENCE AND ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

|

TABLE OF CONTENTS

Chapter No. Topics Page No.
Certificate from the supervisor 3
Acknowledgement e 4
Summary 9
| List of Figures 6
Chapter-1 Introduction 7-9
1.1 User Categorization examples 8
1.2 Objectives 9
1.3 Project Vision 9
Chapter-2 Categorization: Theory and application 10-21
2.1 Clustering 10 |
2.1.1 Goals 1 |
2.1.2 Possible Applications 11 |
2.1.3 Requirements 11
2.1.4 Applications in Social Networking
2.2 Classification 12
2.3 Algorithms]2
2.3.1 K means algorithm 12
2.4 Weka: tool for clustering 14
2.4.1 Arff format 13
2.4.2 Test data for clustering 16
2.4.3 Clustering results 17
Chapter-3 Analysis of large scale social network graph 22
: 3-1-Graph-patterns-in-large-seale social networks 27
) 3.1.1 Scale free networks 22
: 3.1.2 Small world effect 2
3.1.3 Community Structures 25
3.2 Challenges 29

i"="lﬂw—-1

3.3 PEGASUS
3.3.1 How the tool works
3.3.2 Improvements on Pegasus result

} 3.4 Implementations on data
; 3.4.1 YOUTUBE results
_‘. 3.4.2 TWITTER results
Chapter-4 uture Scope
|
!
| References
Appendices A

T S— i (" —

e e S e s

26
26
30
30
31
38

42

48
49

CERTIFICATE

This is to certify that the work titled “Opinion Mining and Sentiment Analysis:
User Categorization in Social Networks” submitted by Siddharth Srivastava,
Devashish Gupta and Abhinav Raj in partial fulfilment for the award of degree
of B. Tech of Jaypee University of Information Technology, Waknaghat has been
carried out under my supervision. This work has not been submitted partially or
wholly to any other University or Institute for the award of this or any other degree

or diploma.

Signature of Supervisor: SWE?/\'\ g—ﬂ&#

INamelofFSUPervIsory < = s e S RL ve

DSSIPNANONG e o s ra i ko i o & b i ev

Date: 19‘ s| 1o

— e -

ACKNOWLEDGEMENT

Apart from the efforts, the success of any project depends largely on the
encouragement and guidelines of many otheis. Therefore we take the opportunity
to express our gratitude to the people who have been instrumental in the successful

completion of this project.

We would also like to show our appreciation to our project guide Mr. Suman Saha.
Without his able guidance, tremendous support and continuous motivation the
project work would not be carried out satisfactory. His kind behaviour and

motivation provided us the required courage to complete our project.

Special thanks to our project panel because it was their regular concern and

appreciation that made this project carried out easily and satisfactorily.

Syt

T
Devashish Gupta (081207) F 2 oei®)

Vs
Abhinav Raj (081258) {Muaw/tﬁ e

Siddharth Srivastava (081203)

Date: 155’05‘ I3

—

SUMMARY

User categorization in social networks is a recent development in the field of graph
mining. It uses traditional topics of clustering and classification along with several
new recognition techniques to determine important conclusions and predictions
about social networks. In a time when social networking sites like Facebook and
Twitter are popular not only as a tool for connecting with friends but also provide

enormous potential for business opportunities, spreading awareness etc.

This project implements categorization technique of clustering on tabular data
using graph mining library Weka and tests for accuracy of clustering. After this we
observe large scale social network graphs which comprise of billions of node and
mine for connected components and node degrees. We identify the important
actors in the social network. To address the problem of scalability we use
PEGASUS tool which is build over Hadoop platform and is a very efficient tool

for mining graphs for large sizes.

In the end we suggest further improvements like building GUI and, implementing

pagerank, and differentiating between different linktypes.

-
g’}'“\,m‘of‘y R Bon ch&%

Mr. Suman Saha

Siddharth Srivastava

Devashish Gupta‘j?_@')ﬁ&m/b/——f = Date:

Abhinav Raj Jf/bwu CZM =

(9]

Date:

Sr. No.

o e 1 N b B LN

e e T e T e T e T e S Gy S G Sy
QO o~ O O LD e S

LIST OF FIGURES

Name
Fig 1: Clustering example
Fig 2: Snapshot of Weka
Fig 3: Normal distribution
Fig 4: Power law distribution in social networks
Fig 5: Small world effect
Fig 6: In degree plot of youtube group-edges.csv
Fig 7:0ut degree plot of youtube group-edges.csv
Fig 8: Inout degree plot of youtube edges.csv
Fig 9:In degree plot of youtube edges.csv
Fig 10:0ut degree plot of youtube edges.csv
Fig I 1:connected component plot of youtube edges.csv
Fig 12: In degree plot of Twitter edges.csv
Fig 13.: Out degree plot of Twitter edges.csv
Fig 14:Inout degree plot of Twitter edges.csv
Fig 15:Connected component plot of Twitter edges.csv
Fig 16:Node traversal for pagerank

Fig 17:Pagerank plot

Fig 18: Cliques, clans and clubs

Page No.

13
16
17
24
29
28
28
29
30
31
32
33
34
35
38
39

— N R T K.

v

CHAPTER 1

INTRODUCTION

Use Categorization in Social Network includes the analysis of social structures, social position,
role analysis, and many others feature of a social network. Usually, the relationship between
people and groups, e.g., friends, followers, subscribers, etc. are presented as a graph. In a
network graph nodes represent individuals and edges represent the relation between them.
Usually this type of data collection confines traditional social network analysis to a limited

scale.

With the prosperity of Internet and Web, many social networking and social media sites are
emerging, and people can easily connect to each other in the cyber space. The prosperity of Web
and social media brings about many diverse social networks of unprecedented scales, which
present new challenges for more effective graph-mining techniques.

This also facilitates social network analysis to a much larger scale comprising millions of actors
or even more in a network; e.g. include email communication networks , instant messenger
networks, mobile call networks , friends networks. Other forms of complex network, like co-
authorship or citation networks, biological networks, metabolic pathways, genetic regulatory
networks, food web and neural networks are also examined and demonstrate simiiar patterns.
These large scale networks of various entities yield patterns which are normally not seen in
small networks. In addition, they also pose challenges for computation as well as new tasks and
problems for the social network analysis. We present some graph patterns that are generally seen
in large-scale social networks.

Social network analysis involves a variety of tasks. The major ones are:

e Centrality analysis aims to identify the “most important” actors in a social network.
Centrality is a measure to calibrate the “importance” of an actor. This helps to
understand the social influence and power in a network.

e Community detection. Actors in a social network form groups. This task identifies these
communities through the study of network structures and topology.

o Position or Role analysis 1dentifies the role associated with different actors during
network interaction. Who serves as the bridge between different groups?

e Network modelling attempts te simulate the real-world network via simple mechanisms
such that the patterns presented in large-scale complex networks can be captured.

