j)}n&u‘l-lq e

.

. ——

a—— Bt Al {9 =
= o ~= o SN =1 : z
— gk :
1 e e — S

Remote PC Administration Suite For
Mobile Devices

Gautam Vashisht (081415)
Nishant Chawla (081421)
Bhavini Rai (081426)
Divyanshu Gogia(081458)

Under the Supervision of
Mr. Pradeep Kumar Gupta

Cor
‘\\Q‘fGA

Submitted in partial fulfillment
of the requirements for the degree of

BACHELOR OF TECHNOLOGY (IT)

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY WAKNAGHAT
SOLAN, HIMACHAL PRADESH

INDIA
2012

TALBLE OF CONTENTS

Topics Page No.
) Certificate from the Supervisor 3
ii) Acknowledgement 4
iii) List of Figures 5
iv) Abstract 6
Chapter 1 Introduction 8
Chapter 2 Mobile Application Development 12
Chapter 3 Project Planning 30
Chapter 4 Testing 38
Chapter 5 Results and Conclusion 41
References 43
Appendix A Server Code 44
Appendix B Client Code 57
(2]

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY, WAKNAGHAT

SOLAN, HIMACHAL
PRADESH

CERTIFICATE

This is to certify that the work entitted “REMOTE PC ADMINISTRATION SUITE
USING MOBILE DEVICES”, submitted by Gautam Vashisht , Nishant
Chawla, Bhavini Rai and Divyanshu Gogia in partial fulfillment for award of degree of
Bachelor of Technology (Information Technology) of Jaypee University of Information
Technology has been carried out in my supervision. This work has not been submitted partially

or wholly to any other university or institution for award of this or any other degree programme.

/ \q/
AW {_Ao\\\
i
Project Supervisor

Mr. Pradeep Kumar Gupta
Sr. Lecturer (CSE & IT), JUIT

(3]

ACKNOWLEDGEMENT

We are highly grateful to Brig.(Retd.) S.P. Ghrera, Associate Professor and Head, Dept. of

Computer Science & Engineering and IT, for providing us the opportunity to work on the
project.
With great pleasure we express our gratefulness to our guide and mentor Mr. P.K.Gupta,

Senior Lecturer, Dept. of Computer Science & Engineering and IT, for his valuable and

sustained guidance and careful supervision during the project.

We express our sincere thanks to all the faculty members of JAYPEE UNIVERSITY
OF INFORMATION AND TECHNOLOGY who have helped us directly or in directly.

Without their help and guidance we would not have been able to successfully complete our

project.

. Group Members:
! Gautam Vashisht agy/zlig‘é-/}—‘
| Nishant Chawla @W

Bhavini Rai @ﬂ\@

Divyanshu Gogia A

List of Figures

S, No. Figure

g
§
5

i 1 Java Platforms
9 Schematic Client Server Interaction
3 Client Server Architecture
4 The Mobile Information Device Profile
5 The Life Cycle of a MIDlet
6 The Wireless Toolkit Emulator
7 CDC and its Profiles
8 Java 2 Platform Debugger Architecture
9 The KVM implementation of the JPDA
10 Layers of J2ME Architecture
| 11 Use Case Diagram
;l 12 Data Flow Diagram
| 13 Functionality Decomposition Diagram
14 State Diagram
15 Gantt Chart of Project Part 1
16 Gantt Chart of Project Part 2
17 Snapshot1-Server requests for port number
18 Snapshot 2-Client requests for server’s IP address
19 SnapShot 3-Client requests for Port number on which server is running
20 Snapshot 4-Desktop sharing successful
21 Server Class Diagram
22 Client Class Diagram
23 Server waiting for clients
24 Client requesting for details
25 Client connected and waiting for commands
26 ‘ Server screen shared

[5]

Abstract

Unhindered connectivity to a computer is the need of the hour. The ability to connect to a remote
machine and control it will have infinite advantages. J2ME (JAVA 2 Micro Edition) is a platform
created to enhance application development for mobile phones. By sending the required commands
over an internet Connection and by using J2ME platform we have created an application that which

can control any desktop computer or a server.

Purpose

The main aim of the application is to remotely access and control different applications on a static
IP PC by connecting to it over a GPRS link from a J2ME enabled cell phone. The possible
applications are:

e Launching Winamp , WordPad, games or other similar applications.

e Shutting down and restarting or logging off from your machine.

e Formatting hard drives.

e Running Internet Explorer with the required URL.

e Sending Messages to the static PC.

e Remote Desktop Connection from the Cell Phone.
In the present paper we propose a solution to control a computer by creating an all time functional

link between the system and its administrator.

Motivation

Many applications like web hosting services, network servers, automated systems need to be
monitored continuously. And to monitor them 24/7 by being physically present at the location is not
viable. Therefore we propose to control such applications remotely by J2ME enabled mobile

devices.

' Advantages Of A Remote PC Controller

Adding a mobile remote control to an existing network can have many advantages as mentioned

below:

Faster, decentralized decision making.
Increased responsiveness to customers.
Increased sensitivity to market changes.
Lowered commuting costs/time for staff.
Increased productivity.

Target Enterprises (Commercial Viability Of the Idea)

Virtual Classrooms

Online Presentations

Sales and Marketing Meetings
Remote Support to Servers
Remote Access/Office

e et sk o e AR T et i s

i
4

L

E e it SESoiS R i s

< Lol

Chapter 1

Introduction

1.1. Introduction To Java Platforms

There are three flavors of Java

_J2ME (Java2 -Micro Edition),
-J2SE (Java2-Standard Edition), and
~J2EE (Java 2-Enterprise Edition).

These three flavours of Java represent three distinct target market segments each of which has
unique issues and requirements that need to be addressed somewhat differently.

The Java™ Platform

« =

3

SRR
5 T :
Java Technology Java Technology Workgroup High-End

Enabled Devices Enabled Desktop Server Server
|
' |

Micro ‘
{iti Standard .
Helinkiy e Edition Enterprise

Edition

JL

Fbdodifani vk i do | dpRassiaatin

4

Fig 1: Java Platforms —

Micro Edition addresses of market segment of small devices such as PDAs, cell phones and
settopbox, which are typically constrained in terms of memory space and processing power.

Standard Edition represents the Java that we all know and love, a Java for desktop and workgroup

Server environments that require a full feature functionalities including rich graphical user interface.

Enterprise Edition covers the Java platform for developing and deploying enterprise quality
applications which are typically transactional, reliable and secure.

8]

1.2. Problem Statement

We intend to build a Remote PC Administration Suite using J2ME which will access a static
computer from a mobile device.

o Mobile will be able to access the screen of computer system.

o It will control the keyboard of static PC and will use to type anything on the static PC.

1 o It will have the mouse control function like clicking and moving the cursor.

1.3. Client Server Architecture

The client/server model is a type of a computing model which acts as distributed application. It
partitions tasks or workloads among the providers of a resource or service, called servers, and
service requesters, called clients. The clients and servers can be seen communicating over

a computer network on some different hardware, however both client and as well as the server
reside in a single system. The host is basically a server machine that is running one or more server
programs which share their resources as well as services with clients. A client requests for the
server's service function.

The client/server characteristic is responsible for describing the relationship that exists between the
cooperating programs residing in an application. The clients which initiate requests for services are
provided with the service function.

Example of applications built on the client server model: email exchange, web access and database
access. Users access banking services available to them from their PC’s by using a web browser
client forwarding a request to a web server present at a bank. That program may on the other hand
forwards the request to its existing database client program. which sends a request to a database
server at another bank computer to retrieve the account information. The balance is returned to the
bank database client, which in turn serves it back to the web browser client, displaying the results to
the user. The client—server model has become one of the central ideas of network computing. Many
business applications being written today use the client—server model, as do the Internet's main
application protocols, such as HTTP, SMTP, Telnet, and DNS.

The interaction between client and server is often described using sequence diagrams. The Unified
Modeling Language has support for sequence diagrams.

Specific types of clients include web browsers, email clients, and online chat clients.

3 [9]

& {4 Methodology

1.4.1. Basics

Remote Desktop Administration

s View a desktop remotely

s Interact with a remote desktop

s Make the remote desktop occupy the entire local screen

= Open a connection to a user's desktop, asking the user for permission before actually

connecting
Open a connection to a user's desktop without having the user be aware of your connection

Browse for a specific user and connect to that user's desktop
s Browse the network for machines to connect to

1.4.2. Architecture (2 tier)

0 bkt 3 A el v i Moot i A 9 bbby issas
|} | |

In this type of architecture, the client-side software is responsible for sending requests to server-side
software, which initiates the processing.

Client-side

Client 4

Request Reply

Fig 3: Client Server Architecture
Source: McGrawHill Osborne -Java J2ME The Complete Reference

[10]

: l Server-side

o

1 ﬁmlis, Aims & Objectives

e T oYy

« This application is designed to provide the user Access a PC from his mobile device.

» This project is to enable the mobile users to control his PC information at their finger tips.

s The application must consider the limitations and disadvantages of mobile devices.

s The application must work properly without facing any hindarnce on all targeted devices,

and in matters of power supply and network support.

1.6. Scope
Commercial Viability Of the Idea :

i) Virtual classrooms,
ii) Online presentations,
iii) Remote support to servers,

iv)Remote access to office workstation.

1.7. Resources Requirements

1.7.1. Types Description & Specifications
There are two types of requirements in this project:

e Software Requirements
e Hardware Requirements

1.7.1.1. Software Requirement

e We need Netbeans IDE 7.1.1 to run the J2SE server application.

e We need wireless toolkit to run the j2me client application.
° We need an emulator to run the client application.

1.7.1.2. Hardware Requirement

Computer system with
¢ Min 512 MB RAM
® Internet Connectivity
® Min 1Gb of free hard disk space

Mobile device which is enabled to work on Java platform.
[11]

Chapter 2

Moblie Application Development

2.1, What is J2ME?

The users of mobile and other small computing devices generally develop great expextations
regarding the performance of these devices. The consumers of such devices demand multiple
features like quick response time, full-featured applications in a small computing device and
compatibility with companion services,.

This gives an additional responsibilty to developers as they need to rethink the way they tend to
build computer systems. What the developers need to do is harness the power of existing front-end
and back-end software found on business computers. Besides this thet need to transfer this power
onto small, mobile, and wireless computing devices. J2ME allows the occurrence of this
transformation with minimal changes, here it safely assumes that the design of the applications is
scalable thereby, allowing it to be custom fitted.

An abstract version of the Java API and Java Virtual Machine is J2ME. J2ME has been designed as
such that it operates in the new breed of embedded computers and microcomputers within the sparse
resources available.

A notable benefit of using J2ME is that when it comes to compatibility it is compatible with all
Java-enabled devices. A device is to be Java-enable if it runs the Java Virtual Machine. For
instance, Ericsson, Motorola, Nextel, Nokia, Panasonic, and RIM all have Java-enabled
devices.Besides this, J2ME also maintains the powerful security features that are found in the Java
language enabling wireless and small computing devices to access resources that are present
within an organization’s firewall.

2.1.1 J2ME Configurations

J2ME has two types of configurations. They arec Connected Limited Device Configuration
(CLDC) and the Connected Device Configuration (CDC). The CLDC is basically designed for
small computing devices which are 16 bit or 32 bit and have limited amounts of memory. The
available memory in CLDC devices are usually between 160KB and 512KB and they are battery
powered. They generally do not have a user interface and use an inconsistent, small-bandwidth
network wireless connection. CLDC devices make use of the KJava Virtual Machine (KVM)

implementation, which is in reality, a stripped-down version of the JVM.

CLDC devices include pagers, personal digital assistants, cell phones, dedicated terminals, and all
consumer devices that have memory of 128KB and 512KB. CDC devices on the other hand use a
32-bit architecture, memory availability of atleast two megabytes , and a complete functional JVM
is implemented. CDC devices include digital set-top boxes, navigation systems, point-of-sale
terminals, home appliances, and smart phones.

(12]

I ;1.2 J2ME Profiles

A proﬁie usually contains Java classes that allow implementation of features for a particular small
computing device. We have defined seven profiles. These are the Foundation Profile, Game Profile,
Mobile Information Device Profile, PDA Profile, Personal Profile, Personal Basis Profile, and RMI

Profile.

o The Foundation Profile contains core Java classes and hence is used along with the CDC
configuration and is the core for nearly all other profiles used with the CDC configuration

e The Game Profile is also used for developing game applications and contains the necessary
classes that required for developing the same.

o The Mobile Information Device Profile (MIDP) contains all the classes that are responsible
for providing local storage, a user interface, and networking capabilities to an application
which is running on a mobile computing device for instance Palm OS devices. MIDP is used
along with all the wireless Java applications.

e The PDAProfile (PDAP) is used along with the CLDC configuration. It stores all those
classes that utilize sophisticated resources found on personal digital assistants. The features
being reffered here are better displays and larger memory.

e The Personal Profile makes use of the CDC configuration and the Foundation Profile and
handles the classes which implement a complex user interface. The core classes are provided
by the Foundation Profile , and the Personal Profiles are responsible for providing classes to
implement a sophisticated user interface. A sophisticated user interface is a user interface
which is capable of displaying multiple windows at a time.

e The Personal Basis Profile is very much similar to the Personal Profile. It is used with the

- CDC configuration and the Foundation Profile.The Personal Basis Profile provides classes
to implement a simple user interface. A simple user interface is a user interface that is
capable of displaying one window at a time.

e The RMI Profile is used with the CDC configuration and the Foundation Profile. It provides
Remote Method Invocation classes to the core classes that are contained in the Foundation
Profile.

| 2.1.3 CLDC

The Connected Limited Device Configuration (CLDC) is the basic building block on which the
| J2ME profiles for small devices, such as cell phones, pagers, and low-end PDAs, are built. These
devices are characterized by their limited memory resources and processing power, which make it

impossible for them to host a fully featured Java platform. CLDC specifies a minimal set of Java
packages and classes and a reduced functionality Java virtual machine that can be implemented
within the resource constraints imposed by such small devices

| 2.1.3.1 The CLDC Java Virtual Machine

The hardware and software limitations imposed by the devices at which CLDC is targeted make it
impractical to support either a full Java virtual machine or a complete set of J2SE core classes.
Running a simple "Hello, world" application on the Windows platform requires around 16 MB of
memory to be allocated. Contrast this with the minimum platform requirements for CLDC, which
call for:

* 128 KB of ROM, flash or battery-backed memory for persistent storage of the Java VM and the
class libraries that make up the CLDC platform.

