i d | |

e i

S L S T

I ,ﬂso-huw;,r.,..,;w“m“

e |

Performance Analysis of DSDV and AODV
Routing Algorithms in MANETS

Project Report submitted in partial fulfillment of the requirement for the
degree of :

Bachelor of Technology.

in
Electronics and Communication Engineering
under the Supervision of

Dr. Davinder Singh Saini

By
SANCHITA AGARWAL (081122)
SURABHI BALI (081123)

NITESH KUMAR (081130)

JAYPEE UNIVERSITY OF

i, . S
R AN 3

Jaypee University of Information and Technology

Waknaghat, Solan — 173234, Himachal Pradesh

e

A —

N -

T S —

Y S

[EO———— — mm-ﬁmwh@‘g.y}.mﬁiww Wik ki 'ai‘alii RES———

Certificate

This is to certify that project report entitled “Performance Analysis of DSDV and AODV Routing
Algorithms in MANETSs”, submitted by Sanchita Agarwal (081122), Surabhi Bali (081123) &
Nitesh Kumar (081130) in partial fulfillment for the award of degree of Bachelor of Technology in

Electronics and Communication Engineering to Jaypee University of Information Technology,

~ Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of

e

Date: 0)-06-204 2% Supervisor’s Name Dv- D5 - St

this or any other degree or diploma.

Designation ~ AsSocioke P%Of{; Lo

4§
|

ACKNOWLEDGEMENT

This project has been an outcome of sustained and continual efforts on part of every group member.

We take this opportunity to express our gratitude to the people who have been instrumental in the

successful completion of this project.

—Wearedeeply indebted to our project guide Dr. Davinder Singh Saini (Associate f’p\t,(;t,_,sgog)

Electronics and Communication Department) for his help, stimulating suggestions and
encouragement which helped throughout the project. For his coherent guidance throughout the tenure

of the project, we feel fortunate to be taught by him, who gave us his unwavering support.

Sincere thanks to senior lab technicians Mr. Mohan and Mr. Kamlesh for extensive cooperation.

Date:)| -06G-20172

: S
/A MUL‘:E/G—"J . MW - ,Q,{@gl\ Jetrnnan
Sanchita Agarwal Surabhi Bali Nitesh Kumar
081122 081123 081130

P- w
Al
=
:
4
i
4
{]
! 3

L TABLE OF CONTENTS
‘ Topics Page No.
l ABSTRACT
| CHAPTER 1
INTRODUCTION 1
! 1.1 Decentralized approach or Infrastructure less (ad-hoc) Networks 1
‘i‘ 1.2 Routing Protocols . 1
“» 1.3 The Protocol Stack 2
l 1.3.1 Interworking 3
f 1.4 Proactive, Reactive and Hybrid Routing Protocol 4
| CHAPTER 2
| DESTINATION SEQUENCED DISTANCE VECTOR (DSDYV) 6
2.1 Protocol Overview 6
2.2 Route Advertisements 6
2.3 Route Table Entry Structure 7
2.4 Responding to Topology Changes 7
2.5 Route Selection Criteria 8
CHAPTER 3
. AD- HOC ON-DEMAND DISTANCE-VECTOR (AODV) 11
'l 3.1 Protocol Overview 11
3.2 Unicast Route Establishment 12
3.3 Route Discovery : 12
3.4 Forward Path Setup 13
3.5 Route Maintenance 14
3.6 MULTICAST GROUP ESTABLISHMENT 15
3.6.1 Route Discovery 15
3.6.2 Forward Path Setup 16
3.6.3 Leaving the Group 17
i 3.0.4 Multicast Tree Maintenance L

3.6.5 Broadcast 18

Vot e iy o

CHAPTER 4
NETWORK SIMULATOR

4.1 Overview

4-2-Simple Simulation Example
4.3 Post Simulation

4.4 Trace Analysis Example
4.5 AWK Command

CHAPTER 5
SIMULATION GRAPHS

5.1 Scenario

CHAPTER 6
SIMULATION GRAPHS
6.1 Scenario 1
6.1.1 Without mobility
6.1.2 With mokbility

6.2 Scenario 2

CHAPTER 7
CONCLUSIONS and FUTURE WORK

APPENDIX

REFERENCES

19
22
25
28
29

32
32

33
33
33
3
46

48

50

56

LIST OF ABBREVIATIONS

MANETS: Mobile Ad-hoc Networks

AODV: Ad-hoc On Demand Distance Vector Routing
DSDV: Destination Sequenced Distance Vector Routing
TORA: Temporally Ordered Routing Algorithm

3 PDR: Packet Delivery Ratio

~NS: Network Simulator

NAM: Network Animator

OTcl: Object Tool Command Language

- RREQ: Route Request

f RERR: Route Error

RREP: Route Reply

FTP: File Transfer Protocol

TCP: Transmission Control Protocol

UDP: User Datagram Protocol !’
CBR: Constant Bit Rate :
VBR: Variable Bit Rate

MAC: Medium Access Control

IP: Internet Protocol

ZRP: Zone Routing Protocol

OLSR: Optimized Link State Routing Protocol

m/s: meter per second

mbps: megabyte per second

ms: millisecond i
sec: second X

Kbyte: Kilobyte

vi

— &m‘

LIST OF FIGURES PAGE NO.
Figure 1.1: Classification of MANETSs Routing Protocols 2
Figure 1.2: The OSI model, TCP/IP suite and MANET protocol stack 3
Figure 1.3: The protocol stacks used by mobile nodes, gateways and Internet nodes. 4
ngufé 2.1: Example of DSDV in Operation 8
Figure 3.1: RREQ (Route Request) Broadcast Flood in AODV 13
Figure 3.2: RREP (Route Reply) Propagation in AODV 14
Figure 3.3: RERR (Route Error) Propagation in AODV 15
Figure 3.4: Route Discovery and Reply Generation for multicast group in AODV 16
Figure 3.5: Route Activation for multicast group in AODV 17
Figure 3.6: Pruning of Group Member in AODV 17
Figure 3.7: Multicast Tree after Prune in AODV 17
Figure 3.8: Link Breakage of multicast tree in AODV 18
Figure 3.9: Repaired Multicast Tree (AODV) 18
Figure 4.1: Simplified User's View of NS 19
Figure 4.2: C++ and OTcl: The Duality 21
Figure 4.3: Architectural View of NS 2
Figure 4.4: A Simple Network Topology and Simulation Scenario 22
Figure 4.5: Trace Format Example 29

vii

o rrﬁrw

Sl SR R

LIST OF GRAPHS

Graph 6.1.1.1:
Graph 6.1.1.2:
Graph 6.1.1.3:
Graph 6.1.1.4:
Graph 6.1.1.5:
Graph 6.1.1.6:
Graph 6.1.2.1:
Graph 6.1.2.2:
Graph 6.1.2.3:
Graph 6.1.2.4:
Graph 6.1.2.5:
Graph 6.1.2.6:
Graph 6.1.2.7:
Graph 6.1.2.8:
Graph 6.1.2.9:

Graph 6.1.2.10:
Graph 6.1.2.11:
Graph 6.1.2.12:
Graph 6.1.2.13:
Graph 6.1.2.14:
Graph 6.1.2.15:
Graph 6.1.2.16:
Graph 6.1.2.17:
Graph 6.1.2.18:

PDR 20: Packet Delivery Ratio for 20 nodes, no mobility
PDR_50: Packet Delivery Ratio for 50 nodes, no mobility
Overhead_20: Overhead for 20 nodes, no mobility
Overhead 50: Overhead for 50 nodes, no mobility

E2ED 20: End to end delay for 20 nodes, no mobility

E2ED _50: End to end delay for 50 nodes, no mobility
PDR_20_1: Packet Delivery Ratio for 20 nodes, Mobility: 1m/s
PDR_20_5: Packet Delivery Ratio for 20 nodes, Mobility: 5Sm/s
PDR_20_10: Packet Delivery Ratio for 20 nodes, Mobility: 10m/s
PDR 50 1: Packet Delivery Ratio for 50 nodes, Mobility: 1m/s
PDR_50_5: Packet Delivery Ratio for 50 nodes, Mobility: 5Sm/s
PDR 50 10: Packet Delivery Ratio for 50 nodes, Mobility: 10m/s
Overhead_20_1: Overhead for 20 nodes, Mobility: 1m/s
Overhead_20_5: Overhead for 20 nodes, Mobility: 5m/s
Overhead 20 10: Overhead for 20 nodes, Mobility: 10m/s
Overhead 50 1: Overhead for 50 nodes, Mobility: 1m/s
Overhead_50_5: Overhead for 50 nodes, Mobility: 5m/s
Overhead_50 10: Overhead for 50 nodes, Mobility: 10m/s
E2ED 20 _1: End to End Delay for 20 nodes, Mobility: 1m/s
E2ED 20 _5: End to End Delay for 20 nodes, Mobility: 5m/s
E2ED 20 10: End to End Delay for 20 nodes, Mobility: 10m/s
E2ED_50 _1: End to End Delay for 50 nodes, Mobility: 1m/s
E2ED_50_5: End to End Delay for 50 nodes, Mobility: 5m/s
E2ED 50 10: End to End Delay for 50 nodes, Mobility: 10m/s

Graph 6.2.1: PDR_DRI1: Packet Delivery Ratio with data rate 1mbps
Graph 6.2.2: PDR_DRS: Packet Delivery Ratio with data rate Smbps
Graph 6.2.1: PDR_DR10: Packet Delivery Ratio with data rate 10mbps

PAGE NO.