~J

e Information diffusion studies how the information propagates in a network. Information
diffusion also facilitates the understanding the cultural dynamics, and infection blocking.

e Network classification and outlier detection. Some actors are labelled with certain
information. For instance, in a network with some terrorists identified, is it possible to
identify other people who are likely to be terrorists by leveraging the social network
information.

e Viral marketing and link prediction. The modelling of the information diffusion process,
in conjunction with centrality analysis and communities, can help achieve more cost-
effective viral marketing. That is, only a small set of users are selected for marketing.
Hopefully, their adoption can influence other members in the network, so the benefit is
maximized.

Normally, a social network is represented as a graph. How to mine the patterns in the graph
for the above tasks hecomes a hot topic thanks to the availability of enormous social network
data. In this chapter, we attempt to present some recent trends of large social networks and
discuss graph mining applications for social network analysis. In particular, we discuss graph
mining applications to community detection, a basic task in social network analysis to extract
meaningful social which also serves as basis for some other related social network analysis
tasks. Representative approaches for community detection are summarized. Interesting
emerging problems and challenges are aiso presented for future exploration.

For convenience, we define some notations used threughout this report. A network is normally
represented as a graph G (V, E), where V denotes the vertexes (equivalently nodes or aciors) and
E denotes edges (ties or connections}. The connections are represented via adjacency matrix A,
where Aij = 0 means (vi, vj) € E, while Aij = 0 means (vi, vj) €/ E. The degree of node vi is di.
If the edges between nodes are directed, the in-degree and out-degree are denoted as d— and d+
respectively. Number of vertexes and edges of a network are | V| =n, and | E| = m. The
shortest path between a pair of nodes vi and vj is called geodesic, and the geodesic distance
between the two is denoted as d (i, j). Gs (Vs, Es) represent a sub graph in G. The neighbours of
a node v are denoted as N (v). In a directed graph, the neighbours connecting to and from one
node v are denoted as N — (v) and N+ (v), respectively. Unless specified explicitly, we assume a
network is un-weighted and undirected.

1.1 User Categorization: examples
e Twiller: Predicting whom a person is likely to follow

e Facebook: Providing friend suggestions.

e IMDb: Providing movies suggestions

r—=p

° Youtube: Suggesting videos which the user may find interesting.

1.2 Objectives

e Observe the patterns and structure of social networks.
' e Study how groups and communities are formed in social networks.

e Learn the techniques of clustering and classification to divide entities into relevant groups
accurately and also to assign correct group to a new node.

e To learn how large scale social networking graphs which have size in GBs can be mined.
e To find connected components in a social network so that future links can be predicted.
e To find important actors in a social network by the use of node degrees and pagerank.

e To learn about graph mining libraries like Weka and PEGASUS and make their use in

! our project.]
| 1.3 Project Vision /
_I 4

e Having better knowledge about the mechanism of social networks. i

e Fmding groups of customers with similar behavior, can be extended to the field of

marketing and entertainment.

e Being able to provide accurate suggestions like movie suggestions, friends suggestions

efc.

e Finding hidden communities which are not expiicit.

CHAPTER 2

CATEGORIZATION: THEORY AND APPLICATIONS

2.1 Clustering

O A cluster is a collection of objects which are “similar” between them and are “dissimilar”
to the objects belonging to other clusters.

O Therefore Clustering is the process of categorizing objects into groups whose members
are similar in some way.

Clustering can be considered the most important unsupervised learning problem; so, as every
other problem of this kind, it deals with finding a structure in a collection of unlabeled data.
Another definition of clustering could be “the process of organizing objects into groups whose
members are similar in some way”.

Figure 1: Clustering example

10

In this case we easily identify the 4 clusters into which the data can be divided; the similarity
criterion is distance: two or more objects belong to the same cluster if they are “close”

according to a given distance (in this case geometrical distance). This is called distance-

based clustering.

2.1.1 Goals:
The goal of clustering is to determine the intrinsic grouping in a set of unlabeled data.
What constitutes a good clustering? It can be shown that there is no absolute “best” criterion
which would be independent of the final aim of the clustering. Consequently, it is the user which
must supply this criterion, in such a way that the result of the clustering will suit their needs.
For instance, we could be interested in finding representatives for homogeneous groups (data
reduction), in finding “natural clusters” and describe their unknown properties (“natural” data
types), in finding useful and suitable groupings (“useful " data classes) or in finding unusual data

objects (outlier detection).

2.1.2

Possible Applications:

clustering algorithms can be applied in many fields, for instance:

213

Marketing: finding groups of customers with similar behavioral patterns given a large
database of customer data containing their properties and past buying records;
Biology: classification of plants and animals given their features;

Libraries: book ordering;

Insurance: identifying groups of motor insurance policy holders with a high average
claim cost; identifying frauds;

City-planning: identifying groups of houses according to their house type, value and
geographical location;

Earthquake studies: clustering observed earthquake epicenters to identify dangerous
zones,

WWW: document classification; clustering weblog data to discover groups of similar
access patterns.

Requirements:

The main requirements that a clustering algorithm should satisfy are:

scalability;

11

» dealing with different types of attributes;

o discovering clusters with arbitrary shape; .
» minimal requirements for domain knowledge to determine input parameters; !
« ability to deal with noise and outliers;

o« insensitivity to order of input records;

o high dimensionality;

o Interpretability and usability.

2.1.4 Application in social networking:

If we have data in tabular format where attributes of all items are given then we can cluster
them into as many groups as we want, Some groups can be familiar like people belonging to
same college, school, and workplace. We can also discover new groups which are not
explicit but implicit because of hobbies and behaviour of people. There is a high probability
that the people falling in same clusters can become friends in future if they are not already
friends provided that we define the parameters for clustering properly. This can be useful in
providing friend suggestions, movie suggestions, video suggestions, community suggestions

etc.
h |
2.2 Classihication |
O Classification is a data mining function that assigns items in a collection to target 1
A

categories or classes.
O The goal of classification is to accurately predict the target class for each case in the data.

O For example, a classification model could be used to identify loan applicants as low,
mediuni, or high credit risks.

O Goal: previously unseen records should be assigned a class as accurately as possible.

2.3 Algorithms

We are using k-means algorithm for clustering the data.

2.3.1 K-means Algorithm

tends

\ public class SimpleKMeans ¢
implements Numiexrd stexr

Cluster data using the k means algorithm.

Valid options are:

12

T —

-N <num>: number of clusters. (default 2).

-V: Display std. deviations for centroids.

-M: Replace missing values with mean/mode.

-S <num>: Random number seed. (default 10)

-A <classname and options>:
Distance function to be used for instance comparison
(default weka.core.FEuclidianDistance)

-I <num>: Maximum number of iterations.

~-0: Preserve order of instances.

The basic methods used from this class are:

buildClusterer():
public void buildClusterer (! ances data)

throws java.léﬁé.Exception

Generates a clusterer. Has to initialize all fields of the clusterer that are not being set via
options.

numberOfClusters():

public int numberOfClusters ()
throws java.lang.Exception

Returns the number of clusters.

setNumClusters():
public void setMumClusters (int n)
throws java.lang.Exception

Set the number of clusters to generate.

setOptions():
public void setOptions(java.lang.String[] options)
throws java.lang.Exception

Parses a given list of options.