(13]

, 32 KB (or more) of volatile memory to be available for runtime allocation.

This memory is used to satisfy the dynamic requirements of Java applications, which include class

not, for example, assume that the device will have any kind of display or user input mechanism such
as a keyboard or a mouse, and it does not require any kind of local storage for application data.
These issues are all assumed to be addressed individually by each device vendor. As far as the

1 software environment is concerned, CLDC assumes only that the host device has some kind of

'i opcrating system that can execute and manage the virtual machine.

g Joading and the allocation of heap space for objects and the stack. In order to support a Java runtime
environment with such limited resources, CLDC defines reduced requirements for the virtual

3; machine, the language itself, and the core libraries.

: Other than the memory requirements, CLDC makes few assumptions about its host platform. It does

4

1

| 2.1.3.2 The CLDC Class Libraries

| CLDC addresses a wide range of platforms that do not have sufficient memory resources to support
the full range of packages and classes provided by J2SE. Because CLDC is a configuration rather
than a profile, it cannot have any optional features. Therefore, the packages and classes that it
specifies must have a small enough footprint that they can be hosted by devices that meet only the
minimum requirements of the CLDC specification. The CLDC class library is very small -- it is
composed of a package containing functionality that is specific to J2ME (called
javax.microedition.io), along with a selection of classes from the following packages in the core
J2SE platform:

* java.io
* java.lang
* java.util

All I2ME configurations and profiles include packages or classes from J2SE. When J2ME
incorporates software interfaces from J2SE, it must follow several rules:

* The names of the packages or classes must be the same, wherever possible. It would not be
acceptable, for example, to completely reimplement the java.lang package in a package called
javax.microedition.lang if the API in the java.lang package can be used.

* The semantics of classes and methods that are carried over into J2ME must be identical to those

with the same name in J2SE.
* It is not possible to add public or protected fields or methods to a class that is shared between

J2SE and J2ME.

Because of these rules, J2ME packages and classes will always be a subset of the packages

and classes of the same name in J2SE, and the J2ME behavior will not be surprising to
developers familiar with J2SE. Furthermore, J2ME configurations and profiles are not

allowed to add extra functionality in packages and classes that they share with J2SE, so upward
compatibility from J2ME to J2SE is preserved.

2__1.4 The Mobile Information Device Profile and MIDlets

pP is based on CLDC and KVM and is that version of the Java platform which is aimed at small
mostly cell phones and two-way pagers.

Ml

devices,

The software that implements MIDP runs in the KVM supplied by CLDC and provides additional
services for the benefit of application code written using MIDP APIs. MIDP applications are called
MiDlets. MIDlets can directly use both MIDP facilities and the APIs. MIDlets do not access the
host platform's underlying operating system and cannot do so without becoming nonportable.
Because the KVM does not support JNI, the only way for a MIDP application to access native
platform facilities directly is by linking native code into a customized version of the virtual

machine.

i bl e ide: et kel st M aalabicd

et sl fd s 4 el ot g KM

Fig 4: The Mobile Information Device Profile
Source: J2ME in a nutshell (O’Reilly JAVA)

2.1.4.1 The MIDP Java Platform

The Java platform available to MIDlets is that which has been provided to it by CLDC. The MIDP
specification places the following mentioned requirements on the core libraries:

* MIDlets are managed in an execution environment just like applets. This environment is slightly
1 different from that of a Java application. The foremost entry point to a MIDlet is not the main()
| method of its MIDlet class. The exit() methods present and available in both the System and
Runtime classes are therefore expected to throw a SecurityException if they are invoked.

* MIDP devices are expexted to set the microedition.locale property so that it reflects the locale in
‘which the device is supposed to operate. The locale names are formed in a different way in case of
MIDP than from those used by J2SE, as the language and country components instead of being

~ Scparated by an underscore characier are separated by a hyphen. For instance : en-US on a MIDP
device, meanwhile a J2SE developer would be expecting the locale name to be present in the form
en_US.

* The system property microedition.profiles is supposed to contain at least the value MIDP- 1.0.

wik b s b

=

o

SIS,

2,1.4.2 MIDlets and MIDlet Suites

sl i i s s s b
] ‘___‘
=

MIDlets are Java applications running on MIDP devices.

A MIDlet suite is composed of a group of related MIDlets. All the MIDlets that exist in a suite

are packaged together and installed onto a device. Though they are installed as a single entity they
can be uninstalled only as a group. The MIDlets in a suite share not only the static but also the
runtime resources of their host environment, as follows:

«All active MIDlets from a MIDlet suite run in a single Java VM if at the runtime the device
supports concurrent running of more than one MIDlet . All MIDlets that belong to the same
suite therefore share the same instances of all Java classes. This clearly means that data is allowed

to be shared between MIDlets.

« At the MIDlet suite level, storage on the device is managed . MIDlets can
access not only their own persistent data but also of other MIDlets in the same suite.

2.1.4.3 MIDlet Security

The Java security model that is used in J2SE not only powerful but also flexible. However it is
expensive when we talk about memory resources.

This is the reason why neither CLDC nor MIDP do not include security checking of API calls that is
available in J2SE.

This implies that a MIDlet appears to be more of a potential threat than an applet would to a
browser user, for a mobile device user. This is because the MIDlet is not cotrolled by the Java

applet "sandbox". Therefore when installing MIDlets a mobile device owner needs to be cautious
and.

This however is not possible as the user is not completely sure at the time of writing of who is
providing a MIDlet. At present, there is very limited security available and existing as of now
against malicious MIDlets. In the existing scenario no MIDlet APIs are available that allow any
access to information that is already presentnon the device, such as name, and telephone number
list or place of work.

A MIDlet is allowed to store information on a device however that storage is private to that
particular MIDlet and its suite, so the MIDlet can harm only the data that is present in it.

2.1.4.4 MIDlet Execution Environment and Lifecycle

The abstract base of class javax.microedition.midlet. MIDlet is used for picking up the MIDlets.
This base class contains methods which are called by the MIDP platform to not only control the
lifecycle of a MIDlet, but also control methods which the MIDlet itself uses to ask for any change
in its state. It is important that a MIDIet must contain a public default constructor. A public default
constructor is a constructor having no arguments. This is supposed to be developer supplied if there
exists initialization that has to be performed. Also the Java compiler inserts an empty default
fonstructor when there are no explicit constructors present. A skeleton MIDlet class somewhat
ooks like:

. —' pl-l-blic class MyMIDlet extends MIDlet {

/i Optional constructor

MyMIDIet() {
I}Jrotected void startApp() throws MIDletStateChangedException {

I},rotected void pauseApp() {

'A“““ﬂ‘«iﬁiaa-hn.é-a:i‘.ﬁ“w Ty o

rotected void destroyApp(boolean unconditional)
throws MIDletStateChangedException {

h
}

At any given time, a MIDlet is in one of three states: Paused, Active, or Destroyed. A state
diagram that shows how these states are related.

Constructod Suspended by devi
Moty o)

Stavtod or resussad by dovice
af MIDNet calls resume Requesi() i

| [f

Bncowirin

_ M mﬂ_s
User ends ooty Destepedt) User ends
IOl l l iole

L Mmé%'—l
Fig 5: The lifecycle of a MIDlet
Source: J2ME in a nutshell (O’Reilly JAVA)

Initially when a MIDlet is loaded, it is supposed to be in the Paused state. When the MIDlet instance
is created, it begins with the invoking all the instance initializers which is followed by invoking its
public no-argument constructor. If during the period of execution of its constructor, the MIDlet

. somehow throws an exception, the MIDlet will be easily destroyed. The state of the MIDlet changes
from Paused to Active, if the MIDlet fails to throw an exception and is thereafter scheduled for
execution at some later time. This initiates a method called startApp(). This method has been
declared by the MIDIet class as follows:

~ protected void startApp() throws MIDletStateChangeException,

Since this method is abstract which implies that it must be implemented it in the MIDlet. The fact
that this method is protected highlights the fact that either a MIDlet class will be used to call it or
another class javax.microedition.midlet package will be used to call it. The MIDlet

lifecycle methods can be called from a class in this package available called Scheduler, this when
we are talking about the reference implementation. Although there is hardly anything that is present
in the MIDP specification that will require this class to be used.

The startApp() method is defined as public by the MIDlet developers, however it should not be
declared as protected.

|
|
!
|

(17]

a REAE dadar is d W e R b bde. 4 b bl bos i s i i . ks bl
i ¥ i

: %he startApp() method may complete normally, in which case the MIDlet is allowed to
sun, of it may inform the MIDP platform that the MIDlet does not want to run at this point.

There are several ways to achieve the latter:

+ If the startApp() method detects If an error condition is detected by the startApp() method, that
will prevent the method from completing, which however may not exist later altogether, it should
supposedly throw an exception named MIDletStateChangeException.

« The notifyDestroyed() method is called when the startApp() method detects an error condition
from which recovery is very difficult.

+ In the case, a method invoked by the MIDlet does not throw an exception a
MIDletStateChangeException is thrown. The MIDlet in that case is destroyed by
calling its destroyApp() method after it is safely assumed that a fatal error has occured.

2.1.4.5 Running a MIDlet

At this stage, the JAR file has not been created, but you can nevertheless test the MIDlet suite
by selecting an appropriate target device on the KToolbar main window and pressing the Run
button. This loads the MIDlet classes, its resources, and any associated libraries from the
classes, res, and lib subdirectories. If you select the default gray phone and press the Run
button, the emulator starts and displays the list of MIDlets in this suite.

{1 Hhone I

ireless Toolkit emulator

Fig 6: The
Source: J2ME in a nutshell (O’Reilly JAVA)

|
When the MIDlet suite is loaded, the device's application management software displays a list
of the MIDlets that it contains and allows you to select the one you want to run. In this case,

| even though the suite contains only one MIDlet, the list is still displayed. Given the current lack of

security for MIDlets imported from external sources, it would be dangerous for the device to run a

MIDlet automatically, and, by giving the device user the chance to choose a MIDlet, it allows him
the opportunity to decide not to run any of the MIDlets if, for any reason, they are thought to be a
Security risk or otherwise unsuitable. It is not obvious, though, on what basis such a decision would
be made, since the user will see only the MIDlet names at this stage, but requiring the user to
confirm that a MIDIet should be run transfers the ultimate responsibility to the user. In this case, the

(18]

i Wi diig

ot

L ach e i e, hisind

;évice displays the MIDlet name and its icon (the exclamation mark) as taken from the MIDlet-1
attribute in the 14 il i : : | o

nanifest file. The device is not obliged to display an icon, and it may use its own icon in
;,reference to the one specified in the manifest.

Wwhen we run the MIDlet suite this way, the Wireless Toolkit compiles the source code with

the option set to save debugging information in the class files, and it does not create a JAR

file. If you want to create a JAR, you can do so by selecting the Package item from the Project
menu. This rebuilds all the class files without debugging enabled, which reduces the size of

the class files, a measure intended to keep the time required to download the JAR to a cell

phone or PDA as small as possible. It also extracts the content of any JARs or ZIP files it

finds in the /ib subdirectory and includes them in the MIDlet JAR, after running the

preverifier over any class files that it finds in these archives. The JAR can be used, along with the
JAD file, to distribute the MIDlet suite for installation into a device over a network.

2.1.5 The CDC

The CDC is targeted at devices that have a minimum of 2 MB of memory available to be used
by the Java VM and its class libraries. As with CLDC, most devices probably have the VM
and the core class libraries in ROM or Flash memory, but they also require RAM for
application classes (unless the application is embedded and hence also included in the ROM)
and the Java heap.

CDC devices typically have a 32-bit processor and a network connection, which may be
intermittent or permanent, often directly to the Internet or a TCP/IP-based intranet. This
contrasts to the CLDC environment, which is often hosted by slower 16-bit processors, and
which has only a relatively low-bandwidth, nonpermanent connection to a network that
cannot be assumed to support TCP/IP.

Like CLDC, the CDC specification requires a VM and a set of class libraries represent the
minimal subset of the Java 2 platform required for all devices to which this configuration is
targeted. Devices built to target specific applications or markets require additional software
facilities that are provided by CDC's associated profiles.