33
34
34
35
36
36
37
37
38
38
39
39
40
40
41
41
42
42
43
43
44
44
45
45
46
47
47

viii

e iR m—‘

LIST OF TABLES PAGE NO.

o

Table 2.1: Forwarding Table maintained at MH4 9

Table 2.2: New Routing Table Information 9

52

Table 5.1: Simulation Parameters

§
|

skt e b B

sijer M.x‘kk,m &

Eaad i SRR

et iy

Abstract

Efficient routing protocols can provide significant benefits to mobile ad hoc networks in terms of
both performances and reliability. Mobile Ad-hoc Network (MANET) is an infrastructure less and
decentralized network which needs a robust dynamic routing protocol. Many routing protocols for
such networks have been proposed so far. Amongst popular ones we have studied the following:
Dynamic-Source Routing (DSR), Ad-hoc On-demand Distance Vector (AODV), and Destination-
Sequenced Distance Vector (DSDV) routing protocol. Nodes of these networks functions as routers
which discovers and maintains the routes to other nodes in the network. In such networks, nodes are

able to move and synchronize with their neighbors. Due to mobility, connections in the network can

change dynamically and nodes can be added and removed at any time.

In our@a}'&:t)we have compared Mobile Ad-Hoc network routing protocols DSDV, AODV using

network m"éhhﬁlator ’N8234‘>Ne have compared the performance of two protocols together and

individually. The performance matrix includes PDR (Packet Delivery Ratio), Average End to End
Delay, Routing Overhead. We are comparing the performance of routing protocols in two scenarios.
In the first one we have calculated PDR, Average End to End Delay, Routing Overhead in an area
of 50*50m” taking number of nodes 20 & 50, varying the mobility of node as 0, 1m/s, 5m/s and
10m/s for a simulation time of 50 seconds to 150 scconds. In the other scenario we measured the

performance of PDR of AODV and DSDV in an area of 500*500m” for 50 nodes changing the data

rate as lmbps, Smbps, 10 mbps for a simulation time varying from Sminutes to 30 minutes.

i
-
i
I
|

R R AR

b

CHAPTER 1
INTRODUCTION

A Mobile Ad-hoc Network (MANET) is a collection of wireless nodes that can dynamically be set
up anywhere and anytime without using any pre-existing network infrastructure. It is an
autonomous system in which mobile hosts connected by wireless links are free to move randomly
and often act as routers at the same time. The topology of such networks is likely highly dynamic

because each network node can freely move and no pre-installed base stations exist. Due to the

limited wireless transmission range of each node, data packets then may be forwarded along multi-

hops. Route construction should be done with a minimum of overhead and bandwidth consumption.

1.1 Decentralized approach or Infrastructure less (ad-hoc) Networks

In contrast to infrastructure based wireless network, in ad-hoc networks all nodes are mobile and
can be connected dynamically in an arbitrary inanner. A MANET is a collection of wireless mobile
nodes forming a temporary network without using any existing infrastructure or any administrative
support. The wireless ad-hoc networks are self creating, self-organizing and self-administrating.
The nodes in an ad-hoc network can be a laptop, cell phone, PDA (personal digital assistant) or any
other device capable of communicating with those nodes located within its transmission range. The
nodes can function as routers, which discover and maintain routes to other nodes. The ad-hoc
network may be used in emergency search-and-rescue operations, battlefield operations and data
acquisition in inhospitable terrain. In ad-hoc networks, dyramic routing protocol must be needed to
keep the record of high degree of node mobility, which often changes the network topology
dynamically and unpredictably.

1.2 Routing Protocols

The existing routing protocols in MANETS can be classified into three categories. Figure 1.1 shows

the classification of existing MANETS protocols:

e E———

T T "

i

AD-HOC ROUTING PROTOCOLS

A

‘ v

TABLE - DRIVEN OR SOURCE ON DEMAND DRIVEN HYBRID
PROACTIVE OR REACTIVE
DSDV AODV DSR TORA

Figure 1.1: Classification of MANETSs Routing Protocols

1.3 The Protocol Stack

In this section the protocol stack for mobile ad hoc networks is described. This gives a
comprehensive picture of, and helps to hetter understand, mobile ad hoc networks. Figure 1.2 shows
the protocol stack which consists of five layers: physical layer, data link layer, network layer,
transport layer and application layer. it has similarities to the TCP/IP protocol suite. As can be
seen the GSI layers for session, presentation and application are merged into one section, the
application layer. On the left of Figure 1.2, the OSI model is shown. It is a layered framework for
the design of network systems that allows for communication across all types of computer systems.
In the middle of the figure, the TCP/IP suite is illustrated. Because it was designed befere the OSI
model, the layers in the TCP/IP suite do not correspond exactly to the OSI layers. The lower four
layers are the same but the fifth layer in the TCP/IP suite (the application layer) is equivalent to the
combined session, presentation and application layers of the OSI model. On the right, the MANET
protocol stack - which is similar to the TCP/IP suite — is shown. The main difference between these
two protocol stacks lies in the network layer. Mobile nodes (which are both hosts and routers) use
an ad hoc routing protocol to route packets. In the physical and data link layer, mobile nodes run

protocols that have been designed for wireless channels. Some options are the IEEE standard for

‘wireless LANs, IEEE 802.11, the European ETSI standard for a high-speed wireless LAN,

HIPERLAN 2, and finally an industry approach toward wireless personal area networks, i.e.
wireless LANs at an even smaller range, Bluetooth. In the simulation tool used in thi{proj\ec-ti,\ the
Standard TEEE 802.11 is used in these layers. This thesis focuses on ad hoc routing which is handled
by the network layer. The network layer is divided into two parts: Network and Ad Hoc Routing.

12

!
1
3

ey L;" Sk bl b s

The protocol used in the network part is Internet Protocol (IP) and the protocol used in the ad hoc
routing part is Ad hoc On-Demand Distance Vector (AODV). One of the reasons to why AODV

has been used in this study is that it is one of the most developed routing protocols for mobile ad

hoc networks.
: MANET
SI MODEL TCP/IP SUITE
QeLNoD : PROTOCOL STACK
APPLICATION
PRESENTATION APPLICATION APPLICATION
SESSION
TRANSPORT TRANSPORT TRANSPORT
AD HOC
NETWORK NETWORK NETWORK
ROUTING
DATA LINK DATA LINK DATA LINK
PHYSICAL PHYSICAL PHYSICAL
Figure 1.2: The OSI model, TCP/IP suite and MANET protocol stack
1.3.1 Interworking

Whenever a mobile node is to send packets to a fixed network, it must transmit the packets to a
gateway. A gateway acts as a bridge between a MANET and the Internet. Therefore, it has to
implement both the MANET protocol stack and the TCP/IP suite, as shown in the middle of Figure
1:3; Althoﬁgh the figures shows that all the layers are implemented for the gateway, it does not
necessarily need all of the layers. The protocol stack used by the mobile node is the MANET
protocol stack discussed previously and shown on the right of Figure 1.2. The fixed Internet node

uses the TCP/IP suite. A gateway, that must be able to translate between these two “languages”

;must understand the both architectures.

Y T ko

e e e Lﬂ-uxlg *,u..m”‘ i

MOBILE NODE GATEWAY INTERNET NODE
RS
~APPLICATION APPLICATION
APPLICATION APPLICATION
UDP UDP UDP UDP
IP |AODV P AODV | IP IP
LLC LG DATA LINK DATA LINK
802.11 MAC 302.11 MAC : by ‘
202.11 PHY 802.11 PHY PHYSICAL PHYSICAL

Figure 1.3: The protocol stacks used by mobile nodes, gateways and Internet nodes.

1.4 Proactive, Reactive and Hybrid Routing Protocols

Traditional distance-vector and link-state routing protocols are proactive in that they maintain
routes to all nodes, including nodes to which no packets are sent. For that reason they require
periodic control messages, which lead to scarce resources such as power and link bandwidth being
used more frequenily for control traffic as mobility increases. One example of a proactive routing
protocol is Optimized Link State Routing Protocol (OLSR). OLSR, which has managed to reduce
the utilization of bandwidth significantly. Reactive routing protocols, on the other hand, operate
only when there is a need of communication between two nodes. This approach allows the nodes to
focus either on routes that are being used or on routes that are in process of being set up. Examples

of reactive routing protocols are Ad hoc On-Demand Distance Vector (AODV), and Dynamic

Source Routing (DSR).

Both proactive and reactive routing have specific advantages and disadvantages that make them

suitable for certain types of scenarios. Proactive routing protocols have their routing tables updated

rresec s e i i i i s b b -mmui-mh%“‘aammmmw‘i i

T ———

S S C

l

thus the delay before sending a packet is minimal. However, routing tables that are

at aH times,

always updated require periodic control messages that are flooded through the whole network - an
operation that consumes a lot of time, bandwidth and energy. On_the other hand, reactive routing
protocols determine routes between nodes only when they are explicitly needed to route packets.
However, whenever there is a need for sending a packet, the mobile node must first find the route if

the route is not already known. This route discovery process may result in considerable delay.

" Combining the proactive and reactive approaches results in a hybrid routing protocol .A hybrid

approach minimizes the disadvantages, but also the advantages of the two combined approaches.

The Zone Routing Protocol (ZRP) is such a hybrid reactive/proactive routing protocol. Each mobile

node proactively maintains routes within a local region (referred to as the routing zone). Mobile

nodes residing outside the zone can be reached with reactive routing.

!
-
|
4
ga
&

e e T S S ——

CHAPTER 2
DESTINATION SEQUENCED DISTANCE VECTOR
(DSDV)

It is a table driven routing scheme developed for ad-hoc networks.

It was developed by C. Perkins and P. Bhagwat in 1994. The main contribution of the protocol was

to solve the routing loop problem.

2.1 Protocol Overview

Packets are transmitted between the nodes of the network using route tables stored at each node.
Each route table, at each of the nodes, lists all available destinations and the number of hops to
each. Each route entry is tagged with a sequence number that is originated by the destination node.
To maintain the consistency of route tables in a dynamically varying topology, each node
periodically transmits updates, doing so immediately when new information is available. No
assumption is made about the mobile nodes making any sort of time synchronisation and phase
relationship of the update periods between the mobile hosts. These packets indicate which nodes are
accessible from each node and the number of hops necessary to reach them, following the

traditional distance-vector routing algorithms.