Valid options are:

-N <num>: number of clusters. (default 2).
-V: Display std. deviations for centroids.
-M: Replace missing values with mean/mode.
-5 <num>: Random number seed. (default 10)
-A <classname—and-options>:

Distance function to be used for instance

comparison

(default weka.core.EuclidianDistance)
-1 <num>: Maximum number of iterations.
=Q: Preserve order of instances:

13

- — R o

getClusterSizes():
public int[] getClusterSizes()

Gets the number of instances in each cluster

2.4 Weka: tool used for clustering

We have used Weka library to for clustering data. Weka is used for tabular data.

O Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine
learning software written in Java, developed at the University of Waikato, New Zealand.

O Weka supports several standard data mining tasks, more specifically,
data preprocessing, clustering, classification, regression, visualization, and feature
selection.

Choose | AduClassificalion W “weka dassers s Zerch* : e
Curentrelaton selected atvbute

Relation: Glass Hame: RI Type: Numeric
Ietances: 214 Atrbules: 10 Massng: 0{0%) Ok (78 Urique: 145 {E8%)
Attbises Shatistic ¥aluz

FIGURE2. Snapshot of Weka

14

Nl N

2.4.1

Arff format

Attribute Relationship File Format (ARFF) is the text format file used by Weka to store
data in a database.

O The ARFF file contains two sections: the header and the data section.

o

;0.0 'O 0O

The first line of the header tells us the relation name. Then there is the list of the
attributes (@attribute...).

Each attribute is associated with a unique name and a type.

The latter describes the kind of data contained in the variable and what values it can have.
The variables types are: numeric, nominal, string and date.

The class attribute is by default the last one of the list.

In the header section there can also be some comment lines, identified with a '%' at the
beginning, which can describe the database content or give the reader information about
the author.

After that there is the data itsclf (@data), each line stores the attribute of a single enfry
separated by a comma.

Arff Example

(@relationweather

@attributeoutlook{sunny,overcast,rainy}

@attributetemperaturereal
@attributehumidityreal
@attributewindy{ TRUE, FALSE}
@attribute play {yes, no}

@data

sunny, 835,85, FALSE, no
sunny, 80,90, TRUL, no
overcast, 83,80, FALSE, yes
rainy, 70,96, FALSE yes
rainy, 68,80, FALSE, yes

15

R e

rainy, 65,70, TRUE, no
overcast, 64,65, TRUE, yes

2.4.2 Test data for clustering

For testing we have used a data that closely resembles social networking data. The data is in
tabular format. There are various attributes for each item and after applying k-means
algorithm for clustering we are able to arrange the items into clusters. Because we already
know the original clusters so we can also check the accuracy of the clustering algorithm.

Sources:
Stefan Aeberhard, email: stefan@coral.cs.jcu.edu.au

-- These data are the results of a chemical analysis of Wines grown in the same region in Italy
but derived from three different cultivators.

--The analysis determined the quantities of 13 constituents found in each of the three types of
wines.

—-— The attributes are
1) Alcohol
2) Malic acid
3) Ash
4) Alcalinity of ash
5) Magnesium
6) Tctal phenols
7) Flavanoids
8) Nenflavanoid phenols
9) Proanthocyanins
10) Color intensity
11) Hue
12) OD280/0D315 of diluted wines
13) Proline

-

-~-Class Distribution: Number of Instances

Class 1 59
- Class 2 71
? Class 3 48

16

2.4.3 Clustering result after applying k-means algorithm:

Simple kMeans:

Number of iterations: 8

Within cluster sum of squared errors: 48.970291155139165
Missing values globally replaced with mean/mode

Cluster centroids:
Cluster#

Attribute Full Data 0 1 2

(178) (60) (55) (63)
a 13.0006 13.7193 13.0998 12.2295
b 2.3363 1.964 3.1609 1.9711
c 2.3665 2.4565 2.4075 2.2451
d 19.4949 17.2783 21.0436 20.254
e 99.7416 107.8667 98.6545 92.9524 «
f 2.2951 2.8455 1.6898 2.2994 f
g 2.0293 2.9748 0.8478 2.1602
h 0.3619 0.2887 0.4578 0.3478 i
i 1.5909 1.9273 1.1336 1.6697 /
] 5.0581 5.4627 6.9365 3.0329
k 0.9574 1.0718 0.7168 1.0586
| 2.6117 3.1573 1.7093 2.8798
m 746.8933 1117.8167 624.8545 500.1746

Clustered Instances

0 60 (34%)
1 55(31%)
2 63(35%)

Class attribute: class
Classes to Clusters:

0-12-<-—assigned-to-cluster
58011

SR A

04803
Cluster 0 <-- 1
Cluster 1 <-- 3

17

!

Cluster 2 <--2

Incorrectly clustered instances: 10.0 5.618 %
Accuracy: 94.382 %

Make Density Based Clusters:
Wrapped clusterer:
kMeans

Number of iterations: 8
Within cluster sum of squared errors: 48.970291155139165
Missing values globally replaced with mean/mode

Cluster centroids:

Attribute Full Data 0 1 2

(178) (60) (55) (63)
a 13.0006 13.7193 13.0998 12.2295
b 2.3363 1.964 3.1609 1.9711
¢ 2.3665 2.4565 2.4075 2.2451
d 19.4949 17.2783 21.0436 20.254
e 99.7416 107.8667 98.6545 92.9524
f 2.2951 2.8455 1.6898 2.2994
g 2.0293 2.9748 0.8478 2.1602
h 0.3619 0.2887 0.4578 0.3478
1 1.5909 1.9273 1.1336 1.6697
] 5.0581 5.4627 6.9365 3.0329
k 0.9574 1.0718 0.7168 1.0586
1 2.6117 3.1573 1.7093 2.8798
m 746.8933 1117.8167 624.8545 500.1746

Fitted estimators (with ML estimates of variance):

18

N e

Cluster: 0 Prior probabilities: 0.337

Attribute: a

Normal Distribution: Mean = 13.7193 StdDev = 0.488

Attribute: b

Normal Distribution: Mean = 1.964 StdDev = 0.6304

Attribute: ¢

Normal Distribution: Mean = 2.4565 StdDev = 0.2255

Attribute: d

Normal Distribution: Mean = 17.2783 StdDev =3.0118

Attribute: e

Normal Disiribution: Mean = 107.8667 StdDev = 13.17

Attribute: f

Normal Distribution: Mean = 2.8455 StdDev = 0.3403

Attribute: g

Normal Distribution: Mean = 2.9748 StdDev = 0.399

Attribute: h

Normal Distribution: Mean = 0.2887 StdDev = 0.0696 {
Attribute: i

Normal Distribution: Mean = 1.9273 StdDev = 0.4408 ‘
Attribute: j {
Normal Distribution: Mean = 5.4627 StdDev = 1.2953

Attribute: k

Normal Distribution: Mean = 1.0718 StdDev=0.115

Attribute: 1

Normai Distribution;: Mean = 3.1573 StdDev = 0.3598

Attribute: m

Normal Distribution: Mean = 1117.8167 StdDev = 212.3306

Cluster: 1 Prior probability: 0.3094

Attribute: a
Normal Distribution: Mean = 13.0998 StdDev = 0.5248
Attribute: b
Normal Distribution: Mean = 3.1609 StdDev = 1.1686
Attribute: ¢
: Normal Distribution: Mean = 2. 4075 StdDev =().1838
> Attribute: d