Source: J2ME in a nutshell (O’Reilly JAVA)

[19]

. B e b i e bt i s ek Lo e bl e s b e b

' 51,5.1 The CDC Virtual Machine

Because CDC devices are much more capable than those targeted by CLDC, they can support
a full Java VM. In fact, any VM provided as part of a CDC implementation must provide all
the features described in the second edition of the Java Virtual Machine specification.

The CDC reference implementation contains the source code for the CVM and the core CDC

Java class libraries. The reference implementation can be compiled for Linux (strictly speaking,
only Red Hat Linux Version 6.2 is supported) and VxWorks, a real-time operating system.
However, CVM is designed to be highly portable, and the download includes documentation that
covers the details of the porting layer for those who need to implement it for a different platform.
Perhaps somewhat surprisingly, Sun does not provide a version of CVM for PocketPC platforms
such as the Compaq iPAQ range of PDAs, which would be an ideal host for a Java 2 programming
environment. Third party support for these devices is almost certain to appear, however, when the
GUI-based profiles

become available.

CVM uses the same ROMizing feature used by KVM to reduce VM startup time and
minimize memory usage by building a prelinked set of Java classes directly into the VM. The
reference implementation produces a CVM prelinked with most of the core CDC classes and,
optionally, some the classes in the Foundation Profile.

Since CVM is a full virtual machine, the VM and the core libraries include many features that
are not available in the KVM, including the following:

Floating-point byte codes and data types

Native code execution using the Java Native Interface

Weak references

Reflection

Object serialization

e Developer-defined class loaders

e Java Virtual Machine Debugging Interface (JVMDI) support

The availability of JVMDI means that it is possible to connect a debugger to the CVM
without the use of the debug proxy agent required by the KVM. The CDC platform also
incorporates the full Java 2 security model and byte-code verification, which means that the
off-device preverification process used by KVM is unnecessary.

Despite the fact that the CVM has all the features of the J2SE VM as defined by the JVM
specification, it is nof the same as the J2SE Version 1.3 virtual machine. In particular, it does
not-have hotspot technology or-even-ajust-in-time (JIT)-compiler. CVM is strictly a byte-code
interpreter, albeit an optimized one.

| - 1,1.5.2 CDC Class Libraries

ool i ik wencianiii hoswidod .. b iatabiiietic b

e R e

Unlike CLDC, a class included in CDC is unchanged from its J2SE counterpart, unless it has
deprecated APIs. Because there is no legacy CDC application code to support, there is no
requirement for backward compatibility, and, therefore, the opportunity has been taken to
remove APIs that are deprecated in J2SE Version 1.3, whenever there is an alternative
available. In general, however, working with CDC or a CDC-based profile is much closer to

using a full J2SE Version 1.3 platform than CLDC,

The CDC speciﬁcation includes a minimal set of core Java classes that provide the common
functionality required by every CDC platform. According to the specification, the core
ibraries represent little more than the minimum needed to support a Java VM. They include

classes from the following packages:

java.io

java.lang
java.lang.ref
java.lang.reflect
java.math
java.net
java.security
java.security.cert
java.text

java.util
java.util jar
java.util.zip
javax.microedition.io

-......_,______.:-:' ::‘\-‘ \:(‘-
lagint, DOY

The following paragraphs briefly cover the differences between the CDC packages and their
J2SE counterparts.

The java.io package

Most of the J2SE classes in this package are included in CDC, with the exception of
some of the less commonly used Reader and Writer subclasses, as well as
LineNumberInputStream and StringBufferInputStream, both of which are
deprecated in J2SE.

The java.lang package
In this package, only the Compiler class and UnknownException have been omitted.

M;I-‘he java.lang.ref package

Complete.

The java.lang.reflect package
Complete.

The java.math package
This package contains only two classes in J2SE. The CDC version includes

Biglnteger but excludes BigDecimal.
[21]

The java.net package
‘CDC provides the classes necessary to support datagrams (i.e., the UDP protocol), but

it does not support sockets (i.e., TCP) or HTTP and therefore omits classes that relate

th) these two features. URL-based operations can be used, provided they do not rely on
TTP or sockets. This means, for example, that file and jar-based URLs are

allowed, but http URLs are not.

S e i et .o b d

The java.security package
Only those parts of the java.security package that deal with handling fine-grain

security for Java classes is included, together with minimal support for creating and
checking message digests.

The java.security.cert package

Contains only the Certificate class and two certificate-related exception classes.
This package is of limited use because it does not include any concrete certificate
implementations (such as X509Certificate).

The java.text package

The CDC java.text package provides support for locale-specific formatting, parsing

of numbers and dates, and formatting of error messages. Classes that support advanced
locale-sensitive collation and attributed character strings are omitted.

it ol b R i o 1 it et i

The java.util package

This useful package is almost complete in CDC. The only omissions are classes that
relate to event handling (such as Observer and EventObject) and timers. Unlike
CLDC, CDC includes both the JDK 1.1 and Java 2 collection frameworks.

The java.util.jar package

This package is complete, apart from the JarOutputStream class, which means that it
is possible to read but not create a JAR file. This distinction is possible because,
although the VM has to be able to load Java classes and other resources from a JAR
file, it never needs to write to one.

The java.util.zip package
This package contains the classes that are necessary for the VM to read from a
N compressed or uncompressed ZIP file, but it omits the classes that allow writing or
provide streams that handle compression and decompression of data for the benefit of
applications. Compressed ZIP files are supported by virtue of the inclusion of the
! Inflater class.

| The javax.microedition.io package
{ This package is provided for upward compatibility with applications written for
| CLDC. It contains the classes and interfaces that make up the Generic Connection
| Framework and includes support for datagrams. Interestingly, the StreamConnection
| and StreamConnectionNotifier classes, which are intended for support of TCPbased
: i sockets, are included, even though the java.net package excludes socket
i support, and a CDC implementation is not required to allow socket communication.
Furthermore, in the reference implementation, it is possible to connect using a GCF
socket URL. The HttpConnection class is, however, not included.

(22]

5.1.5.3 CDC Profiles

At the time of writing, CDC has only one profile, the Foundation Profile, for which a
reference implementation is available. Another, the RMI profile, has been specified, but an
implementation has not yet been released. Three others are still in the process of being
speciﬁed. This section provides an overview of the Foundation Profile and touches briefly on
the remaining profiles, which are currently of little practical use because there are no

implementations available.

The Foundation Profile

Most of the CDC profiles are based on the Foundation Profile, which adds to the minimal
facilities of the CDC core libraries in much the same way that MIDP extends CLDC. This
profile fills many of the gaps in the basic CDC class libraries by supplying most of the
omitted classes from the packages that CDC supports; it also adds many of the other J2SE
packages that are not included by CDC. The most important omissions from the Foundation .
Profile are the user interface classes, which are not required on all devices and which are
instead provided by the Personal Basis and Personal profiles that are layered on top of the
Foundation Profile.

The packages in the Foundation Profile include all the classes from their J2SE counterparts.
The following packages are provided:

java.io (but not LineNumberInputStream and StringBufferInputStream, which are
deprecated in J2SE)
java.lang

java.lang.ref
java.lang.reflect
java.math

java.net

java.security
Java.security.acl
java.security.cert
Jjava.security.interfaces
Java.security.spec
Java.text

java.util

Java.util jar

_java.util.zip

The Foundation Profile also supports all of the javax.microedition.io package, including
HTTP connections.

(23]

e RMI Profile

'fhe RMI profile adds a subset of the J2SE Remote Method Invocation facility on top of the
Foundation Profile. Since CDC devices are typically used in the role of the RMI client, only
: 'th‘l’v olient RMI functionality is included in this profile. At the time of writing, the RMI profile

is available only in the form of a specification. There is, as yet, no reference implementation.

2.1.6 KVM

In order to provide Java-level debugging facilities, hooks must be supplied by the Java VM so
that a debugger can perform tasks such as placing breakpoints, inspecting and modifying
objects, and arranging to be notified when a debugging-related event occurs within the VM.
The Java 2 platform includes an architecture, called the Java Platform Debugger Archicture
(IPDA), that defines the debugging features that must be provided by a VM and the way in
which they can be accessed by a debugger.

i m _______
doot deat | :
o) ¥

ow . b
el

VDI
{native fanguage nferfoce)
Fig 8: The Java 2 Platform Debugger Architecture
Source: J2ME in a nutshell (O’Reilly JAVA)

2.1.6.1 The JPDA

5% S e iy e e 5 e iumkwﬁm;‘,‘ sl s il b T_;.____ o S biido

In the JPDA, the debugger interacts with the Java VM using a well-defined protocol called the
Java Debug Wire Protocol JDWP). This protocol specifies messages that are passed from a
JDWP client to a JDWP server to request that operations be performed on the target VM,
corresponding to debugging commands issued by the user. It also defines events that can be
transmitted in the opposite direction to notify the debugger of state changes within the VM.

The architecture separates the debugger and the JVM from the details of the wire-level
protocol by inserting an insulating layer on each side of the JDWP; this layer takes care of
mapping the protocol messages to and from the programming interfaces required by the
debugger and provided by the VM. In order to make it possible to accomodate different VM or
flebugger implementations without requiring each of them to provide their own JDWP
implementation, two internal APIs are defined:

The Java Debug Interface (JDI)
The JDI is a Java-level interface that exposes the services of a JDWP client to a
debugger. Typically, the debugger is a GUI program written by a third party vendor,
but it could provide a command-line interface (such as that provided by the jdb
command in the SDK). Debuggers using this interface can be assured that they will

[24]

k —work with any JVM written to conform to the JPDA.

The Java Virtual Machine Debug Interface (JVMDI)

JYMDI is the interface exposed by the JVM itself to allow operations received by the
‘pr to be performed and to report VM state changes to the JDWP server. Unlike

DL, JVMDI is a native language interface because it requires low-level access to the

virtual machine.

el i 4 foe ey i e SN |

2.1.6.2 The KVM Implementation of the JPDA

The CLDC specification does not place any requirements for debugging support within the
VM, but a practical VM implementation needs to provide some kind of debugging capability.
The KVM has debugging support, but resource constraints make it impossible to fully
implement the server side of the JDWP protocol and the hooks within the KVM itself.
Instead, this functionality is divided between the VM and another process called the KVM

debug proxy (or KDP).

G o |,

L‘Ff@ﬂl':gg“ '_ti:f&nlfi.;;;. i = E |
o : “
{Java-loval inferface) T * : t:
owp m | 1
e Jdebugpoy |47

: S ol P

iy

Fig 9: The KVM implementation of the JPDA
Source: J2ME in a nutshell (O’Reilly JAVA)

The function of the debug proxy is to implement features of the JDWP that are too resource
! intensive

to be placed within the KVM process itself. Normally, the debug proxy is not run on

the same device as the KVM itself, so it does not require device resources. Instead, the debug
: ‘ proxy might be executed on a desktop system and communicate with the KVM using a
specially designed variant of JDWP called the KVM Debug Wire Protocol (KDWP), carried
. over a socket connection. The definition of the KDWP can be found in the KVM Debug Wire
” Protocol Specification, which is included with the CLDC reference implementation.

2.1.7 J2ME and Wireless Devices

a demand for applications that can easily run on those devices. Corporations along with the
consumers desire and wish of bringing about an expantion in mobile communications devices from

|
3 The sharp increase in use of mobile communications products such as cell phones has brought about
| voice communications to applications that are traditionally found on laptops and computers.
!

[25]

p v

|
i
:

The Wireless Application Protocol or the WAP forum has set out to create all together different
standards for wireless technology. The WAP forum created theWAP standard which describes
mobile communications device standards. TheWAP standard is basically nothing but an
enhancement of HTML and XML. The Wireless Markup Language specification is an element of
this standard. It comprises largely of HTML and XML and is used worldwide by developers all
across to create documents that can be displayed with the help of a microbrowser. A microbrows
operates on a mobile communications device and is a dimunitive web browser.Sophisticated
applications require the device to process information that are beyond the capabilities of the WAP
Speciﬁcation. This is important for the devices that have been designed for mobile communications
devices. J2ME is responsible for providing the standard that is required to fill this gap. For instance,
a sales representative wishing to check the list of

available flights and hotel accommodations, will first purchase an airline ticket, secondly he\she
will book the hotel as expected, which will be followed by sending the itinerary to a client, this
while being present in a taxi in traffic.

J2ME applications that are referred to as a MIDlet are capable of running on practically all types of
mobile communications device that successfully implement a JVM and MIDP. This fact greatly
aspires and convinces developers to invest more time and money in building these type of
applications.

All the applications that have light client continue to use WML and WMLScript. Developers intend
to turn to J2ME for applications that are heavy-client based and that require processing on the
mobile communications device.

2.1.8 J2ME Architecture

J2ME architecture has been designed as such so that it is capable of enableing an application to be
scaled based solely on the constraints of a small computing device. Instead of replacing the
operating system of a small computing device J2ME architecture is designed in layers that are
located above the native operating system, and are collectively referred to as the Connected Limited
Device Configuration (CLDC). The CLDC provides the run-time environment for small computing
devices. CLDC is installed on top of the operating system.