Routing information is advertised by broadcasting or multicasting the packets that are transmitted
periodically and incrementally as topological changes are detected. Data is also kept about the
length of time between the arrival of the first and the arrival of the best route for each particular
destillation. On the basis of this data, a decision may be made to delay advertising routes that are
about to change, thus damping fluctuations of the route tables. The advertisement of possibly
unstable routes is delayed to reduce the number of rebroadcasts of possible route entries that

normally arrive with the same sequence number.

2.2 Route Advertisements

The DSDV protocol requires each mobile node to advertise, to each of its current neighbors, its own

route table. The entries in the list may change fairly dynamically over time, so the advertiseément
6

i pac

S -

T

T T i S S

ST p—

i i b i i S B B

must be made often enough to ensure that every mobile computer can almost always locate every
other mobile computer in the collection. In addition, each mobile computer agrees to relay data

kets to other computers upon request. This helps to determine the shortest number of hops.

2.3 Route Table Entry Structure

The data broadcast by each mobile computer will contain its new sequence number and the
following information for each new route:
o The destination’s address
e _The number of hops required to reach the destination
e The sequence number of the information received regarding that destination, as originally

stamped by the destination

Within the headers of the packet, the transmitted route tables will also contain the hardware address
and (if appropriate) the network address of the mobile computer transmitting them. The route tables
will also include a sequence number created by the transmitter. Routes with more recent sequence
numbers are always preferred as the basis for forwarding decisions, but they are not necessatily

advertised. Of the paths with the same sequence number, those with the smallest metric will be

used.

Routes received in the broadcasts are also advertised by the receiver when it subsequently
broadcasts its routing information; the receiver adds an increment to the metric before advertising

the route, as incoming packets will require one more hop to reach the destination.

2.4 Responding to Topology Changes

Mobile nodes cause broken links as they move from place to place. The broken link may be inferred
if no-broadeasts have been received for a while from a former neighbour. A broken link is described
by a metric of infinity. When a link to a next hop has broken, any route through that next hop is
immediately assigned an infinite metric and an updated sequence number. Such modified routes are
immediately disclosed in a broadcast routing information packet. Sequence numbers generated to
indicate infinite hops to a destination will be one greater than the last sequence number received

from the destination. When a node receives an infinite metric and it has an equal or same sequence

number with a finite metric, it triggers a route update broadcast to disseminate the important news

about that destination.

7.5 Route Selection Criteria

| When a mobile node receives new routing information, that information is compared to the
“information-already available from previous routing information packets. Any route with a more

~ recent sequence number is used; routes with older sequence numbers are discarded. A route with a

i

|

~ sequence number equal to an existing route is chosen if it has a better metric and the existing route
i_is_dgg@dqd or stored as less preferable. The metrics for routes chosen from the newly received
j broadcast information are each incremented by one hop. When a mobile node can determine that a
i route with a better metric is likely to show up then the advertisement of the new routes should be
delayed. The route with later sequence number must be available for use, but it does not have to be
advertised immediately unless it is a route to a previously unreachable destination. Thus, there will

be two route tables at each node- one for use with forwarding packets and another to be advertised

via incremental rduting information packets. To determine the probability of imminent arrival of
~ routing information showing a better metric, the mobile node has to keep a history of the weighted

~ average time that routes fluctuate until the route with the best metric is received. Received routes

&

- with infinite metrics are not included in this computation of the settling time for route updates.

il el e e ——

Figure 2.1: Example of DSDV in Operation

T fvo-

Consider MH4 in Figure 2.1. Table 2.1 shows a possible structure of the forwarding table
Maintained at MHA4.

el fprwve g

Destination | Next Hop Metric | Sequence number

MHI1 MH2 2 5406 MH1

MH2 MH?2 1 S128 MH2

MH3 MH2 2 S564 MH3

MH4 MH4 0 S710_MH4

_ MH5 MH6 2 S392_MHS5
T MH6 MH6 1 S076_MH6
MH7 MHG6 2 S128 MH7

MHS MH6 3 S050_MHS

Table 2.1: Forwarding Table maintained at MH4

The address of each mobile node is represented by MHi and all sequence numbers are denoted by
SNNN_MHi where MHi specified the computer that created the sequence number and SNNN is

sequence number value.

i =mmwnhnhhmmima th

Now suppose MH1 moves into the general vicinity of MH8 and MH7 and away from the others
(especially MH2). The new internal forwarding table at MH4 might then appear as shown in table.
Only the entry for MH1 shows a new metric. When MH1 moves into the vicinity of MH8 and

Me_. ik 2

MH7, it triggers an immediate incremental routing information update, which is then broadcast to
MH6. MH6, having deiermined that significant new routing information has been received, also
triggers an immediate update, which carries along the new routing information for MHI. MH4,

upon receiving this information, then broadcasts it at every interval until the next new routing

information dunp.
Destination | NextHop Metric Sequence number
| MH1 MH6 3 S516_ MH1
MH2 MH2 1 S128 MH2
MH3 MH?2 2 S564 MH3
MH4 MH4 0 S710_ MH4
E MHS5 MHG6 2 5392 MHS5
;
MH6 MH6 1 S076_MH6
MH?7 MH6 2 S128 MH7
} [MHS MH6 3 5050 _MHS8

Table 2.2: New Routing Information Table

= Inthe incremental advertised routing table, the information for MH4 comes first since it is doing the

advertisement. The information for MH1 comes next because it is the only one that has any

significant route changes affecting it. As a general rule, routes with changed metrics are first
included in each incremental packet. The remaining space is used to include those routes whose

sequence numbers have changed.

B L et T S

pave

CHAPTER 3
AD- HOC ON-DEMAND DISTANCE-VECTOR (AODY)

It provides quick and efficient route establishment between nodes desiring communication and was
designed specifically for ad hoc wireless networks. Its goal is to reduce the need for system-wide

"
i broadeasts to the furthest extent possible as compared to DSDV which issues broadcasts to

g announce every change in the overall connectivity of the ad hoc network.

4-\3.1_.I!r.otocol Overview
~ The protocol does not attempt to maintain routes from every node to every other node in the
network. Routes are discovered on an as-needed basis and are maintained only as long as they are
necessary. It is loop-free at all times, even while repairing broken links. This loop freedom is
accomplished through the use of sequence numbers, which it increases each time it learns of a
}‘ change in the topology of its neighbourhood. This sequence number ensures that the most recent
f

route is selected whenever route discovery is executed. In addition, each multicast group has its

;i

.j AODV is able to provide unicast, multicast and broadcast communication ability. A protocol that

own sequence number, which is maintained by the multicast group leader.

- offers both unicast and multicast communication can be streamlined so that route information
obtained while searching for a multicast route can also increase unicast routing knowledge and vice
versa. AODV utilises both a route table (for unicast routes) and a multicast route table (for multicast

routes). The route table is used to store the destination and next-hop IP addresses as well as the

S

destination sequence number. Additionally, for each destination the node maintains a list of
precursor nodes, which route through it in order to reach the destination. This list is maintained for
the purpose of route maintenance if the link breaks. Also associated with each route table entry is a

lifetime, which is updated whenever a route is used.

b i s o s e et

It also provides for the quick deletion of invalid routes through the use of a special route error

message. It also responds to topological changes that affect active routes in a quick and timely

oo

manner. [t builds routes with only a small amount of overhead from routing control messages and
10 additional network overhead. It requires nodes to maintain only next-hop information thereby

+ decreasing the storage requirement at each of the mobile nodes.
11

; 3.2 Unicast Route Establishment

Route discovery is purely on demand and follows a route request / route reply discovery cycle.
Requests are sent using a route discovery (RREQ) message. Information enabling the creation of a

route is sent back in a route reply (RREP) message.

_L"Wiﬁ"éﬁt]i'ne of the route discovery process is as follows:

o When a node needs a route to a destination, it broadcasts a RREQ.

e Any node with a current route to that destination (including the destination itself) can
—unicast-a RREP back to the source node.

~e Route information is maintained by each node in its route table.

e Information obtained through RREQ and RREP messages is kept with other routing
information in the route table.
e Sequence numbers are used to eliminate stale routes. |

e Routes with old sequence numbers are aged out of the system.

- 3.3 Route Discovery

s bt

When a node wishes to send a packet to some destination node, it checks its route table to determine
whether it has a current route to that node. If so, it forwards the packet to the appropriate next hop

toward the destination. However, if the node does not have a valid route to the destination, it must

initiate a route discovery process. To begin such a process, the node creates a RREQ packet. This

packet contains the source node’s IP address and current sequence number as well as the

e s P

destination’s IP address and last known sequence number. The RREQ also contains a broadcast 1D,

which is incremented each time the source node initiates a RREQ. After creating the RREQ, the |
4

source node broadcasts the packet and then sets a timer to wait for a reply.

L —

When a node receives a RREQ, it first checks whether it has seen it before by noting the source IP
- address and broadcast ID pair. Each node maintains a record of the source IP address/ broadcast ID !a

for each RREQ it receives, for a specified length of time. if it has already seen a RREQ with the i
Same [P address / broadcast 1D pair, it silently discards the packet. Otherwise, it records this |

information and then processes the packet.

12

To process the RREQ, the node sets up a reverse route entry for the source node in its route table.
This reverse route entry contains the source node’s IP address and sequence number as well as the
number of hops to the source node and the IP address of the neighbour from which the RREQ was
received. In this way, the node knows how to forward the RREQ' to the source if one is received
later. Associated with the reverse route entry is a lifetime. If this route entry is not used within the
specified lifetime, the route information is deleted to prevent the stale routing information from

lingering in the route table.

To respond to the RREQ, the node must have an unexpired entry for the destination in its route

: table. Furthermore, the sequence number associated with the destination must be at least as great as

~ that indicated in the RREQ. This prevents the formation of routing loops by ensuring that the route

e

3
»
4

£

returned is never old enough to point to a previous intermediate node.

