JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 11M1WCE133 (3)

MAX. MARKS: 15

COURSE NAME: BRIDGE ENGINEERING

COURSE INSTRUCTORS: Dr. KAUSHAL KUMAR

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.N o	Question	C O	Mark s
Q1.	Classify bridges based on structural form and explain any three types with suitable examples.		2
Q2.	A highway bridge is to be constructed over a wide river with a navigational requirement. The site is in an earthquake-prone zone with strong winds and variable water levels. Suggest the most suitable type of bridge for this location and justify your answer.		2
Q3.	Rain falls on a 250 ha composite catchment which drains two subareas as follows: (1) Subarea X , steep, draining 30% with concentration time 10 min and $C = 0.75$ and (2) Subarea Y , mild, draining 70% with concentration time 60 min and $C = 0.35$. Calculate the peak runoff corresponding to 25-year frequency. Use the following IDF function: $I = \frac{1000T^{0.2}}{(t_r + 20)^{0.7}}$ where $I = \text{rainfall}$ intensity in mm/h, $T = \text{return}$ period in years, and $t = \text{rainfall}$ duration in minutes. Assume linear concentration at the catchment outlet		3
Q4.	The approximate costs of one superstructure and one pier for a multispan bridge are given below. Estimate the economic span Span (m) Superstructure Cost (Rs) Sub-structure Cost (Rs) 15		2
Q5.	Design the waterway for a bridge over a trapezoidal channel having the side slope of 1:1 with a discharge of 30 cumecs, bed fall of 1:1200 and a bed width to depth ratio of 5:1. The bed material can withstand a safe velocity of 2.5 m/s. The afflux is limited to 10 cm. Take Manning coefficient $n = 0.025$.		
Q6.	A stream with hard banks has a width of 80 m. Its bed is alluvial ($f = 1.1$) and discharge through the section is 500 m ³ /s. Calculate the maximum scour depth under the bridge having a single span of 50 m.		

Helpful Formulas:

Rational formula for Peak Discharge:	Q = 0.273CIA
• Kirpich formula for t_c	$t_c = \frac{0.06628L^{0.77}}{S^{0.385}}$
Hathaway formula for t _c	$t_c = \frac{0.606(Ln)^{0.467}}{S^{0.234}}$
Molesworth formula for Afflux	$x = \left(\frac{v^2}{17.9} + 0.015\right) \left(\frac{A^2}{a^2} - 1\right)$
Marriman's formula for Afflux	$x = \frac{v^2}{2g} \left[\left(\frac{A}{Ca} \right)^2 - \frac{A}{A_1} \right]$
Drown Weir formula for Afflux	$x = \frac{v^2 d^2}{2g(d+x)^2} \left[\frac{L^2}{C^2 L_1^2} - 1 \right]$
Normal scour depth for alluvial streams	$d = 0.473 \left(\frac{Q}{f}\right)^{1/3}$
Normal scour depth for Quasi-alluvial streams, when the width of the stream is very large compared to the depth.	$d = \frac{1.21Q^{0.63}}{f^{0.33}w^{0.60}}$
Normal scour depth for streams, when the With constriction	$d' = d\left(\frac{w}{L}\right)^{0.61}$