The J2ME architecture is composed of three software layers. Java Virtual Machine (JVM) is the
first configuration layer , that directly interacts with the native operating system. All the interactions
between the profile and the JVM are handled by the configuration layer. Profile layer which is the
second layer, consists of the minimum set of application programming interfaces (APIs) for the
small computing device. Mobile Information Device Profile (MIDP) is the third layer in the
architecture. The MIDP layer has access to CLDC libraries and MIDP libraries.It also contains Java
APIs for user network connections, persistence storage.

| OEM |

Fig 10: Layers of the J2ME architecture
Source: McGrawHill Osborne -Java J2ME The Complete Reference

(26]

3 2.1.9 Emulator: The J2ME Wireless Toolkit Emulator

The emulator command provides the execution environment and application management
software for the J2ME Wireless Toolkit. Its functionality and command-line interface are both
very similar to those of midp, but it supports the use of device skins together with a
configuration file, so different devices can be emulated without the need to modify any code.
Although the emulator can be used from the command line, it is most frequently accessed
indirectly via the KToolBar interface provided by the Wireless Toolkit.

2.1.9.1 Options

The operation of the emulator command is determined by the options supplied to it. There are
three different modes of operation:

« Displaying information using the -help, -version, and -Xquery options. Here, the
classname argument is not required, and the command exits after printing the required
information.

« Running a MIDlet from the local system or by loading from a network server, but
without installing it. This mode of operation uses the -classpath option together with a
class name or the -Xdescriptor option, which may or may not be accompanied by a
class name.

« Using the emulator's application management software to install, run, list, or delete
MIDIet suites. This mode of operation uses the -Xjam option.

2.2 Socket Programming

Sockets are the lowest level of network communication that most programmers encounter,
although real enthusiasts might choose to delve into the murky details of transport and
network layers -- and some even survive the experience! Because the socket API is so simple,
widely known, and universally available, it is often used as the basis for distributed
applications involving one or more clients talking to a single server, exchanging information
using a very basic application-level protocol. In this situation, the use of a higher-level
abstract such as RMI, CORBA, or one of the Java Enterprise products would not be justified.
All this notwithstanding, CLDC does not require the provision of a socket interface to the
network, and neither does MIDP. Part of the reason is that sockets are usually used in
connection with Internet protocols such as TCP/IP, but many mobile devices do not have a
direct connection to the Internet, and, therefore, the device's host software almost certainly
does not include a TCP/IP protocol stack. Making sockets part of MIDP would have required
manufacturers to add this software to their devices (which has an associated cost) or
necessitated its inclusion in the MIDP reference implementation, which is not economically
possible on many platforms because of the memory requirements.

At the present time, therefore, applications that use sockets work on some devices, such as
PDAs with modems, but not on others and thus cannot be considered portable. However,
because sockets are likely to be supported in the next version of MIDP, we'll take advantage
of the socket implementation in the CLDC 1.0 reference release to illustrate how sockets fit
into the GCF by showing a simple application that retrieves some data from a web server.

Wl bag in@ll‘?nfﬂjl-‘-'-]n:‘m B e araiitatic b Bl
T -

sl i

i
B sl i

R LR U e SR

" 72,1 Client Sockets

L The steps required to open a socket connection to a web server and read some data from it are
a5 follows:

1, Build the appropriate name string and invoke the Connector open() method.
2' Get an output stream and use it to send a request message to the server.

' 3, Open an input stream and read the response.

4. Close both streams and the socket.

The naming scheme for sockets uses the fixed string "socket://" followed by the server name
and port, separated by a colon. Here's how you might open a socket to a web server given the
server's name and a string containing its port number (usually 80) in variables called server

and port, respectively:
StreamConnection socket;

try {

String name = "socket://" + server + ":" + port;
socket = (StreamConnection)Connector.open(name,

Connector. READ_WRITE);
} catch (Exception ex) {
// Handle failure to connect here...

}
2.2.2 Server Sockets

The programming model for server sockets differs in several ways from that

of client sockets. First, the name that you give to the Connector open() method contains the
port that you want the server to listen on, but it does not specify the hostname. A server
implicitly listens on the host it is running on, so there is no need to give a hostname; the
protocol implementation uses this fact to distinguish a request to create a server socket from a
request for a client socket. To listen on port 80, for example, you would use the following
name:

socket://:80

The biggest difference with server sockets is that the Connector open() method doesn't
return a StreamConnection object that you can use to send and receive data. This is because
a server differs from a client in two important ways:

* When a server is started, it isn't connected to a client at all. Instead, it needs to register
a port to listen on and then wait for a client to connect to that port.

“In general, a server supports many clients, either one after another or in parallel. Therefore, it needs

several different sockets, one for each client that it communicates
with,

Chapter 3
Project Planning

. UML Diagrams

| ""..;‘T’he Unified Modeling Language (UML) is a language that specifies, visualizies,
4 constructs, and documcnis of software systems, for the purpose of business modeling and other

| jon-software systems. The best engineering practices that have seen success in the field

modeling of large and complex systems have been presented by the UML. The UML is
responsible for developing object oriented software as well as the software development
:i)focess. The UML makes use of the graphical notations to express and depict the design

and structure of various software projects.

The basic goals in the design of the UML are:

|
|

~ Goals of UML
l 1. Provide users with a ready-to-use, expressive visual modeling language so they
' can develop and exchange meaningful models.

Provide extensibility and specialization mechanisms to extend the core concepts.

Be independent of particular programming languages and development processes.

Provide a formal basis for understanding the modeling language.

Encourage the growth of the OO tools market.

S v R W N

Support higher-level development concepts such as collaborations,

- frameworks, patterns and components.

. Integrate best practices.

u

: Use case diagrams are important for visualizing, specifying, and documenting the behavior of an
clement.
o A diagram that depicts a sel of use cases by defining the actors involved and the
| 8 relationships that exist between them is called a Use Case diagram. ‘
| & |
E |5 » Use case diagrams commonly contain |
| |
- | . t
k- || — Use cases i
.? .' ! :A
1\ — Actors
¥ 1
E 3 — Dependency, generalization, and association relationships h
" Description of specific Use Case Diagram: \
o Actors are CLIENT and SERVER.
- o Use cases are Connect, Enter IP Address, Enter Port No., Screen Sharing, Mouse, Click
|
- , Keyboard, Send Message. 1
; '
o Dependency or Relationship is <<include>>. || ‘
&l 1 |
i B3 «package= E
gLt Cose |
5 3 O Enter IP Address 11 |
i _’,.-*""‘? |
© Connect j.?_’;,-include- [‘
3 . e, | Ofnter Port No. l |
_: i / T cincludes ’\ ! ‘
|
|8 © Screen Sharing l |
4 ———— i
1 el |
' P :“'!"-\‘ C::, ‘includ:» {
".: pe sincludea, Server l
' : \\\“ © Keyboard
i Cleint \) o ‘ ‘
- ¢ Send Message / \ I%
aR | I

Fig 11: Use Case Diagram

|
%
Bol ‘
|

. 312 Data Flow Diagram

Details

send Details

‘: : Server
‘. ; o R e
| Clien Connection Established

Authenticated

Request Forwarded

Request Screen Screen Share

- Receive ScreenShots Send ScreenShots

Mouse/Keyboajd

Receive Commands

Fig 12: Data Flow Diagram

Data flow diagrams provide a distinct and not vague representation of any business function that
exists. It involves an overall picture of the business and is followed by keenly analysing each
of the areas of interest that are functional. It easily exploits a method called top-down expansion

to carry out its analysis as it desires.

DFD is important to know to get the knowledge of :

* The functions that the system perform

* The interactions between these functions

* Transformations carried out by the system

* What inputs are transformed into what outputs?
* The kind of work the system is expected to do

* Its source of information

* Where does it deliver its results

Functions in the system are Connect, Screen Share, Mouse /Keyboard.

3.1.3. Functionality Decomposition Diagram

Functionality Decomposition Diagram presents a top-down representation of a function or even a
process.
These are also known as the structure charts.

System analysts use FDD’s for the purpose of modelling business functions and depict

(31]

'pr__ogf

e L e

aidtbatey i b s S b B bt s i . b il i kb S

e R ko £t
s

organization into lower-level processes. Those processes convert themselves into

‘.j:‘.their
am modules during the phase of application development.

Creating an FDD is very much similar to drawing an organizational chart — go from to top

to bottom-

)

Client

Mouse Message

4.1
Move
2

4.

Text Keyboard

Click

Fig 13:Functionality Decomposition Diagram

3.1.6. State Diagram

A diagram that is used in the field of computer science and related fields to describe the
behavior of systems is called a state diagram. In this type of diagram the system so described is
comprises of a finite number of states; sometimes, this is indeed the case, while at other times

this is an abstraction. Many forms of state diagrams exist, that differ slightly from each other and

have different semantics.

(3 Client App -

i :i‘-m 1.-; o o ki L Ltk
z
w
B,

i * e \E

,,,,,,,,,,,,,,,,,, = |

v e et E

e e] @ Connecting : = L S -
4 L " @Connected | il
2 L
2 e Sy
; : G Sending Data 1 1 i Receiving Data |
-4 ¢ .‘.
- 1 ™ P ;Ll.

N B . '
?? F ,{/ "‘
«i i Closing Connection ‘:
Al o i!‘"
-:f":;':;- @ :i‘
A | 2o :
Fig 14: State Diagram
3.1.7. Class Diagrams

The class diagram is the primary building block in object oriented modeling. It is used not only

i for the building a general conceptual model of the application, but also for the detailed modeling

- which involves translation of the models into somewhat of a programming code. The classes |
that are present in a class diagram represent both the main objects and interactions that exist in |
the application and the objects that have to be programmed. The class diagram represents these
' | classes in three parts:

1

A class with three sections.

e The name of the class is held in the upper part

o The attributes of the class is stored in the middle part |

« The'bottom part is responsible for providing the methods a particular class can take |

, [
4 In the system design of a system, a number of classes are identified and grouped together in a |
i 'i
F) . class diagram which helps to determine the static relations between those objects. With detailed .
|

modeling, the classes of the conceptual design are often split into a number of subclasses. I

1. Server
serverframe
g,_ Q ServerManager
' :g:; String password
il tiPort 3 boolean serverStarted
assword i fPwd
X 5 L & getPassword()
g initComponents() 48 setPassword()
 inititel) @ startl)
§ closel) @ stop()
] screen
[Keyboard int cliWidth
S El int cliHeight
execute{ String args) [El Rectangle screenSize
insertText(String text
§ insertText(String text) Sl]

e 8 executeCommand(String args) @ sendl 0)
calls
Fig 21: Server Class Diagram
3,1.7.2. Client
et [3M2PCHIDlet.fava
= El rormServer.java
=3 coolzan connected &Y
| 8 Canvaslmage cvimage Serverserver
E3 CanvasScreen cvScreer + & Cormmend cinConrrecl
| ConvasWait crWak ae D TextField tPasswore
| E DatanputStresm cataln 4 - . 2 lextrield ttAddress
S DatadutputSteam datahit Q TextField tPort
| @ conru.cli 1 A3 & commandAction(Cormmand z, Displayabled)
| @ disconnect() § connect()
& nilCompmers{] @ r-l!_ﬁ!l‘\ru'(ch'u!\‘tr)
@& =xecsteCommand; String command) i @ validateNatal \
i H venu.java o B a=38 8B
List lsKeyboard 1 calls
List sScreen E pisplayManager java
i i 3 TextBox thMessage
| canvasscreen java TextBox thKeyboardTe«t \ Display cisplay
e IS |G Cammand colDiscannect -y calls
& Command cmDo = @ pushDisplayzble(Displayatle d)
= W:M&ﬁ;:n & CommandAction(Cormmand c, Dis.. A} calls & popDisplayatie)
& Command cmBack & get¥eyboard() 3
e I
{# CommandActon(Cormand ¢, Displ.. il =}] g ¥
@ doloyStickKeysAction{int keyCede) extKeybuard.java Server.jeva
@B coyPracaed(irt keyCode)
5 Command cmBack Sting address b

B ceyReleased)
B MovaThread T

Cormmand cmSend

= .
£2 Commmandietionl C

(34]

dc Displapbled)

Fig 22: Client Class Diagram

] serverManagerSocket
VectorSocket connections
int port
e
extends & getPort()

@ addConnection(Sockets)
&} startSession()

calls
calls

E service

DataQutputStream dataOut

\\EE\ Boolean disconnected

{# executeCommand(String Com...
£# isDisconnected()

String description
&l String passvorc
&l intport

@ yetadiens()
& qetPassword()

uses

4

dl 32, Plan

Table 1

W Description Target Date

Task 1 Topic Finalization 27" July 2011

Task 2 Literature Survey 17" August 2011

Task3 Review of Design 30™ August 2011

Task 4 Learning RMI and Networking in Java 20" September 2011

Task 5 . Designing and Analyzing 10" October 2011

IE?_]_(_Q___ Implementing Desktop Sharing 20" November 2011
[Task7 | Creating GUI for Mobile 15" February 2012

Task 8 Implementation 25" March 2012

Task9 | Testing 5™ April 2012

Task 10 Deployment in J2ME Environment 1* May 2012

Mask 11 | Project Documentation 18" May 2012

3.3. Gantt Chart

Topic
finalizaion

Literature

,E‘S-'riil'ig
RMI &

networking

injava

Fig 15: Gantt Chart of Project Part 1

10-10

Fig 16: Gantt Chart of Project Part 2

(36]

The des

The

Chapter 4

Testing
4.1. The Goal of Testing

cription of testing as given by Miller : The goal of testing is to test the software systems

quality by systematically exercising and examining the software in carefully controlled

circumstances:
most important aspect of testing is “Performance Testing”. The reason for this is when

multiple users simultaneously use the application accessing the database at the same time at

quch frequent high rates it is crucial that performance should not deteriorate.