Normal Distribution: Mean = 21.0436 StdDev = 2.4652
Attribute: e
Normal Distribution: Mean = 98.6545 StdDev = 10.9813
Attribute: f

19

Normal Distribution:

Attribute: g
Normal Distribution:

Attribute: h

Normal Distribution:
Attribute: 1

Normal Distribution:
Attribute: |

Normal Distribution:
Attribute: k

Normal Distribution:
Attribute: 1

Normal Distribution:
Attribute: m

Normal Distribution:

Mean = 1.6898 StdDev = 0.3665

Mean = 0.8478 StdDev = 0.3291

Mean = 0.4578 StdDev = 0.1221
Mean = 1.1336 StdDev = 0.4231
Mean = 6.9365 StdDev = 2.477

Mean = 0.7168 StdDev = 0.1494
Mean = 1.7093 StdDev = 0.2687

Mean = 624.8545 StdDev = 122.5548

Cluster: 2 Prior probabilities: 0.3536

Attribute: a

Normal Distribution:
Attribute: b

Normal Distribution:
Attribute: ¢

Normal Distribution:
Alttribute: d

Normal Distribution:
Adttribute: e

Normal Distribution:
Attribute: f

Normal Distribution:
Attribute: g

Normal Distribution:
Attribute: h

Normal Distribution:
Attribute: 1

Normal Distribution:
Attribute: j

Normal Distribution:
Attribute: k

Normal Distribution:
Attribute: 1

Normal Distribution:
Attribute: m

Normal Distribution:

Mean = 12.2295 StdDev = 0.5378
Mean = 1.9711 StdDev = 1.0376
Mean = 2.2451 StdDev = 0.3261
Mean = 20.254 StdDev = 3.1686
Mean = 92.9524 StdDev = 13.8798
Mean = 2.2994 StdDev = 0.5143
Mean = 2.1602 StdDev = 0.6854
Mean == 0.3478 StdDev = 0.112
Mean = 1.6697 StdDev = 0.5316
Mean = 3.0329 StdDev = 0.8984
Mean = 1.0586 StdDev = 0.2037
Mean = 2.8798 StdDev = 0.4044

Mean = 500.1746 StdDev = 132.878

20

e ey

Clustered Instances:
0 59 (33%)
1 54 (30%)
2 65 (37%)

Class attribute: class = m
Classes to Clusters: o bt

[

‘SPCQIQOSQ/ Q\

0 1 2 <-- assigned to cluster

57021
26632 Nakraerigoian
04803

Cluster 0 <-- 1

Cluster 1 <--3

Cluster 2 <-- 2

Incorrectly clustered instances: 10.0 5.618 %
Accuracy: 94.382 %

Conclusion: we can say that above clustering techniques can be used to identify clusters social
networking data in tabular format with decent accuracy.

ey

21

CHAPTER 3

ANALYSIS OF LARGE SCALE SOCIAL NETWORK GRAPHS:

3.1 Graph Patterns in Large-Scale Networks:

® Most large-scale networks share some common patterns that are not noticeable in small
networks. Among all the patterns, the most well-known characteristics are:

scale-free distribution
small world effect
strong community structure.

Y VY

3.1.1 Scale Free Network

e Many statistics in real-world have a typical “scale”, a value around which the sample |
measurements are centied. L

e For instance, the height of all the people in the United States, the speed of vehicles on a
highway, etc.

e But the node degrees in real-world large scale social networks often follow a power law
distribution (a.k.a. Zipfian distribution, Pareto distribution).

e While the normal distribution has a “centre”, the power law distribution is highly skewed.

® For normal distribution, it is extremely rare for an event to occur that are several
deviations away from the mean.

® On the contrary, power law distribution allows the tail to be much longer.

® Thatis, it is common that some nodes in a social network have extremely high degrees
\ while the majority have few connections.

(® The reason is that the decay of the tail for a power law distribution is polynomial.

22

nal- 1]
ool 4
aal -
Do -
fe R -1
L. iomeie Gicous: siaerin 5 3 i
{(a) Normal Distribution
Figure3. normal distribution
Power Law Distribution ?
o [& ﬂ
s j
= i1 Very many nodes
Al el 2 with only a few links
e o
-
PR
’g 3‘3\1\5 A few hubs with
T targe number (}F links
e ? ?*‘ vf\ b 42
B oS SN
g .h_j . f of = e TR s v ‘*~\“::
- @ : s e
7 x; P - P oy }Q :1:& &mﬁl
? Number of links (k)

Figured4. power law distribution in social networks.

23

‘I W

3.1.2 Small World Effect

O Two actors in a huge network are actually not too far away.

O This result is also confirmed recently in a planetary-scale instant messaging network of
more than 180 million people, in which the average path length of two messengers is 6.6

O To quantify the effect, different network measures are used:

O Diameter: a shortest path between two nodes is called a geodesic, and diameter is the
length of the longest geodesic between any pair of nodes in the graph [61]. It might be the
case that a network contains more than one connected component. Thus, no path exists
between two nodes in different components. In this case, practitioners typically examine
the geodesic between nodes of the same component. The diameter is the minimum
number of hops required to reach all the connected nodes from any node.

O Effective Eccentricity: the minimum number of hops required to reach at least 90% of
all connected pairs of nodes in the network. This measure removes the effect of outliers
that are connected through a long path.

O Characteristic Path Length: the median of the means of the shortest path lengths
connecting each node to all other nodes (excluding unreachable ones). This measure
focuses on the average distance between pairs rather than the maximum one as the
diameter. i

dw 2010

Figure 5. small world effect

24

|

3.1.3 Community Structures

Social networks demonstrate a strong community effect. That is, a group of people tend to
interact with each other more than those outside the group. To measure the community effect,
one related concept is transitivity. In a simple form, friends of a friend are likely to be friends as
well. Clustering coefficient is proposed specifically to measure the transitivity, the probability of
connections between one vertex's neighbouring friends.

Clustering Coefficient: Suppose a node vi has di neighbors, and there are ki edges among
these neighbors, then the clustering coefficient Graph Mining Applications to Social Network

Analysis is

k;
(! — di X (d;—1)/2

(/, gl
g, : 0 (/z = (or |

While clustering coefficient and transitivity concentrate on microscopic view of community
effect, communities of macroscopic view also demonstrate intriguing patterns. In real-world
networks, a giant component tends to form with the remaining being singletons and minor
communitics. Bven within the giant component, tight but almost trivial communities at very
small scales are often observed. Most social networks lack well-defined communities in a large
scale. The communities gradually “blend in” the rest of the network as their size expands.

3.2 Challenges:

e Graphs with billions of edges, or billion-scale graphs, are becoming common.
e How can we find patterns and anomalies?
o Are there nodes that participaie in too many or too few triangles?

e Are there close-knit near-cliques?