If the RREQ is lost, the source node is allowed to retry the broadcast route discovery mechanism.
After rreq_retries additional attempts, it is required to notify the application that the destination is

unreachable.

Destination

Source

Figure 3.1: RREQ Broadcast Flood

3.4 Forward Path Setup

When a node determines that it has a route current enough to respond to the RREQ, it creates
RREP. The RREP sent in response to the RREQ contains the IP address of both the source and
destination. If the destination node is responding, it places its current sequence number in the
Packet, initializes the hop count to zero and places the length of time this route is valid in the

RREP’s lifetime field. However, if an intermediate node is responding, it places its records of the

13

ld tinat.ioﬂ’s sequence number in the packet, sets the hop count equal to its distance from the
= des
' destination and calculates the amount of time for which its route table entry for the destination will
Lae

still be valid. It then unicasts the RREP toward the source node, using the node from which it

received the RREQ as the next hop.

When an intermediate node receives the RREP, it sets up a forward path entry to the destination in
ts route table. To obtain its distance to the destination, the node increments the value in the hop
count field by 1. Also associated with this entry is a lifetime which is updated each time the route is

;
&
! used. If the route is not used within the specified lifetime, it is deleted.

_Itis hker that a node will receive a RREP for a given destination from more than one neighbour. In
this case, it forwards the first RREP it receives and forwards a later RREP only if that RREP
contains a greater destination sequence number or a smaller hop count. Otherwise, the node discards
the packet. This decreases the number of RREPs propagating toward the source while ensuring the |

most up-to-date and quickest routing information. ;

Destination 1

Source

Figure 3.2: RREP Propagation

3.5 Route Maintenance

v e mEre

Once a route has been discovered for a given source/destination pair, it is maintained as long as

needed by the source node. Movement of nodes within the ad hoc network affects only the routes

E containing those nodes; such a path is called an active path.

When either the destination or some intermediate node moves, a route error (RERR) message is sent
L to the affected source nodes. This RERR is initiated by the node upstream of the break. It lists each it

of the destinations that are now unreachable because of loss of the link. If the node upstream of the

14

|
- !I

preak has one or more nodes listed as precursor node for the destination, it broadcasts the RERR to

these neighbours. When the neighbours receive the RERR, they mark their route to the destination
as invalid by setting the distance to the destination as-infinity and in turn propagate the RERR to the
precursor nodes, if any such nodes are listed for the destinations in their route tables. When a source

node receives the RERR, it can reinitiate the route discovery if the route is still needed.

RERR RERR e i
S D

s Figure 3.3: RERR Propagation

The link from node 3 to D breaks as node 3 moves to new position 3°. Node 2 sends RERR message

to node 1 which further sends to node S. Node S initiates a route discovery if it still needs a route to

D.

3.6 MULTICAST GROUP ESTABLISHMENT

Multicast route discovery follows directly from unicast route discovery in that it utilises the same
two message types (RREQ and RREP) for the route request/route reply discovery cycle. Multicast
group membership is dynamic; nodes are able to join and leave the group at any time. Each
multicast group has a multicast group leader associated with it. That node is responsible for

maintaining the multicast group sequence number.
3.6.1 Route Discovery

The route discovery begins when a node wishes to join a multicast group or when it has data to send
to a multicast group and does not have a current route to it. This source node creates a RREQ with
the destination address set to the TP address of the multicast group and that contains the group’s last
known sequence number. The node indicates in the RREQ whether it wishes to join the multicast

group through join flag. It then broadcasts the RREQ to its neighbours.

If the RREQ is a join request, only a node that is a member of the desired multicast tree may
respond. Otherwise, any node with a current route to the multicast group may reply. If a node

receives a RREQ for a multicast group of which it is not a member or if it is receives a RREQ and

15

does not have a route to that group, it creates a reverse route entry to the source and then broadcasts
the RREQ to its neighbours.

When a node receives a join RREQ for a multicast groﬁp, it adds an inactivated entry for the source
node in its multicast route table. Each next hop entry in the multicast route table has an associated
activated flag. If this flag is false, the node does not forward any data packets for the multicast

group along that link. Only after the link is enabled can it be used to send data packets.

3.6.2 Forward Path Setup

If a node receives a join RREQ for a multicast group, it may reply if it is a router for the multicast
group’s tree and if its recorded sequence number for the multicast group is at least as great as that
contained in the RREQ. The group leader can always reply to a join RREQ for its multicast group.
The responding node updates its multicast route table by placing the requesting node’s next-hop
information in the table and then generates a RREP. The node unicasts the RREP back to the node
indicated in the RREQ. As nodes along the path to the source node receive the RREP, they set up a
forward path entry for the multicast group in their multicast route table by adding the node from

which they received the RREP as a next hop. Then they increment the hop count field and forward
the RREP to the next node.

O

. Group Leader

O i""i..

@© Non-Tree Member

@ Multicast Tree Member

@ Multicast Group Member
@ Prospective Group Member

Kigure 3.4: Route Discovery and Reply Generation for multicast group

16

—

1™
F il

L
.\ Group Leader |

b b

Non-Tree Member !
@ Multicast Tree Member
@ Multicast Group Member

Figure 3.5: Route Activation for multicast group |

3.6.3 Leaving the Group i|
] Il

The group nodes may revoke their member status at any time. Leaf nodes may prune themselves I;n

from the tree while non-leaf nodes should continue to be routers in the tree even while they are not #l

active members of the multicast group.

o\ Group Leader 0\ Group Leader
0 O

@ Group Member Initiating Prune
@ Tree Member Propagating Prune

= Path of MACT with set ‘P’ flag

Figure 3.6: Pruning of Group Member Figure 3.7: Multicast
Tree after Prune i

3.6.4 Multicast Tree Maintenance J

The multicast tree must be maintained for the lifetime of the multicast group. Unlike in the unicast
scenario, however, a link break due to changes in the topology necessarily triggers route
reconstruction because the multicast group members must remain connected during the group’s

lifetime. Each multicast link requires ongoing route maintenance to ensure that other multicast tree
17

'

members are always reachable. Multicast tree maintenance takes two forms: repairing a broken tree

branch following a link break, and reconnecting the tree after a network partition.

Q\ OGroup Leader 0\ OGToup Leader

““"kb "

2 D

Og & ©
o

Figure 3.8: Link Breakage of multicast tree Figure 3.9: Repaired Multicast Tree

3.6.5 Broadcast ; ‘

AODV specifies behaviour for transmitting broadcasts. When a node wishes to generate a broad- {}'

cast, it sends the broadcast packet to the well known broadcast address 255.255.255.255. Hl

Every node maintains a list of those broadcast packets that have already been received and I
retransmitted, When a node receives a packet broadcast to address 255.255.255.255, it notes the |
source TP address, the IP_ident value and the fragment effect of the packet’s TP header. It then
checks its broadcast list entries to determine whether the packet has already been received and thus |
whether t has already been retransmitted. If there is no such matching entry, the node processes and

retransmits the broadcast packet. If there is such an entry, the node silently discards the packet. 1

18

CHAPTER 4

NETWORK SIMULATOR

4.1 Overview

NS (version 2\).\\is an object-oriented, discrete event driven network simulator developed at 2]
Berkely. NS is primarily useful for simulating local and wide area networks.

Whritten in: C++ (core) , Python (bindings)

Platform: Unix, Mac OS X

It implements network protocols such as TCP and UDP, traffic source behavior such as FTP,
Telnet, Web, CBR and VBR, router queue management mechanism such as Drop Tail, RED and
CBQ, routing algorithms such as Dijkstra, and more. NS also implements multicasting and some of

the MAC layer protocols for LAN simulations.

=) DTFI i interpzfeter = -
with OO extentton Analysis
OTcl Script Simulation
Simulation NS Simulator Library Results
Program » Event Scheduler Cbyects Z)H
* Network Component Objects
: NAM
* Network Setup Helping Wetemri
Modules (Plumbing Modules) Animator

Figure 4.1: Simplified User's View of NS

As shown in Figure 4.1, in-a simplified user's view, NS is Object-oriented Tel (OTcl) script
interpreter that has a simulation event scheduler and network component object libraries, and
network setup (plumbing) module libraries (actually, plumbing modules are implemented as
member functions of the base simuliator object). In other words, to use NS, you program in OTcl
script language. To setup and run a simulation network, a user should write an OTcl script that

initiates an event scheduler, sets up the network topology using the network objects and the

19

plumbing functions in the library, and tells traffic sources when to start and stop transmitting
packetS through the event scheduler. The term "plumbing" is used for a network sctup, because
setting up a network is plumbing possible data paths among network objects by setting the
mheighbor' pointer of an object to the address of an appropriate objec.t. When a user wants to make
2 new network object, he or she can easily make an object cither by writing a new object or by
making a compound object from the object library, and plumb the data path through the object. This
—may sound like complicated job, but the plumbing OTcl modules actually make the job very easy.

The power of NS comes from this plumbing.

Another major component of NS beside network objects is the event scheduler. An event in NS is a
packet ID that is unique for a packet with scheduled time and the pointer to an object that handles
the event. In NS, an event scheduler keeps track of simulation time and fires all the events in the
event queue scheduled for the current time by invoking appropriate network components, which
usually are the ones who issued the events, and let them do the appropriate action associated with
packet pointed by the event. Network components communicate with one another passing packet,
however this does not consume actual simulation time. All the network components that need to
spend some sinmulation time handling a packet (i.c. need a delay) use the event scheduler by issuing
an event for the packet and waiting for the event to be fired to itself before doing further action
handling the packet. For example, a network switch component that simulates a switch with 20
microseconds of switching delay issues an event for a packet to be switched to the scheduler as an
event 20 microsecond later. The scheduler after 20 microsecond dequeues the event and fires it to
the switch component, which then passes the packet to an appropriate output link component.
Another use of an event scheduler is timer. For example, TCP needs a timer to keep track of a
packet transmission time out for retransmission (transmission of a packet with the same TCP packet
number but different NS packet ID). Timers use event schedulers in a similar manner that delay
does. The only difference is that timer measures a time value associated with a packet and does an

appropriate action related to that packet after a certain time goes by, and does not simulate a delay.