4.2. The Testing Spectrum

Testing 1s an integral part in every possible stage of the software, however the testing

ivolved at each level of software development is different in nature and objective from the

testing involved at another layer.

4.3. Unit Testing

Unit testing is done at the Jowest possible level. What id does is, it tests the basic unit of
software. The basic unit of a software is the smallest testable piece of software. Tt is usually called
unit, module, or component interchangeably.

4.4, Integration Testing

Integration Testing is performed when two of more thn two tested units are brought to gether
into a larger structure. This testing i8 performed on both the interfaces between the components

and the larger structure being constructed.

4.5, System Testing

System testing assures the end-to-end quality of the entire system. It is performed keepin in
mind the functional/requirement specification of the system. It also involves checking of

the Non-functional quality attributes, such as reliability, security, and maintainability.

4.6. Acceptance Testing

(37]

Acceptd

~aE

ik it ik bt i

tedsll Rl ss

Shasia i

Ovel‘ ffom t
of acceptance t
All the aforementioned techniques will be implemented by us.

Software
Configuration

Tesling

Test
Configuration

-~ 4.7. Performance Testing

Test

Results

performance test any application with n number of users.

Expecled
Results |

Evaluation

Error Rale
Data

esting is to give confidence that the system is working.

Predicted

nce testing is done when the entire system after its development phase is handed

he developers to the customers or users alike. Rather than finding errors the basic aim

For the purpose of performance tesing we use special tools that are available which enable us to

Reliability
Figure 21: Testing Information Flow
4.8. Test Cases
4.8.1. Unit Test Cases
Table 2
2 S No. Test Case Name Test Case Expected output | Inference
Description
L. Make Connection | Enter all the When all fields Passed
details on the are entered and |
connect page and | connect button is
ress connect ressed Menu
utton. age should
& appear.
2. Screen Share Click the screen Desktop screen Passed
option on the menu should appear on
e page. mobile.
3. Send Message Click the send option | Message should be Passed
on menu and type text | sent to the server.
and press send button.

We can fully access the static comj
it and hence we have accomplishe

4.8.2. Acceptance Testing

uter from anywhere using an internet connection and fully control
all the aforementioned requirements.

[38]

; Performance Testing

¢ are few performance barriers in our project on which we are still working .

Delay in Screen Transferin
Less accuracy in position o the mouse

(39]

| number on which the server is running and other details.

R R

L3
Hi b

The Client runs on the mobile device, it requests the user to enter IP address of the server, the port

Chapter 5
(it 18
Results and Conclusion i
erver runs on the Static IP PC, and waits for the clients. \ l?
o
. | |

Fig 23: Server Waiting for Clients

Fig 24: Client requesting for details
[40]

lieht now connects to the server and waits for the user to perform any action for it to execute.

® @Sun

Fig 25: Client connected and waiting for commands

‘When the Client chooses to access the screen of the server, the client requests the server to send the

{ow 5w “76:?"’". . |
7 eass 8w Qwxn i
|
|
|

* - A e e

SHIFT SPACE i
Ny

Fig 26: Server Screen shared

[41]

ceessing any Remote PC using Internet Connection. A 2-tier architecture is used comprising of

h terface, application server and the client. We have developed an application which has

ing advantage —

)

Faster, decentralized decision making.
Increased responsiveness to customers.
Increased sensitivity to market changes.
Lowered commuting costs/time for staff.

Increased productivity.

Kathy Sierra & Bert Bates, Head First Java, O’Reilly, 2005
e William Grosso, Java RMI, O’Reilly Media, 2001

e Dr. Yu Feng, Wireless Java Programming with J2ME, Sam’s Publishers, 2001

e Herbert Schidt, JAVA 2-The Compete Reference, McGraw Hill, 5th ed, 2002

e James Keogh, J2ZME-The Complete Reference, McGraw Hill,2003

e [Elliotte Rusty Harold, Java Network Programming, O’ Reilly Media, 3" Edition, 2004
o Kim Topley, J2ME in a Nutshell, O’Reilly, 2002

1 World Wide Web:

e http://www.tutorialspoint.com/java/java networking.htm

e http://www.roseindia.net/j2Zme/

e http://developers.sun.com/mobility/midp/articles/wtoolkit/

e http://docs.oracle.com/javase/6/docs/api/

e http://docs.oracle.com/javame/

Journal Article:

e Mr. S. Kulkarni , Miss S. Diwan Prof. N.K. Bansode, “Device Independent Mobile
Application Controller For Remote Administration Of A Server Over A GPRS Link
Using a J2ME Cellular Phone”, Department of Computer Engineering, Army Institute
of Technology, Dighi Hills, Pune, pp 6.

e Phillip Pressley,“Integrating new PC Remote Access, Remote Desktop Software and

Remote Access Software technologies into business”

e “J2ME Building Blocks for mobile Devices” White Paper by Sun Microsystems
java.sun.com/products/clde/wp/KVMwp.pdf

¢ Andre N. Klingsheim, Vebjorn Moen and Kjell J. Hole, “Challenges in securing

networked J2ME applications”, University of Bergen, pp. 30.

\ppendix A

rver
ﬁjzpc.server.gui Package

erverFrame.java

jm2pc.server.gui;

,PaCkage

mport java ,awt . *
java.awt. event =

java.io.FileInputStream;

java.io.FileNotFoundException;
java.io.FileOutputStream;
java.io.IOException;
java.util.Enumeration;
java.util.HashMap;

java.util.Properties;

javax.comm. *
import javax.swing.*
javax.swing.border.*;

import jm2pc.server.connection.ServerManager;
jm2pc.server.connection.internet.ServerManagerSocket;
jm2pc.server.ilSn.Messages;

jm2pc;server.log.Log;

public class gerverFrame extends JFrame {
public static final long serialVersionUID = 11;
public static final String PROPS_KEY . AUTHENTICATE = "authentlcate
public static final String PROPS_KEY . AUTHORIZE = "authorize"
e public static final String PROPS_KEY_ ENCRYPT = "encrypt"i ,
- public static final String PROPS_KEY_ BAUD = "pbaud rate"; !
ﬁ, public static final String PROPS_KEY BTYPE = "bluetooth type" N
2 public static final String PROPS_KEY COMM = "serial port"; H
: public static final String PROPS KEY_ PORT = "port"; 1l
T public static final. String PROPS KEY PASSWORD = "password“' P
: public static final String PROPS_KEY_ LANGUAGE = "language" i
public static final String PROPERTIES FILE = "jmZpc_server. propertles"' L

public static final String COMM_PROPERTIES_FILE =
"lib/comm/javax.comm. properties";

|

| private HashMap<String, CommPortIdentifier> mapComm;
|

| private JButton btStart;

|

! private JButton btStop;

‘%E private gLabel-1bPert:
[44]

private JLabel lbPassword;
private JPanel panelControl; |
private Jpanel panelButtons; it
private JrPanel panelCptions; [
private JPanel panelOptionsType; | \
private JPasswordField pfPassword; ‘
private JScrollPane sclog;

private LogArea talog;

private JTextField tfPort;

private JComboBox cbCommPort;
private JComboBox cbBaudrate;
private JLabel 1bBps;

private JCheckBox chkAuthenticate;
private JCheckBox chkAuthorize;
private JCheckBox chkEncrypt;
private LogoWindow logoWindow;
private JTexthArea taCredits;
private ServerManager gerServer;
private Log log;

private Properties props;

private String PortCommDefault;

public ServerFrame () {
super ("JM2PC Server");
props = new Properties();
PortCommDefault = null;

initComponents () ;
pack () ;
}
private void initComponents () {
new JPanel (new GridLayout (2, A e

Il

panelControl
panelOptions = new JPanel {};
panelButtons = new JPanel () ;
panelOptionsType = new JPanel () ; L

btStart = new JButton(Messages.getMessage("start")); 1
thtart.setToolTipText(Messages.getMessage("helpStart")); il
btStart.addActionListener (new ActionListener () { 1
public void actionPerformed(ActionEvent event) { il
initiate(); |

B f

btStop = new JButton(Messages.getMessage("stop”));
thtop.setToolTipText(Messages.getMessage("helpStop“)); w
btStop.addActionListener (new ActionListener () {

public void actionbPerformed (ActionEvent event)

stop () !

})i

1bPort = new JLabel();
tfPort = new JTextField();
1bPassword = new JLabel();

[45]

pfPassword = new JPasswordField ()’
1bBps = new JLabel ("Bps:")7

cbCommPort = new JComdeox();
chommPort.setToolTipText(Messages.getMessage("helpCommPort"));
cbBaudrate = new JComboBox () i

populateBoundRate();
chaudrate.setToolTipText(Messages.getMessage("helpos"));
chkAuthenticate = new JCheckBox("Authenticate");
chkhAuthenticate

,setToolTipText(Messages.getMessage{"helpAuthenticate"));
chkAuthorize = new JCheckBox ("Authorize");
chkAuthorize.setToolTipText(MeSSages.getMessage("helpAuthorize"));

chkEncrypt = new JCheckBox ("Encrypt")
cthncrypt.setToolTipText(Messages.getMessage("helpEncrypt")};
logoWindow = new LogoWindow(this);

Font font = new Font ("Monospaced", Font.BOLD, 12);:

talog = new LogArea (font, logoWindow) ;

new JScrollPane (talog)

1

scLog

taCredits = new JTextArea(l, LogArea.COLS);
taCredits.setBacquound(Color.LIGHT_GRAY);
taCredits.setForeground(Color.BLACK);
taCredits.setFont(font);

taCredits

_setText ("Remote PC Administration Suite"):
taCredits.setEditable(false);

thtop.setEnabled(false);

panelButtons.add(thtart);'

panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));
panelButtons.add(thtop);

o leort.setText(Messages.getMessage("port") SRR
panelOptionsType.add(leort);

tfPort.setColumns (4)

tfPort.setText("8888");
tfPort.setToolTipText(Messages.getMessage("helpPort"));
panelOptionsType.add(tfPort);

panelOptionsType.add(new JSeparator ())7
panelOptions.add(panelOptionsType);

panelOptions.add(new JSeparator());
leassword.setText(Messages.getMessage("password") Al
panelOptions.add(leassword);

prassword.setColumns(?);
prassword.setToolTipText(Messages.getMessage("helpPassword"));
panelOptions.add(prassword);

panelButtons.add(new JSeparator{JSeparator.HORIZONTAL));
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));

1=

£ 4 g
L p—————

-y

panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));

(46]

AN

1 -i’

panelButtOnS.add(new JSeparator(JSeparator.HORIZONTAL));
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL));
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL)); [
panelButtons.add(new JSeparator(JSeparator.HORIZONTAL)); il
panelOptions.setBorder(new BevelBorder(BevelBorder.LOWERED)); i l
panelControl.add(panelButtons); il ;
panelControl.add(panelOptiqns); ;ﬂ.|
getContentPane().add(panelControl, BorderLayout.NORTH) ; A1
getContentPane().add(scLog, BorderLayout .CENTER) ; I\l
getContentPane().add(taCredits, BorderLayout .SOUTH) ; (it
pack(); ‘
setLocationRelativeTo(null); I
setResizable(false);
setDefaultCloseOperation(WindowConstants.DO_NOTHING_QN_CLOSE); {111
WindowListener windowListener = new WindowAdapter () { (il

public void windowClosing(WindowEvent e) | _
close(); it

} ih

public void windowIconified(WindowEvent arg0) |
hides ()

Yi

addWindowListener(windowListener);

}

protected void setPassword(String password) {
prassword.setText(Password);

public void initiate()

String Password = new String(prassword.getPassword()};
S (Password.length() ==)i
JOptionPane.showMessageDialog(this, Messages
.getMessage("errorNoPaséword"), Messages
.getMessage("error”), JOptionPane.ERROR_MESSAGE);
prassword.requestFocus(); '
return;

try {
gerServer—= initiateSocket ()i

gerServer.setPassword(Password);

gerServer.start{); M
- thtart.setEnabled(false);
k. 3 thtop.setEnabled(true);
Rl setEditFields (false);

é. ; logoWindow.setServerStart(true);

B |18 } catch (Exception e) { il
StringBuffer sbMsg = new StringBuffer (Messages
s - .getMessage("errorStartServer")

[47]

4. e N NER) §
gEping mag = e.getMessage();
System.out.println(e.toString());
if (msg !'= pull)
sbMsq.append (msg) i
taLog.logError(stsq.toString());

private gerverManager initiateSocket () |
int Port;
ery-{
Port = qetPort();
} catch (NumberFormatException e) |
JOptionPane.showMessageDialog(this, Messages
.getMessage("errorPortNumber"), Messages
.getMessage("error"), JOptionPane.ERROR#MESSAGE);

tfPort.requestFocus();
return null;
serverManagerSocket gerServerSocket;

gerServerSocket = new ServerManagerSocket(taLog);

gerServerSocket.setPort(Port);
return gerServerSocket;