25

3.3 PEGASUS

There are a huge number of graph mining algorithms, computing communities, finding important
nodes (e.g., Page Rank), computing the number of triangles computing the diameter , topic
detection, attack detection ,with too-many-to-list alternatives for each of the above tasks. Most of
the previous algorithms do not scale, at least directly, to several millions and billions of nodes
and edges. For connected components, there are several algorithms, using Breadth-First Search,
Depth-First-Search, “propagation” or “contraction” . These works rely on a shared memory
model which limits their ability to handle large, disk-resident graphs.

MAPREDUCE is a programming framework for processing huge amounts of unstructured
data in a massively parallel way. It has two major advantages: (a) the programmer is oblivious of
the details of the data distribution, replication, load balancing etc. and furthermore (b) the
programming concept is familiar, i.e., the concept of functional programming. Briefly, the
programmer needs to provide only two functions, a map and a redice. The typical framework is
as follows : (a) the map stage sequentially passes over the input file and outputs (key, value)
pairs; (b) the shuffling stage groups of all values by key, (c) the reduce stage processes the values
with the same key and outputs the final result.

HADOOP is the open source implementation of MapReduce, a very promising tool for large
scale graph mining applications

Due to its power, simplicity and the fact that building a small cluster is relatively cheap,
HADOOP is a very promising tool for iarge scale graph mining applications.

PEGASUS, an open source Peta Graph Mining library which performs typical graph mining
tasks such as computing the diameter of the graph, computing the radius of each node and
finding the connected components

As the size of graphs reaches several Giga-, Tera- or Peta-bytes, the necessity for such a library
grows too. It is implemented on the top of the HADOOP platform

3.3.1 How the Tool Works

PEGASUS requires Hadoop to be installed in the system. The typical usage of PEGASUS is to
run it on a gateway server of the Hadoop cluster. Alternatively, you can install Hadoop on a
single machine and run PEGASUS on the single machine.

26

PEGASUS requires additional four programs to run. They are Java, Apache Ant, Python, and
Gnuplot. The purposes of these programs are:
e Java is required since Hadoop runs on top of Java.
e Apache Ant is needed to rebuild the code after you modify it.
e Python and Gnuplot is needed to generate plots in the interactive command line Ul
pegasus.sh.

The social networking data in graphical format is added to pegasus. Then various attributes of
the graph like degrees of nodes, connected component etc. can be mined by using the available
functions. The results are stored in a file. The plot of the results can also e generated.

Sample graph

PEGASUS works on graphs with TAB-separated plain text format. Each line contains the source
and destination node id of an edge. The node id starts from 0. For example, here is an example
graph which is included in the installation file. It has 16 nodes.

0 1
1 2
1 3
3 4
3 6
5 6
6 7
6 8
6 9
10 11
10 12
10 13
10 14
10 15

Commands available in PEGASUS

Command Description

add [file or directory] [graph_name] upload a local graph file or directory to
HDFS

del [graph name] delete a graph

list list graphs

compute ['deg' or 'pagerank’ or rwr' or run an algorithm on a graph

'radius' or 'cc'] [graph_name]

plot ['deg' or 'pagerank’ or 'rwr' or 'radius' generate plots
or 'cc' or 'corr'] [graph_name]

help show this screen
demo show demo
exit exit PEGASUS

Computing degree distribution
To run Degree Distribution, you need to do the two things:

e copy the graph edge file to a HDFS directory, say dd_edge
e execute ./run_dd.sh

The syntax of run_dd.sh is:
Jrun_dd.sh [in or out or inout] [# of reducers] [HDFS edge file path]

- where:
[in or out or inout]: type of degree to compute.
[# of reducers]: number of reducers to use in hadoop.

e The number of reducers to use depends on the setting of the hadoop cluster.
e The rule of thumb is to nse (number of machine * 2) as the number of reducers.

[HDEFES edge file path]: HDFS directory where edge file is located
Ex: ./run_dd.sh inout 16 dd edge.

The outputs of Degiee Distribution are saved in the following HDFS directories:
dd node deg:

* Each line contains the degree of each node in the format of (nodeid TAR
degree of the node).

o For example, the line "1 3" means that the degree of node 1 is 3.dd_deg_count: The
degree distribution.

e Each line contains a degree and the number of nodes with the degree.

e For example, the line "1 12" means that 12 nodes have degree 1.

28

computing connected components

To run Connected Component-plain, you need to do the two things:
e copy the graph edge file to the HDFS directory cc_edge
e execufe ./run ccmpt.sh

The syntax of run_ccmpt.sh is:
Jrun_cempt.sh [# of nodes] [# of reducers] [HDFS edge file path]

- where
[# of nodes]: number of nodes in the graph
[# of reducers]: number of reducers to use in hadoop.

e The number of reducers to use depends on the setting of the hadoop cluster.
e The rule of thumb is to use (number of machine * 2) as the number of reducers.

? [HDES edge file path]: HDFS directory where edge file is located

Ex: Jrun_ccmpt.sh 16 3 cc_edge

The output is saved in the following HDFS directory:

concmpt curbm:
e FEach line contains the component id of each node in the format of (nodeid TAB "msi"

component_id of the node).
e For example, the line "2 msf1" means that the component id of node 2 is 1. The
component id is the minimum node id of it.

Concmpt_distr:
e Each line contains the size of connected component and frequency of such components

e Forexample 10 7 “‘means that there are 7 connected components of size 10 each.

concmpt_summaryout: The distribution of connected components.
e The first column is the component id.
e The second column is the number of nodes in the component.

29

3.3.2 Improvement on the results:
The results given by pegasus leave a lot of scope for improvement. For example in degree distribution
Pegasus does not tell us which degree has the highest degree?

0 1
- 3
2 1
3 3
4 1
g il
6 5
7 1
8 1
9 L
10 5
11 1
12 ;
143 i
14 1
1:5 1

In the above result the node with highest degree can be observed but if the nodes are in millions
we will need a program to do this.

Also in case of connected component it does not tells us which the largest connected component
is.
While we aim to mine such information, we have developed a JAVA code which performs this

task for us. It takes the Pegasus results file as input and returns with the id of the largest group or
the ode with highest degree, as required. Code is given in Appendix A.

3.4 Implementation on data

DATASET: TWITTER
Number of Nodes: 11,316,811
Number of Edges: 85,331,846
2 files are included:

nodes.csv: it's the file of all the users. This file works as a dictionary of all the users in this data
set. It's usetul for fast reference. It contains all the node ids used in the dataset.

edges.csv: this is the friendship/followership network among the bloggers. The friends/followers
are represented using edges. Edges are directed.

30

DATASET: YOUTUBE

Number of users : 1,138,499

Number of friendship pairs: 2,990,443
Number of groups: 47

4 files are included:

1. nodes.csv: it's the file of all the users. This file works as a dictionary of all the users in
this data set. It's useful for fast reference. It contains all the node ids used in the dataset.

2. groups.csv: it's the file of all the groups. It contains all the group ids used in the dataset.

3. edges.csv: this is the friendship network among the users. The user's friends are
represented using edges.

4. group-edges.csv: the user-group membership. In each line, the first entry represents user,
and the 2nd entry is the group index.

