JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- 2025

B.Tech. - VI Semester (IT/MIT)

COURSE CODE (CREDITS): 18B11CI613 (3)

MAX. MARKS: 15

COURSE NAME: Data Mining

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Calculator is allowed.

	- Market						
Q. No.			Quest	ion		CO	Marks
Q1.	a. Analyze the key characteristics of a data warehouse and evaluate how it					CO1	[3]
	supports the KDD process in extracting valuable insights for decision-						
	making.					,	
	b. Consider the data: 25, 30, 45, 50, 60. Apply Min-Max normalization						[2]
	method on this data to scale the values between 1 and 1.						
Q2.	a. Consider two text documents represented as term frequency vectors in					CO3	[2]
Ψ2.	a 6-dimensional space:						[[2]
	Doc1 = $(2,3,0,5,7,1)$, Doc2 = $(4,1,2,6,3,2)$						
	Compute the cosine similarity of these two documents. Also interpret						·
	the results.						
							[2]
	b. Consider the daily step count (in thousands) of two fitness enthusiasts over five days:						[2]
	Person A = (7, 10, 12, 9, 11), Person B = (8, 9, 14, 10, 12) Comp						
	the Manhattan distance between their step counts. Interpret the results						
	in terms of the similarity of their physical activity levels.					004	F03
Q3.	the drawbacks of choosing a value of k that is too small?					CO4	[2]
							F 43
3	b. Given the dataset below, apply ID3 algorithm to determine the root						[4]
P.	node for the decision tree.						
	1	Age	Income	Buy Product?	-		
	3	Young	High	No			
		Young	Low	Yes			
		Middle	High	Yes			
		Middle Old	Low	Yes Yes			
		Old	High Low	No			
		Olu	LOW	110	J		
	I						<u> </u>