}

public int getPort () throws NumberFormatException {
int Port = Integer.parselnt(tfPort.getText());

if (Port < 0 || Port > 655395)
throw new NumberFormatException();

return Port;

private void setEditFields(boolean enabled) {
tfPort.SetEnabled(enabled);

prassword.setEnabled(enabled);
chaudrate.setEnabled(enabled);
CbCommPort.setEnabled(enabled);

}

public void stop()

String[] Options = { Messages.getMeSSage(“yes"),
Messages.getMessage ("no") 1}
i (JOptionPane.showOptionDialog(this, Messages
.getMessage ("stopServerConfirm"), Messages
.getMessage ("confirm"), JOptionPane. YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE, null, options, Options(1])
= JOptionPane.YESQOPTION) { 3

tey
gerServer.stopﬁ);
thtop.setEnabled(false);
thtart.setEnabled(true);
setEditFields (true);
logoWindow.setServerStart(false);
if (log != null) {
leg.close();
taLog.setLogFile(null);
}
} catch (Exception e) |
taLog.logError(Messages.getMessaget”errorStopServer”)
+ " \n\t" + e.getMessage());

}
protected void hides () {

logoWindow.setVisible(true);
this.setVisible (true);

}
public void close() {

Stringl(] Optidns = { Messages.getMessage("yes“),
Messages.getMessage("no“) Y

1=f (JOptionPane.showOptionDialog(this, Messages
.getMessage("exitConfirm"),

Messages.getMessage(”confirm"),

JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE,

null,
Options, optiions[l]l) == JOptionPane.YES_OPTION) {
if (leg != null) {
log.logSucess (new Java.ubll.Date()
i} Messages.getMessage("exitLog“));

m. Ll

: lag.elosée ()}

}
: 2y A
//saveProperties();
} catch (Exception e) {
e.printStackTrace();
} finally {
System.exit(O);

[49]

protected LogoWindow getLogoWindow () f{
return logoWindow;

}

public static void main(String args(]) {
gerverFrame frame = new ServerFrame () ;
frame.setPreferredSize (new Dimension (600, 600));
frame.pack();
frame.setVisible (true);

port java.io.*;
~ import java.net.*;
import java.util.Date;

port jm2pc.server.connection.ClientInfo;
port jm2pc.server.connection.SessionManager;
port jm2pc.server.il8n.Messages;
port ijpc.server.log.Loggable;

import jm2pc.server.service.Service;

nport jm2pc.server.utils.DateFormat; I“

|
ublic class SessionManagerSocket extends SessionManager { - w

private Loggable log; i
 private Socket socket; _
- private BufferedReader inReader; ;

private InputStream 1n7 L
private CutputStream ok

private ClientInfo clientInfo;
private int clientNumber; 3
private Service service;

‘public SessionManagerSocket (Socket socket, Loggable log, int clientNumber, 1
ing password) { e i
super (password) ; : !

this.socket = socket; W
this.log = log; ‘
this.clientNumber = clientNumber;

public void run() {

String dscClient = " Socket Client ";
[50]

! Messages.

inReader.

Messages.

Messages.

= }

Messages

}

try |

Messages.
Messages.

ifl =
inReader =

new BufferedReader

socket.getlnputstream();

out = socket.getOutputStream();

setDataln(new DataInputStream(in));
setDataOut (new DataOutputStream(out));

log.logSucess(sb.toString());

if(login(})

log.logSucess

getMessage

{

Messages.getMessage("client")
("authenticationOK"));

+

"

clientInfoe-= receiveClientInfo();
sendServerInfol();

sbh =

new StringBuffer (Messa

sb.append(clientNumber);

sb.append ("

()4

.getMessage("client") +

(DateFOrmqt.format(new Date()) + "
_ n 4 clientNMumber + " -= " +

sb.append(clientInfo.getPlataform());

sb.append ("]

service = new Service (lod,

log.logSucess
i AU Messaqes.getMessage(“ready"));

=) g

String command;

while
readLine ())

}
} else {

log.logError

1=-null)

service.executeCommand(command);

{

getMessage("client“) +
getMessage("accessDenied"));

}

catch{SocketT
log.logErrox(DateFor
getMessage(“closeConnection")
getMessage("timeoutMessage
catch (SocketException socC
log.logError(clientNumber +
.getMessage

mat. format (new Date(})) +
m +

n __ " 4 glientNumber + " --

dscClient = sb.toString();

+ n FINES Py
"))
ketException) {
L1 +

o

(”socketDisconnect“));

} catch (IOException e) |

log.logError(clientNumber +
+ e.toStringl());

finally |

(51]

dscClient,

(DateFormat.format(new Date()i) + "

(!(service.isDisconnected()) && (

(DateFormat.format(new Date()) +

clientiInfo,
->
command =
"o
" +

imeoutExdeption timeoutException) {

m = "

(new InputStreamReader(in));

stringBuffer sb = new stringBuffer ((Messages
"clientNumber o thi= socket.getInetAddress().getHostAddress()));
sb.append ('\n')/
sb.append(DateFormat.format(new Date()) + " -> " +
: Messages.getMessage("client") 4 " —— " 4 clientNumber + " e M g
3 Messages.getMessage(”connected“});

L

" 4 dsecClient

ges.getMessage(“client"} +

+

m”

out)

+ dscClient +

W Messages.getMessage("error")

"

")

+

"

n

+

log.logSucess(DateFormat.format(new e O e e dscClient + " "
eésages.getMessage(“closeConnection"));
try {
socket.close ()
} catch (IOException ice) { }

}

log.logError(clientNumber o Messages.getMessage(”leaving") + 4

' 2pc.server.service Package [

yice.java

import java.awt.Image; :
import java.io.*;
import java.util.ArrayList; g
import java.util.Date; \ il
import java.util.Hashtable; il

import com.jm2pc.Command;

import jm2pc.server.connection.ClientInfo;
import jm2pc.server.ian.Messages;

import jm2pc.server.log.Loggable;

import jm2pc.server.utils.DateFormat;

import jm2pc.utils.Constants;
public class Service {
private Loggable log;
private boolean disconnected;
private String dscClient;

private Hashtable<String, Command> commands ;
private Hashtable<String, Command> plugins;

private DataOutputStream datalOut;
private ClientInfo clientelnfo;

private DataFormat dataFormat; il

; public Service (Loggable log, String dscClient, ClientInfo clientInfo,
ﬁ.OutputStream out) {

this.log = log; I
this.dscClient = dscClient; '

disconnected = false; z Il

|
dataOQut = new DataOutputStream(out);
this.clienteInfo = clientInfo; !

commands = new.Hashtable<String, Command> () ;

152]

plugins = new Hashtable<String, command> () i

dataFormat = new DataFormat(ClientInfo, out) ;
control control = Control.getInstance();

addCommand (new Mouse (log, dscClient, control));

addCommand (new Message (lod, dscClient)) ;

addCommand (new Keyboard{log, dscClient, control)):

addCommand (new Screen (log, dscClient, control, dataFormat, out));

public void addCommand(Command cmd) |
commands.put(cmd.getName(), cmd)

)

public boolean isDisconnected() {
return disconnected;

}

public void sendString (String str) throws TOException {
dataFormat.formatAndSend(str);

public void sendImage (Image im) { \

Image scaledImg = im.getScaledInstance(clienteInfo.getWidth(),

dientelnfo.getﬁeight(), Imaqe.SCALE)AREAﬁAVERAGING);

int -tam.= datanrmat.formatAndSend(scaledImg);
log.logSucess(DateFormat.format(new bataly " am2 - dofdgeClient =
B Messages.getMessage{"capturingScreen") e Bamek ¢ bytes") i

} : il

public void executeCommand(String command) {

if (command == null || command.equals(Constants.CMDfSAIR)} {
disconnected = true;

}

else |
try |
iR 1.5 command.indexof(” L
String conmandName = command.substrinq(O, 1) 7
StrEing-args. = command.substring(i + 1, command.length())/

Command—cme

cmd = commands.get(commandName);

if(cnd != nutl) 1
cmd.execute(args);

} else {
cnd = plugins.get(commandName);

Object returnType = cmd. execute (args)/
if (returnType == null) {
dataOut.writeInt(Constants.Plugin_TP_VOID);

(53]

= '|

else [
if{returnType instanceof Image) {

dataOut.writeInt(Constants.PluginﬁTP_IMAGE);
Image im = {(Image) returnType;
sendImage {im;} ;

} else if(returnType instanceof String) {

dataOut.writeInt(Constants.Plugin_TP)TEXTO);
string str = (String) returnType;

sendString(str);
1 else |
dataOut.writeInt(Constants.Pluqin_TP_VOID);
}
}
dataQut.flush{);

log.logSucess(DateFormat.format(new Date()) + " ->» " +
dscClient + " -- Plug-In -- " + command) ;

}

} catch(Exception e) {
log.logError(DateFormat.format(new Date()) + " => SERVER :
v 4+ dscClient + ™ " + Messages.getMessége("error") L v, " 4 e toString{) + "\t"
+ e.getMessage ()}
}

Screen.java

package jm2pc.server.service;

import java.awt.Image;

import java.awt.image.BufferedImage;
import java.awt.Toolkit;

import java.awt.Rectangle;

import java.io.OutputStream;

import java.util.Date;

import com.jm2pc.Command;

imporL jm2pc.server.il8n.Messages;
import jm2pc.server.log.Loggable;
import jm2pc.server.utils.DateFormat;
import jm2pc.utils.Constants;

public ¢lass Screen implements Command {

private control control;
private Rectangle screenSize;

private int cliWidth;
'private int ecliHeight;

private Loggable log;
private string dscClient;

private DataFormat dataFormat;

public Screen (Loggable log, String dscClient, Control control, DataFormat
JFormat, OQutputStream out) {

this.log = log;

this.dscClient = dscClient;

this.control = control;

this.dataFormat = dataFormat;

] screenSize = new
'tangle(Toolkit.getDefaultToolkit().getScreenSize());

cliwidth = dataFormat.getClienteWidth();
cliHeight = dataFormat.getClienteHeight();

}

public Object execute (String args) throws Exception {
String(] param = args.split(" "1
String type = param[0] ;

int tam = 0;

if(type.equals(Constants.CMD_TELA_TP_INT)) {
tam = printScreen{);
} else if(type.equals(Constants.CMD_TELAﬁTP_XY)) {
LOhase Integer.parseInt(param[l]);
LR Yeis Integer.parseInt(param[Z]);
int. zoom = Integer.parselnt(param[B});

tam = printScreen(x, y, zoom);

log.logSucess(DateFormat.format(new pate{)) + " == " 4 dscClient + "
+ Messages.getMessage("capturingScreen"} s e e A bytes"):
return null;

}

_public String getName () {
return Constants.CMD_TELA;
}

public String getVersion() {
return "OEM";

}
public int printScreen() {

Image img = control.createScreenCapture(screensize);

[55]

e Image scaledImg = img.getScaledInstance(CliWidth, cliHeight,

o SCALE_AREA_AVERAGING)

nad

return dataFormat.formatAndSénd(scaledImg);

public int printScreen(int %, int y, int zoom) {

Image img = control.createScreenCapture(new Rectangle (%, Y
JiWidth*zoom, cliHeight*zoom));
Image scaledImg = img.qetScaledInstance(cliWidth, cliHeight,

mﬁferedlmage.SCALE_AREA#AVERAGING);

return datanrmat.formatAndSend(scaledImg);

(56]

.DatalnputStream;
java.io.DataOutputStream;
java.io.IOException;
java.io.InputStream;
java.io.OutputStream;

javax.microedition.io.Connector;
javax.microedition.io.StreamConnection;
javax.microedition.lcdui.AlertType;
javax.microedition.lcdui.Canvas;
javax.microedition.lcdui.Display;
javax.microedition.lcdui.Displayable;
javax.microedition.lcdui.Image;
javax.microedition.lcdui.List;
javax.microedition.midlet.MIDlet;

ijpc.client.config.Confiq;
jm2pc.client.config.ConfigRepository;
jm2pc.client.devices.out.CanvasScreen;
jm2pc.client.devices.out.ImageCapture;
jm2pc.client.devices.out.Zoom;
jm2pc.client.ian.MyResourceBundle;
jm2pc.client.servers.ListServers;
jmzpc.client.servers.Server;
jm2pc.client.utils.Canvaslmage;
jm2pc.client.utils.CanvasAbout;
jm2pc.client.utils.CanvasWait;
jm2pc.client.utils.DisplayManager;
jm2pc.utils.Constants;

class JMZPCMIDlet extends MIDlet ({

private Display display;
private DisplayManager displayManager;

private CanvasWait cvWait;
private CanvasScreen cvScreen;

private List IsServers;
private Menu 1sCommands ;

private CanvasImage cvimage;
private Zoom zoomImg;

private int serverScreenWidth;
private int serverScreenleight;

private gt reamConnection connection;
private InputStream T

(57]

private OutputStream out;
private DataInputStream dataln;
private DataOutputStream dataOut;

private ImageCapture imCapture;
private int screenX;
private int screenY;
private long totalBytes:
private poolean cancelled;
private poolean alertOk;
private boolean connected;
private string lastCommand;
public MyResourceBundle messadges;
public JM2PCMIDlet () |

messages = New MyResourceBundle();

messages.loadMessages(};

cancelled = false;
alertOk = false;

zoomlImg = new zZoom() ;

e

display = Display.getDisplay(this);

|

initCompenents () ;
totalBytes = 0;
connected = falsej
}
public void initComponents()
cviWlait = new canvasWait (this);

lsServers = new ListServers(this);
1sCommands = NeW Menu (this)

imCapture = NewW ImageCapture(this);

cvScreen = NewW CanvasScreen(this);

cvIimage = new canvasImage (this);

displayManager = naw DﬁsplayManager(display, 1sServers);
}

public synchronized void connect (final Server server) {
display.setCurrent{cvWait);

cancelled = false;

class ConnectThread extends Thread {

(58]

public void w0l 1) ER |

try |
String protocol — "gocket":
1f (server.getType() == Server.TYPEﬂBTSPP) {
protocol = "btspp"i
} else pisE (server.getType() == Server.TYPEHSSL)
protocol = "ssl";

gtringBuffer sh = new StringBuffer(protocol);
sb.append("://")i
sb.append(server.getAddress());
sb.append(":");

sb.append(server.getPort());

connected = false;

connection = (StreamConnection) Connector.open(sb
.toString (), Connector.READ_WRITE,

|

true) i

1=f (cancelled) {
oloseConnection();
cancelled = false;

return;

