JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-VI Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 3

MAX. MARKS: 15

COURSE NAME: Computer Networks

COURSE INSTRUCTORS: Hari Singh, Nancy, Kuntal, Rakesh Kanji, Praveen Modi

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1(a)	For n devices in a network, what is the number of cable links required	CO1	1
	for a mesh, ring, bus, and star topology?		
(b)	Briefly describe the jobs and responsibilities of Physical Layer in the	CO1	3
	TCP/IP Model.		
Q2(a)	Identify the five components of a data communications system?	CO1	1
(b)	Which line coding method among Unipolar and Polar is inefficient for	CO2	2
i	transmitting long sequences of 1's or 0's? Which method is best suited		
	for handling such sequences? What issues can arise when sending		
03	continuous 1's or 0's in a transmission?	CO2	3
Q3	Consider the scenario in the figure, in which (from the bottom up) three hosts and a local logging server (that stores information that is	CO2	
	sent to it) are connected to a router and to each other by a 100 Mbps		
	link, with an near-zero ms propagation delay. That router in turn is		
	connected to another router over a 30 Mbps link with a 50 ms		
	propagation delay, and that latter router is connected to two remote		
	logging servers, each over a 20 Mbps link with a 10 ms propagation		
	delay.		
	20 Mbps		
	10 ms prop. delay		
N	30 Mbps		
* -,	50 ms prop. delay		
	100Mbps		
	0 ms prop. delay		
	Suppose a host sends a logging message directly to one of the remote		
	logging servers. The logging message is 10K bits long. What is the		

	end-to-end d by the host to request goes and that node				
Q4	Ten 9600-bp overhead bits utilization up is the capacit	CO2	2		
Q5	destination o	e equal-size datagrams belonging to the same message leave for the ination one after another. However, they travel through different is as shown in Table.			
	Datagram	Path Length (KM)	Visited Switches	\$ 140°	
	2	3200 11700	1, 3, 5 1, 2, 5		
	3	12200	1, 2, 3, 5		
	4	10200	1, 4, 5		
	We assume processing) is propagation sthe destination transmission.				