NS is written not only in OTcl but in C++ also. For efficiency reason, NS separates the data path
implementation from control path implementations. In order to reduce packet and event processing
time (not simulation time), the event scheduler and the basic network component objects in the data
path are written and compiled using C++.. One thing to note in the figure is that for C++ objects

that have an OTecl linkage forming a hierarchy, there is a matching OTcl object hierarchy very

similar to that of C++.

OTel

5 C++
Figure 4.2: C++ and OTcl: The Duality
Errent .‘
=cheduler ;
i
tclcl = .
5 9 |
otcl = g
0
=
tcls. 0

Figure 4.3: Architectural View of NS

Figure 4.3 shows the general architecture of NS. In: this figure a general user (not an NS develeper)
can be thought of standing at the left bottom corner, designing and running simulations in Tcl using
the simulator objects in the OTecl library. The event schedulers and most of the network components
are implemented in C++ and available to OTcl through an OTcl linkage that is implemented using
tclcl. The whole thing together makes NS, which is a OO extended Tcl interpreter with network

simulator libraries.

\ This section briefly examined the general structure and architecture of NS. At this point, one might
be wondering about how to obtain NS simulation results. As shown in Figure 4.1, when a
simulation is finished, NS produces one or more text-based output files that contain detailed

simulation data, if specified to do so in the input Tcl (or more specifically, OTcl) script. The data
21

- can be used for simulation analysis (two simulation result analysis examples are presented in later
sections) or as an input to a graphical simulation display tool called Network Animator (NAM) that
is developed as a part of VINT project. NAM has a nice graphical user interface similar to that ofa
CD player (play, fast forward, rewind, pause and so dn), and also has a display speed controller.
Furthermore, it can graphically present information such as throughput and number of packet drops

at each link, although the graphical information cannot be used for accurate simulation analysis.

E42 Simple Simulation Example

This section shows a simple NS simulation script and explains what each line does. Example 4.1 is
an OTcl script that creates the simple network configuration and runs the simulation scenario in

Figure 4.4

'iff;l_l[O node —— link [| agent

" g " i
tocp .2 traffic souce

asink

e G mem e G Sms mme Gus e mm mm wm e

udp

[T__I_TE:] pkt size: 1 kByte, rate: 1 mbps

e

ftn

Bl 4.0 4.5

Figure 4.4: A Simple Network Topology and Simulation Scenario

22 'l

Example 4.1: A Simple NS Simulation Script

#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows (for NAM)
$ns color 1 Blue
$ns color 2 Red

#0pen the NAM trace file
set nf [open out.nam w|
$ns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {
global ns nf
$ns flush-trace
#Close the NAM trace file
close $nf
#Execute NAM on the trace file
exec namout.namé&
exit 0

}

#Create four nodes
set n0 [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 2Mb 10ms DropTail
$ns duplex-link $nl $n2 2Mb 10ms DropTail
$ns duplex-iink $n2 $n3 1.7Mb 20ms DropTail

#Set Queue Size of Link (n2-n3) to 10
$ns queue-limit $n2 $n3 10

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $nl $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for the link (n2-n3). (for NAM)
$ns duplex-link-op $n2 $n3 queuePos 0.5

Setup a TCP connection

set tep [new Agent/TCP]

$tcp set class 2

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink]

23

$ns attach-agent $n3 $sink
$ns connect $tep Ssink
Step set fid 1

Setup a FTP over TCP connection
set fip [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type FTP

#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $nl $udp
set null [new Agent/Null]
$ns attach-agent $n3 $null
$ns connect $udp $null
$udp set fid 2

Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $Sudp

$cbr set type . CBR

$cbr set packet_size 1000

$cbr set rate 1mb

$cbr set random_ false

#Schedule events for the CBR and FTP agents
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start”
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"

#Detach tcp and sink agents (not really necessary)
$ns at 4.5 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3 $sink”

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Print CBR packet size and interval
puts "CBR packet size = [$cbr set packet_size "
puts "CBR interval = [$cbr set interval |"

#Run the simulation
$ns run

This network consists of 4 nodes (n0, nl, n2, n3) as shown in above figure 4.4. The duplex links
between n0 and n2, and nl and n2 have 2 Mbps of bandwidth and 10 ms of delay. The duplex link
between n2 and n3 has 1.7 Mbps of bandwidth and 20 ms of delay. Each node uses a DropTail

queue, of which the maximum size is 10. A “tcp” agent is attached to n0, and a connection is
24

E 3

established to a tep “sink” agent attached to n3. As default, the maximum size of a packet that a
“(cp” agent can generate is 1Kbyte. A tep “sink” agent generates and sends ACK packets to the
sender (tcp agent) and frees the received packets. A “udp” agent that is attached to nl is connected
to a “null” agent attached to n3. A “null” agent just frees the packets' received. A “ftp” and a “cbr”
traffic generator are attached to “tcp” and “udp” agents respectively, and the “cbr” is configured to
generate | Kbyte packets at the rate of 1 Mbps. The “cbr” is set to start at 0.1 sec and stop at 4.5

sec, and “fip” is set to start at 1.0 sec and stop at 4.0 sec.

4.3 Post Simulation

The following is the explanation of the script above. In general, an NS script starts with making a

Simulator object instance.

set ns [new Simulator]: generates an NS simulator object instance, and assigns it to
variable ns (italics is used for variables and values in this section). What this line does is the

following:

o Initialize the packet format
o Create a scheduler

o Select the default address format
The "Simulator" object has member functions that do the following

o Create compound objects such as nodes and links
o Connect network component objects created (ex. attach-agent)

o Set network component parameters (mostly for compound objects)
Create connections between agents (ex. make connection between a "tcp" and "sink")
Specify NAM display options

Most of member finctions are for simulation setup (referred to as plumbing functions in the

Overview section) and scheduling, however some of them are for the NAM display.

$ns color fid color: is to set color of the packets for a flow specified by the flow id (fid). This

simulation.

|
|
member function of "Simulator” cbject is for the NAM display, and has no effect on the actual |
|
|

T

$ns namtrace-all file-descriptor: This member function tells the simulator to record simulation
traces in NAM input format. It also gives the file name that the trace will be written to later by

the command

$ns flush-trace: Similarly, the member function trace-all is for recording the simulation trace in

a general format.

proc finish {}: is called after this simulation is over by the command $ns at 5.0 "finish". In

this function, post simulation process are specified.

set 70 [$ns node]: The member function node creates a node. A node in NS is compound
object made of address and port classifiers (described in a later section). Users can create a node
by separately creating an address and a port classifier objects and connecting them together.

However, this member function of Simulator object makes the job easier

$ns duplex-link nodel node2 bandwidth delay queue-type: creates two simplex links of
specified bandwidth and delay, and connects the two specified nodes. In NS, the output queue of
a node is implemented as a part of a link, therefore users should specify the queue-type when
creating links. In the above simulation script, DropTail queue is used. If the reader wants to use
a RED queue, simply replace the word DropTail with RED. The NS implementation of a link is
shown in a later section. Like a node, a link is a compound object, and users can create its sub-

objects and connect them and the nodes.

$ns queue-limit nodel node2 number: This line sets the queue limit of the two simplex links
that connect nodel and node2 to the number specified. At this point, the authors do not know
how many of these kinds of member functions of Simulator objects are available and what they

are.

$ns duplex-link-op nodel node2: The next couple of lines are used for the NAM display. To

see the effects of these lines, users can comment these lines out and try the simulation.

Now that the basic network setup is done, the next thing to do is to setup traflic agents such as
TCP and UDP, traffic sources such as FTP and CBR, and attach them to nodes and agents

respectively.

set t¢p [new Agent/TCP): This line shows how to create a TCP agent. But in general, users can

create any agent or traffic sources in this way. Agents and traffic sources are in fact basic

26

objects (not compound objects), mostly implemented in C++ and linked to OTcl. Therefore,
there are no specific Simulator object member functions that create these object instances. To
create agents or traffic sources, a user should know the class names these objects (Agent/TCP,
Agnet/TCPSink, Application/FTP and so on). This information can be found in the NS

documentation or partly in this documentation.

$ns attach-agent node agent: The attach-agent member function attaches an agent object
created to a node object. Actually, what this function does is call the attach member function of
specified node, which attaches the given agent to itself. Therefore, a user can do the same thing
by, for example, $n0 attach $tep. Similarly, each agent object has a member function attach-

agent that attaches a traffic source object to itself.

$ns connect agentl agent2: After two agents that will communicate with each other are
created, the next thing is to establish a logical network connection between them. This line
establishes a network connection by setting the destination address to each others' network and

port address pair.

Assuming that all the network configuration is done, the next thing to de is write a simulation
scenario (i.e. simulation scheduling). The Simulator object has many scheduling member

functions. However, the one that is mostly used is the following:

$ns at time "string": This member function of a Simulator object makes the scheduler
(scheduler is the variable that points the scheduler object created by [new Scheduler] command
at the beginning of the script) to schedule the execution of the specified string at given
simulation time. For example, $ns at 0.1"8cbr start"” will make the scheduler call
a start member function of the CBR traffic source object, which starts the CBR to transinit daia.
In NS, usually a traffic source does not transmit actual data, but it notifies the underlying agent
that it has some amount of data to transmit, and the agent, just knowing how much of the data to

transfer, creates packets and sends them.