} |
\

in = connection.openlnputstream(); \

out = connection.openOutputStream();

dataln = new DataInputStream(in);
dataOut = new DataOutputStream(out); \

if (canoelled) {
closeConnection();
cancelled = false;
return;

)

dataOut.writeUTF(server.getPaSSWOrd());

dataOut.flush(); \

boolean authenticated = dataIn.readBoolean(); '

1-f (!authenticated} { -\

throw new Exception(messages
.getMessage("invalidPassword")); !\

}

ConfigRepository repCfg = new ConfigRepository(); ﬂ
config cfg; \

1£ (repCfg != null) \
cfg repCfg.load();

else '
cfg = new Config () \

alertOk = cfg.isAlertOk();

gstring platform = System
.getProperty("microedition.platform“};

if (platform == null || platform.length() == 0)
platform = “JZME—JMZPC“;

1 (59]

1f (cancelled) {
closeConnection();
cancelled = false:
‘return;

}

dataOut.writeInt{cchreen.getWidth());
dataOut.writeInt(cchreen.getHeight());
dataOut.writeUTF(platform);
dataOut.writeBoolean(cfg.istegImageS()):
dataOut;writeBoolean(cfg.isReceivePlugins{));
dataOut.writeInt(cfg.getMaxBytesDownload());
dataOut.writeInt(Cfg.getBitsColor());
dataout.flush();

serverScreenWidth = dataIn.readInt();
serverScreenHeight - dataIn.readInt():

totalBytes += 50;

66 {cancelled) {
closeConnection();
cancelled = false;
return;

}
connected = true;

display.setCurrent(lsCommands);

} catch (Exception a) |

e.printStackTrace();

if (!cancelled)

{
gtringBuffer sb = new gtringBuffer (messages

.getMessage("errorConnect"));
sb.append (' LY
sblappend(e.getMessage());
showAlert(sb.toString(), AlertType.ERROR,
true,
1sServers);

} else {
AlertType.ERROR.playSound(display);

}

closeConnection();

} finally {

ey
System.gc();
Thread.sleep(ZOO);

} catch (InterruptedException B

}

}

Thread t = new ConnectThread();
t.setPriority(Thread.MAXﬁPRIORITY);
t.start ()7

[60]

public void startApp() {
Displayable nextDisplayable;
try |
if (connected) {
nextDisplayable = lsCommands;
display.setCurrent (new CanvasAbout (this,

_neXtDisplayable));

} else {
nextDisplayable = lsServers;
display.setCurrent (new CanvasAbout (this,
= 'nextDisplayable));
}
Thread.sleep(2100);
display.setCurrent(nextDisplayable);

} catch (Exception ey

J e.printStackTrace();
k: }

}

public void pauseApp () {

}

public void destroyhpp (boolean unconditional) {
if (!unconditional) {
disconnect ()

}

notifyDestroyed();
}

public void sendData (byte[] data) throws IOException {

oF (iRt miT< data.length; i++)
out.write(datal[i]);

otttlush ()

totalBytes += data.length;
}

public void disconnect () {

connected = false;
displayManager.home () ;

try {
System.gc ()
Thread.sleep(200);

— } catch (InterruptedException e) {

}

class DisconnectRun implements Runnable {
public void A
{
sendData ("SAIR\n".getBytes());
} catch (IOException ioce) {

} finmally {
closeConnection();

(61]

Thread t = new Thread(new DisconnectRun())/
t.start (] ;

}

j private boolean hasResponse (String command) {

int 3 = command. indexOf (" ")
String c;
VB (] ==-=1)
c = command;
else
c = command.substring(0, 9l B

Lt (c.equals(Constants.CMDfTELA))
return true;
return false;

}

public void executeCommand (final String command) {
lastCommand = command;
‘final boolean hasResponse = hasResponse(command);

class RegquestRun implements Runnable {
public void run() {
try
sendData(command.getBytes());
if (alertOk) {

AlertType.INFO.playSound(display);
else {

showAlert(messages.getMessage("successCmdMessage"),
AlertType. INFO, false,
Aulis)-2
}
}
}ogateh (IOException &)
StringBuffer sb = new StringBuffer (messages
,getMessage("error"));

sb.append(": [");

sb.append(e.getMessage()};

sb.append("] "y

sb.append(messages.getMessage("connectAgain"));

showAlert(sb.toString(), AlertType.ERROR, true,
1sCommands) ;

}

class ResponseRun implements Runnable {
public void run() {

ih gl rea command. indexOf (" ")

String type = command.substring (i + 1, command. length ()

i = type.indexOf (" ")i

[62]

i (display.getCurrent() instanceof Canvas)

if (i 1= -1}
. = type = type.substring(O, 1)is

if (type.equals(Constants.CMD_TELA_TP_INT)) {
imCapture.createImaquapture(D, true);

}

}

Thread reqThread = new Thread (new RequestRun{));
rethread.setPriority(Thread.NORMﬁPRIORITY);
rethread.start();

1£ (hasResponse) {

Thread resThread = New Thread (new ResponseRun());
resThread.setPriority(Thread.NORMfPRIORITY);
resThread.start();

}

public void sendCommand (final String command, final gtring param) {
gtringBuffer sb = new StringBuffer(command);
sb.append(’ vy:
sb.append(param);
sb.append ('\n');
executeCommand(sb.toString());

public pDisplayManager qetDisplayManager() {
return displayManager;
}

public Zcom getImageZoom() {
return zoomlmg;

}

public void setImageZoom (int zoom) {
zoomImq.setZoomImg(zoom);

}

public void set8creenXY (int %, int y) {

screeni = X;
screenyY 4

i

int width = cchreen.getWidth();
int height = cchreen.getHeight();

int zoom = zoomlmg.getZoomImg();
- int coverageX = X + (width * ZOOMm) ;
int coveragei = ¥ —theight—* zoom) ;
if (x < 0)
screenX = 0;
H else if (coveraqex > serverScreenWidth} {
screenf = serverScreenWidth - (width * zoom) ;
}
if (y < 0)
screenY = 0;

else 1if (coverageY > serverScreenHeiqht) {

(63]

screenY - serverScreenHeight - (height * zoom);

public int getScreenX() {
return screenx;

}

public int getScreenY () {
return screeny;

}

public void showScreen(Image im;dntotype) o
fE - (im l=—null)=i
cvScreen.setImage (im);
cvScreen.setType (type)

display.setCurrent(cchreen);
} else {
showAlert(messages.getMessage("errorDownload"), null,; true;
1sCommands) ;

}

public void showImage (Image im) {
if (im !'= null) { ;
cvImage.updatelmage (im) ;
displayManager.pushDisplayable(chmage);
} else {
showAlert(messages.getMessage("errorDownload"), null, true,
1sCommands) ;
1
!

public veid showAlert (String msg, AlertType type, boolean modal,
Displayable displayable) {
displayManager.showAlert (msg, type, modal, displayable);
}

public int getServerScreenHeight () {
return serverScreenHeight;

}

public int getServerScreenWidth() {
return serverScreenWidth;

}

public void closeConnection() {

cancelled = true;

connected—=—false;
try={
if (in != null)
in.close();
if ‘(out != null

)

)
out.close();
} catch (IOException e) {

} finally {
tryv.o{

if (connection != null)

[64]

j

connection.close();
} catch (IOException e) |
}

public canvasWait getCanvasWait() {
return cvWait;

}

public InputStrean getIn() {
return in;

}

public outputStrean getout () {
return out;

}

public pisplayable getMenu() {
return 1 sCommands;

}

public String getLastCommand() {
return 1astCommand;

}

}

Menu.java
package ijpc.client;

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.TextBox;

import jm2pc.client.devices.in.TextKeyboard;

import jm2pc.client.utils.Canvasﬂbout;

import jm2pc.client.utils.Images;

import ijpc.utils.Constants;

public class Menu extends List implements CommandListener

private JM2PCMIDlet midlet:

private TextBox tbMessagei
private TextBoX tbkeyboardText;

private LSt 1sKeyboard;
private L,ist lsScreen;

private Command cmSend;
private Command cmBack;

private Command cnbDisconnect;

public static final int ABOUT = 0;

public static final int MSG = 1;
[65]

pu
pu

pU

Image.cr

Image.cr

Command.

1)

pu

Constant

-
\
|

plic-static-final—int-KEY—=-2;
plic static final int SCREEN = 33

blic Menu (JM2BCMIDlet midlet) |
Super(midlet.messages.getMessage("menu"): List.IMPLICIT)
this.midlet = midlet;

append(midlet.messages.getMessage{"about“), Image.createlmage(lmages
.createlconSobre()));
append(midlet.messages.getMessage("message“),
eateImage (Images .
.createIconMsg()));
append(midlet.messages.getMessage("keyboard"), Image
.createImage(Images.CreateIconTeclado()));
append(midlet.messages.getMessage("screen"),
eateImage (Images
.createIconTela()));
cmDisconnect = new Command(midlet.messages.getMessage("disconnect"),
Command.EXIT, 1)/
addCommand (cmDisconnect);
setCommandListener(this);

cmBack new Command(midlet.messages.getMessage("back"),
BACK,
1)

new Command(midlet.messages.getMessage("send"), Command. 0K,

cmSend

tbMessage = new TextBox(midlet.messages.getMessage(“message"), null,
800, 0); .
tbkeyboardText= new TextKeyboard(midlet);

thessage.addCommand(cmBack);
thessage.addCommand(cmSend);
thessaqe.setCommandListener(this);

blic void commandAction(Command c, Displayable d)--
if (c == List.SELECT_COMMAND) {
switch (getSelectedIndex()) {
case ABOUT:

midlet.getDisplayManager().pushDisplayable(
new CanvasAbout (midlet, this)):
break;
case MSG:
midlet.getDisplayManager().pushDisplayable{thessage);
break;
case KEY:

midlet.getDisplayManager().pushDisplayable(tbkeyboardText);
break;

case SCREEN:
midlet.sendCommand(Constants.CMD_TELA,
5.CMD TELA_TP_INT);
break;
)
} else if (c == cmDisconnect) {
midlet.disconnect () ;
b.elderrbe{ch== cmBack) |
midlet.getDisplayManager().popDisplayable();
} else if (c == cmSend) |

[66]

-—---llllII-lllllllllllllIlIIIIIIIII|llllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIII

if (d == tbMessage) {
midlet.sendCommand(“MSG",

thessage.getStrinq().replace(-\n|,
SREE
}

}

public Displayable getTeclado () {
return lsKeyboard;

}

)
4:2.2.2 jm2pc.client.utils Package

DisplayManager.java
package ijpc.client.utils;

import java.util.Stack;
import javax.microedition.lcdui.*;

public class DisplayManager extends Stack

{

private pDisplay display;
private Displayable displayableMain;

private static finalant ALERT DEFAULT_TIME = 2000;

public DisplayManager(Display display, Displayable displayableMain)
{

this.display = display:

this.displayableMain = displayableMain;
}

public void pushDisplayable(Displayable d, boolean forcarEmpilhamento)

{

if(forcarEmpilhamento)

{
push(display.getCurrent());

}
display.setCurrent(d);

}

public void pushDisplayable(Displayable d)
{

if(!(display.getCurrent() instanceof Canvas))

f
L

push(display.getCurrent()};
}

display.setCurrent{d);
}

public void home ()

while(elementCount I)
pop ()i

display.setCurrent(displayableMain);

}

public void popDbisplayable ()
{
if (isEmpty())
display.setCurrent(displayableMain);
else

{
display.setCurrent((Displayable) pop()) i

}
}

public void showAlert (String msg, AlertType type, boolean modal,
displayable)
{

Alert alStatus = new Alert ("Status", msg, null, type):

if (modal)
alStatus.setTimeout(Alert.FOREVER);
else

{
alStatus.setTimeout(ALERT)DEFAULT_TIME);

}

if (displayable == null)
display.setCurrent(alStatus);

else

{
display.setCurrent(alStatus, displayable);