3.4.1 RESULTS: YOUTUBE

group-edges.csv: size 460kb

Objective: to identify most popular node i.e. the node participating in max. No. Of groups and
the largest group i.e. the group with most members.

101 . i : e
i [arp 2]
i =
3
[
b 3
10° . - — bt NP
107 10° 167
in degree

Fig6.In degree shows the no. of members in a group.

31

; [arp + |
e
104 | .
+
+
= 10° } ‘e A
+
§ +
102 = ++ =
g
_ e
i ++ q
10° | +‘l_~*_+|-_,.
o b e e o A
1010" . io! S | 107

out degree

Fig7.0ut degree shows the no. of groups a person is participating in.

From fig6, we learn that there are 3 distinct large groups of size between 3000 to 10000 with the
largest in the region of 5000-10000. Before that the plot is fairly continuous i.e. the values are
close to each other.. And the smallest groups are not smaller than size approx. 500. We also
observe that two sizes have count >1 but both are towards lower end. When we actually see the
results file, we find that:

Size of group frequency

502
509
511
525
540
560
567
572
583
584
589
598
616
624
626
629
658
681

e e T e T T i SR N S SN

32

742
763
779
788
790
823
830
832
843
898
944
982
1071
1074
? 1104
1107
1108
1160
1218
1269
1310
1348
1539
1645
3083
3533
7583

e et e T e e T S S e T Y i e Sy GOy G S S SR PG GRS

Size of smallest group- 502

Size of largest group- 7583

Size of 2" largest group-3533

Size of 3" largest group-3083

2 group each with sizes 511 and 540.

The group with id 7 has highest degree of 7583.

From fig7, we observe that an extremely large no. of people belong to only one group. And the
person which is the most-popular-i.e. belongs to most no.of groups has an out degree between 35
to 40. There are very few people who participate in more than 10 groups and even rarer are the
ones who participate in more than 20 groups. From results file we observe:

33

No. of groups a person belongs to frequency

1 22374
2 5261
3 2033
4 942
5 426
6 237
7 132
8 87
9 47
10 46
11 26
12 17
? 13 12
14 6
15 13
16 7
17 4
18 6
19 2
20 6
21 2
22 5
23 2
25 2
21 l
29 1
30 1
31 1
32 2
36 |
37 1

22374 belong to only one group.

The user which belongs to most no. of groups is a member of 37 groups and has greup id
10553.

34

edges.csv: size 36.9 mb

Objective: to find connected components in the social networking graphs, which will help in
giving grind suggestions because the people in connected to each other in some way even if not
directly. They may become friends in future. Also to identify the most popular nodes which have
high in degree and out degree? In degree and out degree:

6 : oo
10" ¢ : 3 [proj2 +
Bil 4
107 +*+
10% F i
3 10° 1
1072 | :
10! | :
e
10° e T A
10 10 10 10 10 10
inout degree
Figure8. inout degree vs count plot of youtube.
6 SoT T
107 [proj2 _+]
&5 -F
10 " ++ e
o
3 10°
)
10% |
10" }
10° 5 S e
10 10 10 10 10 10

out degree

Figure 9. out degree vs count plot of youtube.

35

. .|. 'p'r't!)i2 e J
10° | + e A
..|...
10* + o .
t
2 10°% | :
O
10% | -
10% | -
+
! +
100 0 2 g ..,..:1 PRI|W4
10 10 10 10 10

in degree
Figure10. in degree vs count plot of youtube.

The highest in degree is 4256. i.e. there is a user who as been added as a friend by 4256
users. Its id is 644603.

The highest out degree is 28576 i.e. there is a user who has added 28576 users as his friend.
Its id is 1072.

36

Connected components

3 L | T T Ty Ly VY 7 Tt
19511 cplele x]
L+
+
105+ 1
*g‘ T
8 +
1 +
10" | + 5
T
M
+
-
100 A A e | ﬂ. 2L A r P | A A . | A n Al A A -‘F " A
1o 0. 4o 107 qpF 40 19* 10"
cC
Figure11. Size of connected component vs count plot of youtube

We observe that there is a single very large connected component and lot of small connected
components. From results file:

Size of connected component

o0 AW —

et et et ket ekt i
0 ~JONhAWN—O

frequency

1
430
182
104
44
50
i)
30
15

NN A NBAONW O

37

19
22
23
25
33
36
1134890

ek d B = N

There are total 931 connected components in this graph. There is a very large connected
component of size 1134890 and rest are small. Any two users which are in the same connected
component and not directly connected, there is a probability that they will become friends in
future and a direct link will be established between them because they are not far away from
each other(small world effect).

3.4.2 RESULTS: Twitter
edges.csv: size 1.1.gb

Objective: to identify the users which are most followed and the ones whose following count
is the highest. And also to observe why it does not makes much sense to identify connected
components in this type of graph.

f G - [weet _+]

T0°

10° 10* 16" 10°
in degree

Figure12. in degree vs count plot of twitter.

In degree shows how many users follow a particular user. We observe that a large no. of users
(between 1000000 and 10000000) have in degree 1. Then the pattern follows a linear curve till

38

I EEI—IT—————

the in degree of 1000 where we can say that we start seeing popular users. The count of such
popular users remains steady till about in degree 10000. After that the in degree drops really low
and we start observing celebrities but the plot is still continuous. After the in degree of 100000,
we see users which are exceptionally popular worldwide and are very few in no. We observe
that the user which is most followed has in degree close to 5 lacs. From the results file we
observe:

Most popular user is followed by 564512 users.
2" most popular user is followed by 350885 users.
37, 76,805 users have in degree 1.

Id 5994113 has the maximum in degree 564512,

7
10—F...,...,r...

tweet + |
105 | + ;

++
10*

100 ¥ L i P | i I | i £ P |
108 1ol - 10% - 1o%
out degree

102 - 107

Figure13. out degree vs count plot of twitter.

Out degree shows the no. Of people a user follows. From graph, we can say that close to
10000000 users have out degree 1. Then the slope follows a linearly downward slope till around
out degree 1000, where we see an aberration. Then we observe a straight line with count =1 till

39

e ———————__ie

we observe the user with highest out degree which is close to 2 lacks. From results file we
observe that:

e The highest out degree is 2, 14,381.
e 54,59,717 users have out degree 1.

e The aberration comes close to out degree 2000 where we observe count between 150 and
200.

e Id 3493 has the maximum out degree 214381.

7 S A e S LT T OO
10'? | tweet + |

+
B e

s bl e ol e L e
inout degree

Figure14. inout degree vs count plot of twitter.

40

Connected components

1 T L | v L 5 | T Lam | T Lo | LE v L - | L3
10 | tweet)]
£ 0
g 10° + - + :
10"'1 sl " AL " s

10° 10! 102 10® 10* 10®° 10° 107 10°
cC

Figure15. Connected component size vs count plot of twitter

We observe that the graph contains only 3 connected components.