After all network configurations, scheduling and post-simulation procedure specifications are done,

the only thing left is to run the simulation. This is done by $ns run.

|
27 }
|

4.4 Trace Analysis Example

This section shows a trace analysis example

Example 4.2 Trace Enabled Simple NS Simulation Script

#Open the NAM trace file
set nf [open out.nam w]

$ns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {
global ns nf

$ns flush-trace

#Close the NAM trace file

close $nf

#Execute NAM on the trace file

exec namout.nam

{ exit 0

Running the above script generates a NAM trace file that is going to be used as an input to NAM

and a trace file called "out.tr" that will be used for our simulation analysis. Figure 4.5 shows the

trace format and example trace data from "out.tr".

event time ﬁggﬁaﬂ ngge éjg}rixfe spikzte flags | fid ;c;:dcr addsdtr gfmq\ pilr?it
r : receive (at to_node)
+ : engueue (at queue) src_addr : node,port (3.0)
- 1 dequeus (at queue) dst_addr : node,port (0.0)
d + drop [at queue)

Flm358 el daan bisl)inrmmma 13700015201

+ 1.3556 2 (1 ack 40 ===m=r-- 1 30505015201

= L3562 (aNK 40 enarre 153303050818 3201

r=153b576: 02z op=1000 === Tzl 0549109

o1 557 a2 A bon Rl 0l pEsesae 180505370729 7199

o e e R s s et i A G e 1=z 0=ge iyl 59

e R TP (AN et DI e A I R

medoaShaliaeinhr o] () e e R e B U]

Figure 4.5: Trace Format Example

Each trace line starts with an event (+, -, d, r) descriptor followed by the simulation time (in
seconds) of that event, and from and to node, which identify the link on which the event occurred.
The next information in the line before flags (appeared as "------ " since no flag is set) is packet type
and size (in Bytes). Currently, NS implements only the Explicit Congestion Notification (ECN) bit,
and the remaining bits are not used. The next field is flow id (fid) of IPv6 that a user can set for
each flow at the input OTcl script. Even though fid field may not used in a simulation, users can use
this field for analysis purposes. The fid field is also used when specifying stream color for the NAM
display. The next two fields are source and destination address in forms of "node.port". The next
field shows the network layer protocol's packet sequence number. Note that even though UDP
implementations do not use sequence number, NS keeps track of UDP packet sequence number for

analysis purposes. The last field shows the unique id of the packet.

4.5 The AWK Command

The AWK utility is a data extraction and reporting tool that uses a data-driven scripting language.

consisting of a set of actions to be taken against textual data (either in files or data streams) for the

29

P I ——

T m
|

purpose of producing formatted reports. The language used by awk extensively uses the string data

type, associative arrays (that is, arrays indexed by key strings), and regular expressions.
The basic syntax of AWK:
awk ‘BEGIN {start_action} {action} END {stop_action}’ filename

Here the actions in the begin block are performed before processing the file and the actions in the
end block are performed after processing the file. The rest of the actions are performed while

processing the file.

-rw-r--r-- 1 center center 0 Dec 8 21:39 pl
-rw-r--r-- 1 center center 17 Dec 8 21:15 t1
-rw-r--r-- 1 center center 26 Dec 8 21:38 12
-rw-r--r-- 1 center center 25 Dec 8 21:38 t3
-rw-r--r-- 1 center center 43 Dec 8 21:39 t4
-rw-r--r-- 1 center center 48 Dec 8 21:39 t5

From the data, you can observe that this file has rows and columns. The rows are separated by a
new line character and the columns are separated by a space characters. We will use this file as the i

input for the examples discussed here.

1. awk'{print$1}'input_file
Here $1 has a meaning. $1, $2, $3... represents the first, second, third columns.. in a row
respectively. This awk command will print the first column in each row as shown below.

“rW-I- -1- -

-FW-I- -I'- -

~IW-I'= -1 =

-IW-I=- -1~ -

-FW-T- -1 -

-YW-T- -I'- -

To print the 4th and 6th columns in a file use awk ‘{print $4,$5}' input_file
Here the Begin and End blocks are not used in awk. So, the print command will be executed for

each row it reads from the file.

30 l

T M
|

2. awk 'BEGIN {sum=0} {sum=sum+$5} END {print sum}' input_file

This will prints the sum of the value in the 5th column. In the Begin block the variable sum is
assigned with value 0. In the next block the value of 5th column is added to the sum variable. This
addition of the 5th column to the sum variable repeats for every row it processed. When all the rows

are processed the sum variable will hold the sum of the values in the 5th column.

: 3. awk '{ if(39 == "t4'"") print $0;}' input_file

This awk command checks for the string "t4" in the 9th column and if it finds a match then it will

print the entire line. The output of this awk command is

-rw-r- -r- - 1 pcenterpcenter 43 Dec 8 21:39 t4

4. awk 'BEGIN { for(i=1;i<=5;i++) print "square of", i, "is",i*i; }' : &
This will print the squares of first numbers from 1 to 5. The output of the command is

square of 1is 1

square of 2 is 4

square of 3 is 9

square of 4 is 16

square of 5 is 25

31

CHAPTER 5

SIMULATION STRATEGY

For the simulation of the developed system, latest versiont 2.34 of NS-2 has been used in this
€ projectﬁ\ls-Z‘i's\a discrete event simulator targeted at networking research. It began as a part of the
REAL network simulator and is evolving through an ongoing collaboration between the University

of California at Berkeley and the VINT project.

5.1 Scenario

e Topology of 50*50and 500*500 is taken for simulation.

e Nodes have being generated randomly at random position leading to high density and low

density areas of nodes.

e No new node is entering into the topology.

® vingbha 0 L1CI¢

The simulation parameters are listed in Table 5. 1.

Simulation parameters

Parameter Value

Transmission Power (range in meties)

Simulator (NS-2 (Version 2.34))
Channel type Chanﬁel/Wireless channel
Radio-propagation model Propagation/Two ray round wave
Network interface type Phy/WirelessPhy
MAC Type Mac /802.11
Interface queue Type Queue/Drop Tail
Link Layer Type e
Antenna Antenna/Omni Antenna
Maximum packet in ifq 50
Area (-m*m) SOLESI)
Number of mobile node 20,50
Time of simulation end 50-150 seconds
50

Table 5.1: Simulation Parameters

2]

: 3 \

CHAPTER 6: SIMULATION GRAPHS

6.1SCENARIO: 1 .
Calculation of Packet Delivery Ratio, Average End to end Delay, Overhead

Area: 50%50 m® No. of Nodes: 20, 50
Simulation Time: 50seconds- 150 seconds Protocols: AODV, DSDV
Without mobility of nodes, with mobility: 1m/s, Sm/s, 10m/s

6.1.1WITHOUT MOBILITY
Packet Delivery Ratio: Total number of delivered data packets divided by total number of

; data packets transmitted by all nodes. This performance metric will give us an idea of how
well the protocol is performing in terms of packet delivery at different no. of nodes in the

network using different traffic speeds.

Y@ CBR received

Packet Deli Ratio =
acket Delivery Ratio 2.,.]} CBR sent
No of nodes: 20 \1
1-1 T T T L
AODV —— il
DSDV ¢
1t e
G s e e LV
B e e — e
% S e
TR) ReETs :
9o
¢
x
- 08-F
@
=
g o7t]
(&)
@
o
06 |
0-5 1 L 1 1 L
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.1.1: PDR_20

4

33

_

T

Packet Delivery Ratio (PDR)

Overhead

3 No of nodes: 50

1l : . T v .
AODV ——
DsSDV
1 r - _— i o uore g gl
_/ B G e 7//
0.9 F _ 1 :
0.8 B
0.7 e
0.6 | &
0.5 1 i I 1 i
40 60 80 100 120 140 160

number of packets sent.

No. of nodes: 20

Simulation Time (in sec)

Graph 6.1.1.2: PDR_50

f

Overhead: Routing overhead, which measures the ratio of total routing packets sent and the total . R

0.1 T T T v
Ay
Dsbb ————
0.08 7
;'/-_ =
7 = =
006 | - 7 \ :
N S X . i
TSR T e e T T e e == _M,.H-‘_Jﬂh""-v—h_.________m,‘_
0.04 3
0.02 | ' -
0 1 L 1 L L
40 60 80 100 120 140

Simulation Time (in sec)

~ Graph 6.1.1.3: Overhead _20

160

34 .

No. of nodes: 50

1 T L} T T T
AODYV ——
DsSDhvV
D8 F .
06 F 8
=
(]
@
=
a
=
| D 1
;
02 } 5 = 1
0 1 L i 1 i
40 60 80 100 120 140 160
Simulation Time (in sec) ?L"‘

Graph 6.1.1.4: Overhead _50

Average End to End Delay: Here are possible delays caused by buffering during route
discovery latency, queuing at the interface queue, retransmission delays at the MAC, and
propagation and transfer times. The thesis use Average end-to-end delay. Average end-to-end
delay is an average end-to-end delay of data packets. It also caused by queuing for transmission
at the node and buffering data for detouring. Once the time difference between every CBR
packet sent and received was recorded, dividing the total time difference over the total number
of CBR packets received gave the average end-to-end delay for the received packets. This
metric describes the packet delivery time: the lower the end-to-end delay the better the

application performance:

Y.1(CBR sent time—CBR receive time)
Y1 CBR receive packets

Average End to End Delay =

35

E 2

No.

Average End-to-End Delay

No of nodes: 20

of nodes: 50

Average End-to-End Delay

2 T T T T
AODV s G
DSDV
1.5 d
1 e |
0Bk i
\\\x\\‘ /, £ \\"-;_::\\
0 : el
40 100 120 140 160
Simulation Time (in sec)
Graph 6.1.1.5: End to End Delay _20
2 T L} T T T
AODV
DSDV ———
15 | A
A o] |
05 | i
=== e
0 e T R,
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.1.6: End to end Delay _50

M

36

6.1.2 WITH MOBILITY
1. Packet Delivery Ratio

No of nodes: 20; Speed: 1m/s

1.1

ADDNV =
DSDV -

Q9= o

0.7 |

Packet Delivery Ratio (FDR)
o
@

0‘5 L L A i i I‘;|
40 60 80 100 120 140 160 %,

Simulation Time

Graph 6.1.2.1: PDR_20_1 i
No of nodes: 20; Speed: Sm/s

1.1 T T T T

AC [NV it
DEENV, St

09 F .

08 | .