1

4.2.2.3 jm2pc.client.servers Package

FormServer.java

package jm2pc.client.servers;

import javax.microedition.lcdui.*;

import jm2pc.client.*;

public class FormServer extends Form implements CommandListener {
private JM2PCMIDlet midlet;

private ListServers lsServers;
private Server servel;

private TextField tfDescription;
private TextField tfAddress;
private TextField tfPort;
private TextField tfPassword;

private command cmConnect;
private command cmCancel;

(68]

Displayable

public FormServer (JM2PCMIDlet midlet, ListServers 1sServers,
Server server) {
super(midlet.messages.getMessage("server”));

this.midlet = midlet;
this.lsServers = lsServers;

tfDescription = new TextField/(

midlet.messages.getMessage(“description"), il 8.05

TextField.ANY) ;

t fAddress = new TextField(midlet.messages.getMessage(”host"), nall;

80,

TextField.ANY) ;

tfPort = new TextField(midlet.messages.qetMessage("port“), ikl 5.,
TextField.NUMERIC)

tfPassword = new TextField(midlet.messages.getMessage("password"),
an il 30y, TextField.ANY | TextField.PASSWORD) ;

setServer (server);

this.append(thescription);

this.append(thddress);

this.append(tfPort);

this.append(tfPassword);

cmConnect = new Command(midlet.messages.getMessage("connect"),
Command.OK, 1);

cmCancel = new Command(midlet.messages.getMessage("cancel“),

{ Command.CANCEL, 3);

this.addCommand{cmConnect);
this.addCommand (cmCancel] ;

this.setCommandListener(this);

}

public void setServer (Server server) {

if (server != null) |
this.server = server;

thescription.setString(server.getDescription());
thddress.setString(server.getAddress());
tfPort.setstring(String.valueOf(server.getPort()));
tfPassword.setString(server.getPassword());

switch (server.getType()) {
case Server.TYPEﬁBTSPP:

thddress.setLabel(midlet.messages.getMessage("btAddress“));
—a- tfPort.setLabel(midlet.messages.getMessage{"channel”));
break;
default:
thddress.setLabel(midlet.messages.getMessage("host"));
tfPort.setLabel(midlet.messages.getMessage("port"});
}
} else |
this.server = new Server () ;
clear():

public void clear() {
tfDescription.setString("")i
t fAddress.setString (""):

i Slaha ety S e inte VR
tfPassword.setString(""):

}

private boolean validateDatal() {
String port = tfPort.getString
1.f (address.trim().length() ==

return false;

}
1if (port.trim().length() == 0)

return false;

}

return false;

}

}

server.setAddress (address) ;
server.setPassword (password);

return true;

private void connect () {
if (validateData()) {
try |
} catch (Exception e) |

}

}

| public void commandAction (Command c,

if (c == cmConnect) {
connect ()
Vielse ift (G == cmCancel) {

midlet.getDisplayManager
}

String description = thescription.getString();
String address = t fAddress.getString ()’

()7

String password = t fPassword.getString();

0) f

midlet.showAlert(midlet.messages.getMessaqe(“noHost"),
AlertType.ERROR, true, this);

{

midlet.showAlert(midlet.messages.getMessage("noPort"),
AlertType.ERROR, Lrue, this);

12f (password.trim(}.length() ==-10 {
midlet.showAlert(midlet.messages.getMessage("noPassword"),
AlertType.ERROR, true, this);

iE (description.trim().length() == 0 4
description = midlet.messages.getMessage("unknown”);

server.setDescription(description);

server.setPort(Integer.parselnt(port));

midlet.connect (server);

Displayable d) {

() .popDisplayable()

_ gerver.java

package jm2pc.client.servers;

public class Server {

private int id;

private gtring address;
private int port;
private string password;
private int type;

public gerver() {
id = 0;
Lype.= TYPE_SOCKET;
potrt-= 3888;

}

public int getTdi{) 1
return id;

}

public void setId{int id)
this.id = id;
}

public int getType ()
return type:

}

public void setType(int t
this.type = type;
}

public String getDescript
return description;

} 5

public void setDescriptio
this.description =

}

public String qetAddress(
return address;

}

public void setAddress (St
this.address = addr

}

public int getPort () |
return port;

}

public static final int TYPE SOCKET = 0;
public static final int TYPE_SSL = 1;
public static final int TYPE BTSPP = 2;

private string description;

{

ype) |

fTom@)rf

n(String description) {
description;

)

ring address) {
ess;

public void setPort (int port) {
this.port = porti;

public String getPassword() {
return password;

}

public void setPassword (String password) {
this.password = password;

}

}

jm2pc.client.devices.in Package

TextKeyboard.java

package jm2pc.client.devices.in;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.TextBox;

import javax.microedition.lcdui.TextField; :

import jm2pc.client.JMZPCMIDlet;
import jm2pc.utils.Constants;

public class TextKeyboard extends TextBox implements CommandListener

private JM2PCMIDlet midlet;

private Command cmEnviar;
//private Command cmAtalho;
private Command cmVoltar;

public TextKeyboard (JM2PCMIDlet midlet)
{

super(midlet.messages.getMessage("keyText”), s 100y
TextField.ANY) ;

this.midlet = midlet;

cmEnviar = new Command(midlet.messages.getMessage("send"),
Command.OK, 1);

cnVoltar
Command.BACK, 2);

Il

new Command(midlet.messages.getMessage("back"},

addCommand (cmEnviar) ;
addCommand (cmVoltar) ;
setCommandListener (this);

}

public void commandAction (Command c, Displayable d)
{
if(c == cmEnviar)

{

String txt = getString();
(72]

txt = txt.replace('\n', Vet

StringBuffer sbParam = new stringBuffer();
sbParam.append(Constants.CMD_TECLADOﬁTP#TEXTO);

shParam.append (' As:

sbParam.append(txt);

midlet.SendCommand(ConstantS.CMD#TECLADO, sbParam.toString());

}

else if(c == cmVoltar)

{
midlet.getDisplayManager().popDisplayable();

}

}

ijpc.client.devices.out Package

CanvasScreen.java

package jm2pc.client.devices.out;

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Image;

import jm2pc.client.JMZPCMIDlet;
import jm2pc.client.devices.in.TextKeyboard;
import jm2pc.utils.Constants;)
public class CanvasScreen extends Canvas implements commandListener {
private JM2PCMIDlet midlet;
private Zoom ZOOM
private Command cmBack;
private Command cmbDoubleClick;
private Command crKeyboardText;

private Image image;

private int width;
private int height;

private int cursorX;
private int cursorY;
l private int type;

public boolean pressing;

public CanvasScreen(JMZPCMIDlet midlet) {

this.midlet = midlet;

g ImE

ZOOm = midlet.getImageZoom{);

width = getWidth();
height = getHeight ()

(73]

image = null;
cursor® = 0;
cursorY = 0;
pressing = false;
cmBack = new Command(midlet.messages.getMessage("back"),
Command . BACK,
1)

cmbDoubleClick = new Command ("Click",
Command.SCREEN, 2) i

cmKeyboardText = new Command(midlet.messages.getMessage

Command . SCREEN, 3);

addCommand (cmBack) ;
addCommand(cmDoubleClick);
addCommand(cheyboardText);

setCommandListener(this);

class MoveThread extends Thread {

private int X;
private int y;

public MoveThread (int x, int y) {
this.x = %;
thissy =¥:

setPriority(Thread.NORM_PRIORITY);
start():
}

public void run() {
while (pressing) {
cursorMove (%, Y);
repaint () ;
Ly |
Thread.sleep(100);
} catch (InterruptedException e)
} .

}
public void cursorMove (int %, int y) |
cursorX += X;i

cursorY += ¥z

if (cursornX. =< 0)

cursorX = 0;
clse—tftcurserd—> width = 13
cursorX = width - 1;

if (cursorY < 0)
cursorY = 0;

else if (cursorY > height - 1)
cursorY = height - 1;

("keyText"),

public void setType (int tipo) { [
this.type = tipo;
}

public veid setlImage (Image im) {
image = im;

}
public void getServerImage (int x, int v) |
midlet.setScreenXY(x, y)i i

StringBuffer sb = new StringBuffer();
sb.append (Constants.CMD_TELA) ;
sb.append(' ');
sb.append(Constants.CMDﬁTELA_TP7XY);
sb.append(' ');
sb.append{midlet.getScreenX());
sb.append(' ');
Sb.append(midlet.getScreenY());
sb.append(' '):
sb.append(zoom.getZoomImg());
sb.append('\n');

midlet.executeCommand (sb.toString());

}

protected void paint (Graphics g) {

g.setColor (0, 0, 0);

g.fillRect (0, O, width, height);

if (image != null)
g.drawImage (image, width / 2, height / 2, Graphics.VCENTER

| Graphics.HCENTER}) ;

g.setColor (0, 0, 0);
g.drawLine (cursorX, cursorY, cursorX, cursorY + 14);
g.drawlLine (cursorX, cursorY, cursorX + 10, cursorY + 10);

g.drawLine (cursorX, cursorY + 14, cursorX + 10, cursorY + 10);

g.drawlLine (cursorX + 4, cursorY + 12, cursorX + 9, -curserY ¥

22);
g.drawLine (cursorX + 6, cursorY + 12, cursorX + 10, enrpsory
21):
g Hetaelor (255, 2568, 255):
g.drawLine (cursorX + 5, cursorY + 12, -cursorX + 9, cursoryY *+
2433 :
!
g.drawLine (cursorX + 1, cursorY + 2, cursorxX + 1, cursorY +
13); |
g.drawLine (cursorX + 2, cursorY + 3, cursorX + 2, cursoryY + |
il A |
g.drawLine (cursorX + 3, cursorY + 4, cursorX + 3, cursoryY + ;
HRATE |
g.drawLine (cursorX + 4, cursorY + 5, cursorX + 4, cursorY + !
12);

]
g.drawlLine (cursorX + 5, cursorY + 6, cursorX + 5, cursorY + {

11); i
i

i

g.drawLine(cursorX + 6, cursorY + 7, cursor¥ + 6, cursorY +

11):
g.drawlLine (cursorX + 7, cursor¥ + 8, cursor¥X + 7, cursor¥Y +

10)
g.drawLine (cursorx + 8, cursorY + 9, cursorX + 8, cursor¥Y t
10)

}

public void commandAction (Command c, Displayable d) {

if (¢ == cmBack) {
midlet.getDisplayManager().popDisplayable();
jelse 1f (e-== cmDoubleClick) {
int cursorRealX = midlet.getScreenX () + cursorX il

zoom.getZoomImg () ; :
int cursorRealY
zoom.getZoomImg () ;

I

midlet.getScreen¥Y () + cursoery

StringBuffer sbCommand = new StringBuffer();
stommand.append(Constants.CMD_MOUSE);
sbCommand.append (' ')
stommand.append(Constants.CMD_MOUSE_TP#DOUBLE_CLICK);
sbCommand ., append (' ');

sbCommand . append (cursorRealX) ;

sbCommand.append (' ');
sbCommand . append (cursorRealY) ;
sbCommand.append (' ')

sbCommand . append (0) ;
sbCommand. append ('\n');

midlet.executeCommand(stommand.toString());
lelse“df (C == cheyboardText) {

midlet.getDisplayManager().pushDisplayable(

new TextKeyboard(midlet), true) ;

}

public int getCursorX() {
return cursorx;

}

public int getCursorY ()
return cursory;

1

protected void keyPressed(int keyCode) {
pressing = true;
int control=0;

switch (keyCode} {
case KEY NUML: {
new MoveThread(-3, -3);
break;
}
case KEY NUM2: {
new MoveThread(0, -3);
brealk;

}
case KEY NUM3: {

new MoveThread(3, -3)i
break;
t
case KEYﬁNUM4: {
new MoveThread(-3, Q)
break;

}

case KEYﬁNUMS: {
StringBuffer sbCommand = new StringBuffer();
stommand.append{Constants.CMDﬁTELA);
shCommand.append (' ') i
stommand.append(Constants.CMD_TELA_TP_INT);
sbCommand.append ('\n');
midlet.executeCommand(stommand.toString());
break;
}
case KEY(NUMG: {
new MoveThread (3, 0y,
break;
}
case KEY NUM7: {
new MoveThread (-3, 30
break;

case KEY NUM8: ({
new MoveThread (O,)
break;

case KEY NUM9: {
new MoveThread(3, 3);
break;

case KEY STAR: Lo Y
break;
case KEY POUND: // '#'

break;

}
case KEYtNUMO: {

int cursorRealX = 0;

int cursorRealY = 0;

StringBuffer sbComando = new stringBuffer();
stomando.append(Constants.CMD#MOUSE);
sbComando.append (' ')/

stomando.append(Constants.CMDWMOUSE_TP#MOVE);

sbComando . append (' Vayis
stomando.append(cursorRealX);
sbComando.append (' ')
stomando.append(cursorRealY);
sbComando.append ('\n');

midlet.executeCommand(stomando.toString());
break;

}
default:
doJoystickKeysAction(keyCode);

protected void doJoystickKeysAction{int keyCode) { |

1

pressing = true;

int control=0;

switch (getGameAction{keyCode)} {

case

}

case

case

case

case

H
b

UP: {

new MoveThread (0,

break;
DOWN: |
break;

LEFT: {

new MoveThread (-3,

break;

RIGHT: {

new MoveThread (3,

break;

FIRE: |
break;

-3);

new MoveThread{0, 3);

0);

0):

protected void keyReleased(int keyCode)

}

pressing = false;

[78]

{