Size of connected component frequency
1 1
12 1
11316799 1

The reason that we observe such an unusual nature in case of connected components lies in the
different nature of twitter than other social networks. In any other graph if A is friends with B
and C is also friends with B then A and C will be considered very close to each other and there
will be a strong possibility that they will become friends in future. On the other hand in Twitter if
A follows a famous personality B and C also follows the personality B then they will get
connected even if the possibility of either following the other is extremely low. In other words in
twitter the links are made very easily and almost all users end up being connected in one way or
the other in a very large connected component. To predict which user will follow which in future
we will have to identify closely connected cliques in the large connected component.

41

CHAPTER 4

IMPROVEMENTS FOR FUTURE

1. Building a user friendly GUI with JAVA which takes a graph as input, has buttons
for various functionalities, outputs the Results computed by pegaus and also the
addition results based on Pegasus results like the node with highest degree , the most
important node (based on page rank) and identifying the largest connected
components.

2. Identifying important actors in a graph with the help of page rank algorithm.
Pagerank algorithm ranks nodes in a graph based on their importance.

Page Rank

For link analysis we assign to every node in the web graph a numerical score between 0
and 1, known as its Page Rank. The Page Rank of a node will depend on the link structure of the
web graph. Given a query, a web search engine computes a composite score for each web page
that combines hundreds of features such as cosine similarity and term proximity, together with
the Page Rank score. This composite score is used to provide a ranked list of results for the query.

Consider a random surfer who begins at a web page (a node of the web graph) and executes a
random walk on the Web as follows. At each time step, the surfer proceeds from his current page
A to a randomly chosen web page that A hyperlinks to. Figure 3 shows the surfer at a node A,
out of which there are three hyperlinks to nodes B, C and D; the surfer proceeds at the next time
step to one of these three nodes, with equal probabilities 1/3.

<j§juxqmya
(TG

10)C

4

‘(jfjumianj

Figure 16: The random surfer at node A proceeds with probability 1/3 to each of B, C and D.

As the surfer proceeds in this random walk from node to node, he visits some nodes more often
than others; intuitively, these are nodes with many links coming in from other frequently visited
nodes. The idea behind Page Rank is that pages visited more often in this walk are more
important.

What if the current location of the surfer, the node A, has no out-links? To address this we
introduce an additional operation for our random surfer: the releport operation. In the teleport

42

m

operation the surfer jumps from a node to any other node in the web graph. This could happen
because he types an address into the URL bar of his browser. The destination of a teleport
operation is modelled as being chosen uniformly at random from all web pages. In other words,
if N is the total number of nodes in the web graph, the teleport operation takes the surfer to each
node with probability 1/N.The surfer would also teleport to his present position with
probability 1/N.
In assigning a Page Rank score to each node of the web graph, we use the teleport operation in
two ways:
(1) When at a node with no out-links, the surfer invokes the teleport operation.
(2) Atany node that has outgoing links, the surfer invokes the teleport operation with
probability 0O<a<l and the standard random walk (follow an out-link chosen uniformly at
random as in Figure 3) with probability 1-a , where a is a fixed parameter chosen in advance.
Typically, a might be 0.1.
When the surfer follows this combined process (random walk plus teleport) he visits each
node v of the web graph a fixed fraction of the time f(v) that depends on

1. the structure of the web graph and

2. the value of a. We call this value f (v) the Page Rank of v.

Finding Pagerank in Pegasus

e copy the graph edge file to the HDFS directory pr_edge
e execute ./run_prblk.sh

The range of node id is from 0 to number of nodes_in_graph - 1.
The syntax of run prblk.sh is:
Jrun_prblk.sh [# of nodes] [#_of reducers] [HDFS edge path] [makesym or nosym]

[block width]
-2 where
[# of nodes]: number of nodes in the graph
[# of reducers]: number of reducers to use in hadoop.

e The number of reducers to use depends on the setting of the hadoop cluster.
e The rule of thumb is to use (number of machine * 2) as the number of reducers.

[HDFS edge file path]: HDEFS directory where edge file is located
[makesym or nosym]: makesym-duplicate reverse edges, nosym-use
originai edge file
e When the input graph is directed and you want to calculate directed PageRank, and then
use 'nosym' in the 4th parameter.
e When the input graph is directed and you want to calculate undirected PageRank, and
then use 'makesym’ in the 4th parameter.
e When the input graph is undirected, use 'nosym' in the 4th parameter.
[block width]: block width, usually set to 16.

|25/ Jrun_prblk.sh 16 3 pr_edge makesym 2

43

§ R

The output of Page Rank is saved in the following HDFS directory:

pr_vector :
e Each line contains the Page Rank of each node in the format of (nodeid TAB
"v"PageRank of the node).
e For example, the line "1 v0.10231778333763829" means that the Page Rank of node 1 is
0.10231778333763829.
pr_minmax: The minimum and the maximum Page Rank.
e The minimum Page Rank is the second column of the line that starts with "0".
e The maximum Page Rank is the second column of the line that starts with "1".
pr_distr:
The histogram of Page Rank, it divides the range of (min_PageRank, max_PageRank)
into 1000 bins and shows the number of nodes which have Page Ranks that belong to such bins.

Example: finding page rank of a test graph:

0 1
1 2
1 3
3 4
3 6
5 6
6 7
6 8
6 9
10 11
10 12
10 13
10 14
10 15
PR_DISTR:
| S
drsil]
G)
g,
418 1
463 1
893 1
1000 1
PR_MINMAX:

0 0.0368153863548244
1 0.18009901942165274

44

PR-VECTOR!

v0.03801584360515127
v0.10303820070044137
v0.03801584360515127
v0.09660774794874713
v0.03730713379139067
v0.0368153863548244
v0.16475368492982068
v0.0368153863548244
v0.0368153863548244
v0.0368153863548244
v0.18009901942165274
v0.038980196115669455
v0.038980196115669455
v().038980196115669455
v0.038980196115669455
v0.038980196115669455

ol e

W oo~-IhWn bW — O

—_—
—
wn B Wk — O

: I‘ “calstar +

Count

104 10 10 10°
pagerank
Figure17. page rank plot

2. Finding closely connected components in a connected component and predicting which
links will be formed-in future accurately.

We have seen that sometimes the size of connected components is very large and it is very
difficult to say whether two nodes will connect in future or not. If they are far off from one
another and the distance between them is quite large then the possibility that there will be a node

45

between them in future is low even if they are in the same connected component. So, to predict
whether an edge will be formed we should first identify cliques, near cliques and triangles.

Lovd v5
s i
1\‘ v g
cliques: {vy.v2.v3}
2-cliques: {v1.va, v3,va,vs}, {V2,v3, va, U5, v6}

2-clans: {v3,v3,V4,Vs5,Vs}
2-clubs: {w1,v2, vz, va}, {v1,v2,us, 05}, {va, v3, 04,05, U6 }

Figure 18: cliques, clans and clubs

clique An ideal cohesive group is a. It is a maximal complete sub graph of three or more nodes all of ‘
which are adjacent to each other. |

k-cligue is a maximal sub graph in which the largest geodesic distance between any two nodes
is no greater than k. That is,

d@,))<kVvi,vjE Vs

Note that the geodesic distance is defined on the original network. Thus, the geodesic is not
necessarily included in the group structure. So a k-clique may have a diameter greater than k or
even become disconnected.

k-c/an is a k-clique in which the geodesic distance d(i, j) between all nodes in the sub graph is
no greater than k for all paths within the sub-graph. A k-clan must be a k-clique, but it is not so
vice versa. For instance, {v1, v2, v3, v4, v5} in Figure is a 2-clique, but not 2-clanas the geodesic
distance of v4 and V5 is 2 in the original network, but 3in the sub graph.

k-club restricts the geodesic distance within the group to be no greater than k. It is a maximal
substructure of diameter k. All k-clans are k-cliques, and k-clubs are normally contained within
k-cliques. These substructures are useful in the study of information diffusion and influence
propagation.