0.7 _F .

Packet Delivery Ratio

06 4

0-5 i i I i L
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.2.2: PDR_20_5

37

7 i-"

No of nodes : 20 ; Speed: 10m/s
1 i B T T T T
AOCDV ——
DsSDV
i bt me =i e ey e She e 2 |
ST Re R
’@g i A L i S b A e e
Az 0.9 4k]
j =)
1 ©
(1%
B0k : }
[4}]
=
a)
- Ut 3
Q
©
] o
06 } R
0'5 1 1 1 i 1
40 60 80 100 120 140 160
Simulation Time (in sec) 4,
Graph 6.1.2.3: PDR_20_10 \
|
No. of nodes: 50; Speed: 1m/s
1.1 T T T T T
AODYV ———
DSDV ——
1t i
& i —
o _"\ N~—
3 ey o -
12 \ . -
g ek B Wi .
@ 5,
= N :
= A
O
L 0.7k 3
(&]
(¢
4%
06 |] |
05 L 1 1 i i
40 60 80 100 120 140 160
Simulation Time (in sec)
Graph: 6.1.2.4: PDR_350_1
38
i i
A

: |

i b M b b

No of node: 50; Speed: 5Sm/s

Packet Delivery Ratio (PDR)

Packet Delivery Ratio (PDR)

131 T T T
Ar e
DBEV ———
1 F g
f,f’\
09 | o e |
= \\// \'\.\
A~]
0.8 | B |
0.7 | 4
06 | 2
0.5 1 1 i L 1
40 60 80 100 120 140 160
Simulation Time (in sec)
Graph 6.1.2.5: PDR_50_5
No of node: 50; Speed: 10m/s
bk T T ; '
AODYV ——
DSy ———
1=k E
i
N\ .
\ g : —
\ S A z B i
08 r L I— .
07—}]
06 F
0.5 L 1 L i I
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.2.6: PDR_50_10

39

3
- 2. Overhead

No of nodes: 20; Speed: 1m/s

01 . : e :

. AL DM s s
i DSDV
|
j 0.08 | i
&
|
| 0.06 | 1
(0]
@
A o=
ress o @ =
& > e e
i | R ey AL |
| 0.02 | 5
0 1 1 I L 1 AN
40 60 80 100 120 140 160 \
Simulation Time (in sec) : 'I,f
Graph 6.1.2.7: Overhead _20_1
No of nodes: 20; Speed: Sm/s
0.1 ' - .
AODV —
DSDV -
0.08 | 1
0.06 | : 4
3 R ——— — - ———
=) 2
QL
=
0:3 = S T T e
O O04F 1
| 0.02
r
‘ 1
|
0 L 1 L 1 1
40 60 80 100 120 140 160
J Simulation Time (in sec)
] Graph 6.1.2.8: Overhead _20_5
| i
1 40 |

No of nodes: 20; Speed: 10m/s

0.1 : ; : . ;
A

DSDV -

0.08 | -

3 0.06 ' = = 1

0.04 .

Overhead

oy W— !

0.02 | i

0 1 1 1 L 1L
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.2.9: Overhead 20 10 \

No of nodes 50; Speed: 1m/s
0.25 T T T T

AODV
DRV s

021 -

Overhead

o
o)
[§)]

0 L i L 1 Il
| 40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.2.10: Overhead _50_1
41

i

b ot e i LG h e oo

et

No of nodes: 50; Speed: Sm/s

0.25 ' T T . T
AODYV ——
DSDV —
0.2 F 1
015+ 1
e
(0
[4F]
=
[
=
St (] !
0.05 i i
0 1 1 i L 1
40 60 80 100 120 140 160

Simulation Time (in sec)

Graph 6.1.2.11: Overhead_50 5

No of nodes: 50; Speed: 10m/s

0.25 : . : :
AGHY e
DErN
Do, i
VRl : Gisce :
b
[«}]
L6
a
=
2] o=t 1
0.05 } 3
4
0 i i L L L
40 60 80 100 120 140 160

Simulation Time (in sec)
Graph 6.1.2.12: Overhead _50_10

42

3. Average End to End Delay
i No of nodes: 20; Speed: 1m/s

05 . . T .

AODV
DsSDV
04 |]
@
(1}
E 2
| 2. 03t .
i L
1=
©
[==
]
ey ol @ (3 s el]
o
@
q o
< 2 =
! = . o |
R B e =
B o H""f-,. /'/‘ = o \\‘
0 : .\'/.\\\w’”‘.“;\.
40 60 80 100 120 140 160
Simulation Time (in sec) "ss
Graph 6.1.2.13: E2ED 20 1 : ,«f
No of nodes: 20; Speed: Sm/s
0|5 T T T T T
AODV ———
04 .
&
[«3) \
0
o .
w
=
o
| =
L
i 02 } 3
S
o
| I = :
1 | = i
__";“—*\._\ . -\‘-"\--" o Sl
0 i il N—
40 60 80 100 120 140 160 .
. Simulation Time (in sec) |
1 ~ Graph 6.1.2.14: E2ED_20_5 |
43

T : m

No of nodes: 20; Speed: 10m/s

AODV
DSDV
o= i
@
@
0
‘1 E 03 B -
] uJ
=
ke
o
| @ 0.2
| &
| g
2 <
. 01—+
| e
| 0 - : : \f/\\ :
| 40 60 80 100 120 140 160
Simulation Time (in sec)
Graph 6.1.2.15: E2ED_20_10
No of nodes: 50; Speed: 1m/s j".".
: i
0.5 . ; . ;
f AODV ——es
: DSV ————
| 0.4 | .
i >
P
| @
| O
Bt gul !
| LUl
i o)
| <
| &
= Oi2=[1
| [@)]
| o
| @ |
| 0A—k -
; 40 60 80 100 120 140 160

Simulation Time (In sec)
Graph 6.1.2.16: E2ED 50 _1

44 !

N
No of nodes: 50; Speed: Sm/s
0-5 T T T T
j AODV ——
; BERY
|
]
! 0.4 ¢ 5
| >
| ©
‘»
: &)
—F 2 03¢ 1
i L
S
©
k&
T T;L' @ D2 .
i o
=
<
0.1
0 e 1 - T e T e ey -
40 60 80 100 120 140 160
Simulation Time (in sec) 4!
Graph 6.1.2.17: E2ED_50_5 : '
J
’! No of nodes: 50; Speed: 10m/s
0:5 T T T T T
AODV —
pEDYV. ——
0.4 | i
>
L)
@
Q
203
Ly
(&
41-'
e
(&
5 0.2 | -
o
=
o 3
0.1 | N .
e
g\\\“ /ﬁ\\‘{;:___.."':“.r .-.\--‘-uj_“ = ‘.7“‘7::‘7,,, — —— ,._..‘_.“\\.
0 R s il \\/ i
40 60 80 100 120 140 160

Simulation Time (in sec)
Graph 6.1.2.18: E2ED _50_10

§ =

P—» ~

6.2 SCENARIO: 2
Calculation of Packet Delivery Ratio
Area: 500%500 m*
No. of nodes: 50
Protocols: AODYV, DSDV
Data rate: 1mbps, Smbps,10mbps
Simulation Time: 600 seconds-1800 seconds

Data rate: 1lmbps

r-y 1 1 L I
ADDN e
e DSDV St
Ma—-ﬁ_q_i_‘.;:‘:“_ ————— —— Sl - il g
08 } et i
o
4
g 6
[0F - J '\
>
@ {:
2
@
=)
E, 0.4 d
(@]
©
o
0.2 i
O 1 1 L 1
5 10 155 20 2D 30

simulation Time (in min)
Graph 6.2.1: PDR_DR1

Data Rate: Smbps

Paclcet Delivery Ratio

0.8

0.6

0.4

8 7.

Data Rate: 10mbps

Packet Delivery Ratio

0.6

0.4

o

T ADDV et —
;:::‘_\': ,,,,,,,, ;H _—_:,,, T e g e DSDV
5 \-‘"""a _7_ = i
"‘*-»—-——_m ——]
: " 15 20 25 30

Simulation Time (in min)
Graph 6.2.2: PDR_DRS .

15 20 25 30

Simulation Time (in min)
Graph 6.2.3: PDR_DR10

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

The analysis shows that routing is very important factor for estimating the system
performance. In an adhoc network, the topology dynamically changes, and traditional routing
algorithm cannot satisfy its requirement hence a lot of research is needed to extend the

existing routing algorithm and study its behavior in different scenarios.

In our pro;ect jwe have compared the performance of routing protocols with respect to
metrics: time, no. of nodes, and mobility of nodes. The results indicate the performance of

AODV is superior to DSDV.

The graphs for packet delivery ratio shows that receiving throughput for TCP packets that is
almost constant (near about to 98%) in the time range of 50 to 150 for AODV protocol is
higher than DSDV. With increasing number of nodes PDR for both the protocols i
decreasing. Speed of node has less impact on PDR. As the simulation is run for a longer time

(5min-30min), the Packet Delivery Ratio of both the protocols staits to fall.

AODV perform better undes high mobility simulations than DSDV. High mobility results in
frequent link failures and the overhead involved in updating all the nodes with the new
routing information as in DSDV is much more than that involved AODV, where the routes
are created as and when required. AODV use on _demand route discovery, but with different
routing mechanics. AODV uses routing tables, one route perdestination, and destination
sequence numbers, a mechanism to prevent loops and to determine freshness o routes. The

graphs also indicate a change in overhead with increasing number of nodes.

DSDV exhibits longer end to end delay all the time irrespective of node mobility compared
to AODV. There comes (o be no change i end to end delay with speed but with increasing

number of nodes end to end delay is increasing as the network becomes congested.

In continuation of our research it would be very interesting to evaluate other protocols such

as DSR and TORA and there performance compared to DSDV and AODV. Research on new

48

B e

simulation environment and calculating other performance parameters could also be

undertaken.