46

Finding all these tight communities is easy if the size of graph is small. But when we talk
about Social networking graphs the size of graph is in GBs so the existing methods do not scale
well. We address this problem with the using HEIGEN algorithm developed by U Kang Brendan
Meeder Christos Faloutsos of Carnegie Mellon University, School of Computer Science which is
designed to be accurate, efficient, and able to run on the highly scalable MAPREDUCE
(HADOOP) environment. This enables HEIGEN to handle matrices more than 1000* larger than
those which can be analyzed by existing algorithms.

3. Making use of link types for better understanding of patterns of friendship and
community structures.

Social Networks are platforms that allow people to publish details about themselves and to
connect to other members of the network through links. Recently, the population of such online
social networks has increased significantly. For instance, Facebook now has over 150 million
users. Facebook is only one example of a social network that is for general connectivity. Other
instances of social networks are LinkedIn, Last.fm, orkut, aNobii, and the list continues.

These networks allow users to list details about themselves, but also allow them to not specify
details about themselves. However, these hidden details can be important in the administration of
a social network. Most of these sites are free to the end user and support advertising. If we
assume that advertisers want to reach the people most likely to be interested in their products,
then identifying those individuals becomes a priority for mainiaining much-needed advertisers.
However, by just using specifically defined information, the site may be missing a large number
of potentially interested users. Taking the specified knowledge from some users and using it to
infer unspecified data may allow the site to extend its target audience for particular
advertisements.

The implications of classification in social network data extend far beyond the simple case of
targeted advertising. For instance, such ideas could be used for addressing classification
problems in terrorist networks. By using the link structure and link types among nodes in a social
network with known terrorist nodes, we can attempt to classify unknown nodes as terrorist or
non-terrorist. In such a classification process, the type of the link shared among nodes could be
really critical in determining the final success of the classifier. For example, assume that there
exist two different individuals Ram and Rob that are iinked to some known terrorist, Mack.
Furthermore, assume that Ram works at the same place as Mack, but they are not friends. (i.e.,
Ram and Mack have a relationship. The type of relationship is “coworker”). In addition assume
that Mack talks frequently on the phone with Rob and they are friends (i.e., Rob is linked to
Mack and the link type is “friend”). Given such a social network, to our knowledge, all the
existing classification methods just use the fact that individuals are linked and they do not use the
information hidden in the link types. In some cases, one link type like friendship can be more
important than other link types for increasing the accuracy of the classification process.
Therefore, social network classification techniques that consider link types could be very useful
for many classification tasks.

47

REFERENCES:

% -Spectral Analysis for Billion-Scale Graphs: Discoveries and

Implementation
U Kang, Brendan Meeder, Christos Faloutsos Carnegie Mellon University, School of Computer

Science
‘ {ukang,bmeeder,christos} @cs.cmu.edu

1‘ % PEGASUS: A Peta-Scale Graph Mining System - Implementation and

{' Observations :

U Kang SCS, Carnegie Mellon University ukang(@cs.cmut.edu
Charalampos E. Tsourakakis SCS, Carnegie Mellon University ctsourak@cs.cnu.edu
Christos Faloutsos SCS, Carnegie Mellon University christos@cs.cmu.edu

l ** PEGASUS: Mining Peta-Scale Graphs

! U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos

f School of Computer Science, Camnegie Mellon University, Pitisburgh PA, USA
1

|

{

{

s+ PEGASUS User’s Guide

| % GRAPH MINING APPLICATIONS TO SOCIAL NETWORK ANALY SIS

Lei Tang and Huan Liu

Computer Science & Engineering
Arizona State University
L.Tang@asu.edu, Huan.Liu@asu.edu

5 % Social Network Classification Incorporating Link Type Values
5 Raymond Heatherly Jonsson School of Engineering and Computer Science

The University of Texas at Dallas Email: rdh061000@utdallas.edu

Murat Kantarcioglu Jonsson School of Engineering and Computer Science

The University of Texas at Dallas Email:muratk@utdallas.edu

Bhavani Thuraisingham Jonsson School of Engineering and Computer Science
The University of Texas at Dallas Email:bxk043000@utdallas.edu

%+ Opinion mining and sentiment analysis
Bo Pang Yahoo! Research, 701 First Ave. Sunnyvale, CA 94089, U.S.A., bopang(@yahoo-

inc.com
Lillian Lee Computer Science Department, Cornell University, Ithaca, NY 14853, U.S. 4.,

llee@cs.cornell. edu

48

\ APPENDIX A: JAVA PROGRAM FOR IDENTIFYING THE NODES WITH HIGHEST DEGREE
AND THE LARGEST CONNECTED COMPONENT.

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
| import java.awt.event.ActionListener;
| import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
j import javax.swing.JButton;
| import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class Calc extends JFrame implements ActionListener{
JTextField t;
public Calc() {
super ("Calculate Degree");
setDefaultCleseOperation (JFrame.EXIT_ ON_CLOSE);
setBounds (400, 300,400,200) ;
t=new JTextField(20);
t.setBEditable(false);
JButton browse=new JButton{"Browse");
JButton submit=new JButton ("Submit");
browse.addActionListener (this);
| submit.addActionListener (this);
JPanel p=new JPanel();
p-add(t);
p.add(browse) ;
this.add(p, BorderLayout.CENTER) ;
this.add (submit, BorderLayout.SOUTH) ;
setVisible(true);
}
public void actionPerformed (ActionEvent e) ({
if (e.getActionCommand () .equals ("Browse")) {
JFileChooser chooser=new JFileChooser|();
chooser.showOpenDialcg (this) ;
t.setText {chooser.getSelectedFile () .getAbsolutePath());
}
| if (e.getActionCommand () .equals ("Submit")) {
| int max=0,1d=0;
tryl
BufferedReader cin=new BufferedReader (new
FileReader (t.getText())):
String s=cin.readLine();
String[J=in=sswsplit(#NEL);

49

max=Integer.parseInt(in[l]);idzl;
int temp;
while (true) {
s=cin.readLine ()
if (s==null) break;
if(s.equals("") || s.length()==0) break;
in=s.split ("\t")/
System.out.println(s};
temp=Integer.parseInt(in{l]);
if (max<temp) { max=temp;id=1nteger.parselnt(in[O]); }
}
}catch (I0Exception ioe){ioe.printStackTrace();}
JOptionPane.showMessageDialog(this, "Id "+id+" has the
maximum degree "+max,
¢ "Degree", JOptionPane . INFORMATION MESSAGE) ;
}
}

public static void main (String([] args){
new Calc();

)

50