49

APPENDIX

Define options
setval(chan) Channel/WirelessChannel ;# channel type
setval(prop) Propagation/TweoRayGround ;# radio-propagation model

setval(netif)y Phy/WirelessPhy ;# network interface type
setval(mac) Mac/802 11 # MAC type

setval(ifq) Queue/DropTail/PriQueue ;# interface queue type
setval(ll) LI ;# link layer type

setval(ant) — Antenna/OmniAntenna J# antenna model
setval(ifglen) 50 ;# max packet in ifq

setval(nn) 50 ;# number of mobilenodes
setval(rp) AODV ;# routing protocol
setval(x) 500 ;# X dimension of topography
setval(y) 500 ;#Y dimension of topography
setval(stop) 1800 ;# time of simulation end
setval(Pt) 50 ;#Transmission Power/Range in meters

set ns [new Simulator]
settracefd [open simple.tr w]
setnamtrace [open simwrls.nam w]

$ns trace-all $tracefd
$ns namtrace-all-wireless $namtrace $val(x) $val(y)

set up topography object
settopo [new Topography]
$topoload flatgrid $val(x) $val(y)

create-god $val(nn)

configure the nodes

$ns node-config -adhocRouting $val(rp) \
Type $val(1l) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \

-TransmissionRange $val(Pt)\

-topolnstance $topo \
-ageniTrace ON \
-routerTrace ON \
-macTrace OFF \

-movementTrace ON

for {seti0} {$i<$val(nn) } {incri} {
set xx [expr rand()*500]
setyy [expr rand()*400]
set n($i) [$ns node]
$n($i) set X $xx
$n($i) set Y Syy
$n($i) set Z_ 0.0
#Phy/WirelessPhy set Pt =7.214e-4; #100 meters

}

Set a TCP connection between n(2) and n(11)
settcp [new Agent/TCP]

$tep set class 2

set sink [new Agent/TCPSink]

$ns attach-agent $n(2) $tep

$ns attach-agent $n(11) $sink

$ns connect $tep $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$fip start"

set udp0 [new Agent/UDF]
$ns attach-agent $n(2) $udp0

set cbr0 [new Application/Traffic/CBR]
#$cbr0 set packetSize 500

#$cbr0 set interval 0.0005

$cbr0 attach-agent $udp0

Set a TCP connection between n(10) and n(8)
settcp [new Agent/TCP]

$tep set class 2

set sink [new Agent/TCPSink]

$ns attach-agent $n(10) $tcp

$ns attach-agent $n(8) $sink

$ns connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$fip start"

set udpl [new Agent/UDP]
$ns attach-agent $n(10) $udpl

set cbrl [new Application/Traffic/CBR]
$cbrl set packetSize 500

$cbrl set interval_ 0.0005
$cbrl attach-agent $udpl

51

Set a TCP connection between n(12) and n(17)
settcp [new Agent/TCP]

$tcp set class_ 3

set sink [new Agent/TCPSink]

$ns attach-agent $n(12) $tcp

$ns attach-agent $n(17) $sink

$ns connect $tep $sink

set ftp [new Application/FTP]

$ftp attach-agent $tep

$ns at 1.0 "$ftp start"

set udp2 [new Agent/UDP]
$ns attach-agent $n(12) $udp2

set cbr2 [new Application/Traffic/CBR]
#$cbr2 set packetSize 500

#$cbr2 set interval 0.0005

$cbr2 attach-agent $udp?2

Set a TCP connection between n(20) and n(40)
settep [new Agent/TCP]

$tcp set class 4

set sink [new Agent/TCPSink]

$ns attach-agent $n(20) $tep

$ns attach-agent $n(40) $sink

$ns connect $tep $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$ftp start”

set udp3 [new Agent/UDP]
$ns attach-agent $n(20) $udp3

set cbr3 [new Application/Traffic/CBR]
#$cbr3 set packetSize 500

#$cbr3 set interval _ 0.0005

$cbr3 attach-agent $udp3

Set a TCP connection between n(25) and n(1)
settcp [new Agent/TCP]

$tep set class_ 5

set sink [new Agent/TCPSink]

$ns attach-agent $n(25) $tcp

$ns attach-agent $n(1) $sink

$ns connect $tep $sink

set fip [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$fip start"

set udp4 [new Agent/UDP]
$ns attach-agent $n(25) $udp4

set cbr4 [new Application/Traftic/CBR]
#$cbr4 set packetSize 500

#$cbr4 set interval 0.0005

$cbrd attach-agent $udp4

Set a TCP connection between n(45) and n(39)
settcp [new Agent/TCP]

$tep set class 6

set sink [new Agent/TCPSink]

$ns attach-agent $n(45) $tcp

$ns attach-agent $n(39) $sink

$ns connect $tep $sink

set fip [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$ftp start"

set udp5 [new Agent/UDP]
$ns attach-agent $n(45) $udp5

set cbr5 [new Application/Traffic/CBR]
#$cbr5 set packetSize 500

#$cbr5 set interval 0.0005

$cbr5 attach-agent $udp5

Set a TCP connection between n(29) and n(30)
settcp [new Agent/TCP]

$tep set class_ 7

set sink [new Agent/TCPSink]

$ns attach-agent $n(29) $tcp

$ns attach-agent $n(30) $sink

$ns connect $tcp $sink

set fip [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$ftp start"

set udp6 [new Agent/UDP]
$ns attach-agent $n(29) $udp6

set cbr6 [new Application/Traffic/CBR]
#8cbr6 set packetSize 500

#$cbr6 set interval 0.0005

$cbr6 attach-agent $udp6

#$ns at 0.0 "$n(0) setdest 49 435 5"
#$ns at 0.0 "$n(1) setdest 100 250 5"

#Destination procedure..
$ns at 0.0 "destination"
proc destination {} {
global ns val n
set time 1.0
set now [$ns now]
for {seti0} {$i< $val(nn) } {incri} {
set xx [expr rand()*490]
setyy [expr rand()*490]
#tset s [exprrand()*10]
$ns at $now "$n($i) setdest $xx $yy 1"

}

#$ns at [expr $now + Stime] "destination"

}

Define node initial position in nam
for {seti0} {$i<$val(nn) } {incri} {
20 defines the node size for nam

$ns initial node pos $n($i) 20

1

Telling nodes when the simulation ends
for {seti0} {$i< $val(nn) } {incri} {
$ns at $val(stop) "$n($i) reset”;

}

ending nam and the simulation

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"
$ns at $val(stop) "stop"

$ns at 1800.1 "puts \"end simulation\" ; $ns halt"

#Graph procedure..

$ns at 1.0 "Graph"

set g [open simple.tr w]

proc Graph {} {

global ns g

set time 1.0

set now [$ns now]

puts $g "[expr rand(}*8] [expr rand()*6]"

$ns at [expr $now+$time] "Graph"

}

proc stop {} {

54

global ns tracefdnamtrace
$ns flush-trace
close $tracefd
close $namtrace
exechamsimwrls.nam&
exit 0

}

$ns run

REFERENCES
[1] Alex Ali Hamidian “A study of Internet Connectivity for Mobile Ad-hoc Networks” Department

of Communication Systems Lund Institute of Technology, Lund University Sweden, January 2003

[2] Charles E. Perkins and Elizabeth M. Royer. “Ad hoc on-demand distance vector routing.”In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pages
80 —100. IEEE, February 1999.

[3] David B. Johnson. “Routing in Ad Hoc Networks of Mobile Hosts”. In Proceedings of the I[EEE
Workshop on Mobile Computing Systems and Applications, pages 158—163.IEEE Computer
Society, December 1994.

[4] Vijayalakshmi M. et. al. QOS PARAMETER ANALYSIS ON AODV AND DSDV
PROTOCOLSIN A WIRELESS NETWORK / Indian Journal of Computer Science and
EngineeringVol. 1 No. 4 283-294

[5] David A. Maltz, Josh Broch, and David B. Johnson.” Experiences Designing and Building a
Multi-Hop Wireless Ad Hoc Network Testbed”. Technical Report CMU-CS-99-116, School of

Computer Science, Carnegie Mellon University.

[6] David A. Maltz, Josh Broch, Jorjetaletcheva, and David B. Johnson. “The Effects ofOn-
Demand Behavior in Routing Protocols for Multi-HopWireless Ad Hoc Networks” ./EEE Journal
on Selected Areas of Communications, 17(8):1439-1453, August 1999. Pittsburgh,
Pennsylvania,March 1999.

[7] M.S.Corson and A. Ephremides.“A Distributed Routing Algorithm for Mobile Wireless
Networks.”ACM / Baltzer Wireless Networks Journal 1(1):61-82, February 1995.

[8] Gafni and Bertsekas. “Distribuied Algorithms for Generating Loop-free Routes in Networks
with Frequently Changing Topclogy” .JEEE Transactions on Communications 29(1):11-15, January
1981.

[9] Schiller J. Mobile Communications,2000.

[10] V. Park and M.S. Corson. “A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks.”In Proceedings of IEEE INFOCOM 97, April 1997.

[11] V.Ramesh et al.Performance Comparison and Analysis of DSDVand AODV for MANET /
(IJCSE) International Journal on Computer Science and EngineeringVol. 02, No. 02, 183-188, 2010

[12] Wakikawa R.; Malinen J.; Perkins C.; Nilsson A.; Tuominen A.J. Global Connectivity for I[Pv6
Mobile Ad Hoc Networks, IETF Internet Draft, November 2001.

[13] http://www.monarch.cs.cmu.edu/

[14] http://www.isi.edu/nsnam/ns/

[157 http://nsnam.isi.edu/nsnam/index.php/Main Page
[16] http://en.wikipedia.org/wiki/Ns_(simulator)

[17] http://nile.wpi.edu/NS/

[18] http://en.wikipedia.org/wiki/ AWK

[19 Jhttp://www.folkstalk.com/2011/12/good-examples-of-awk-command-in-unix. html

