JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-IV Semester (CSE/IT/BT/BI)

COURSE CODE (CREDITS): 18B11CI412(3)

MAX. MARKS: 15

COURSE NAME: Design and Analysis of Algorithms

COURSE INSTRUCTORS: Dr. Aman Sharma, Dr. Arvind Kumar, Mr. Ravi Sharma, Mr.

Saurav Singh

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

O N	Ques	tion	CO	Marks
Q. No.	Calculate the time complexity of the	ne below mentioned codes:	1	4*1
Q1	<pre>c. def fun(n,m): arr=[[0]*m for i in range(n)] for j in range(m): k=1 while k<n*m: k*="2</pre"></n*m:></pre>	<pre>below mentioned codes: b. void fun(int n) { int i = 1; while (i < n) { int j = n; while (j > 0) { j = j / 2; } i = i * 2; } } d. void fun(int n) { int k = 0; for (int i = n; i > 0; i = i / 2) { for (int j = 0; j < i; ++j) { ++k; } } cout << k << endl; }</pre>		4*1

Q2	I FING THE TIME COMPLEYITY Of the requirement relation value 19 19			
•	Find the Time Complexity of the recurrence relation using 2 3 Substitution Method.			
	T(n) = 2T(n-1)-1, if $n>0$,			
	1, Otherwise			
Q3	Solve the recurrence relation using Master Theorem T(n)= 2 2			
	$2T(\sqrt{n}) + \log(n)$			
Q4.	Given an integer array of size N, we want to check if the array is 1 2			
	sorted (in either ascending or descending order). An algorithm solves			
	this problem by making a single pass through the array and comparing			
	each element of the array only with its adjacent elements. What will			
	be the worst-case time and space complexity of an algorithm?			
Q5.	A company monitors the stock price changes over 7 consecutive days, 3 4			
	represented by the array: [4, -1, 2, 1, -5, 4, 3]. The company wants to			
	identify the period with the maximum profit by selecting a continuous			
	subsequence of days.			
	Overthouse			
	Question:			
	Based on the given stock price changes:			
	1. Identify the subarray that provides the maximum profit.			
	2. What is the maximum sum of this subarray?			
	3. Briefly describe how Kadane's Algorithm can efficiently solve			
	this problem.			
	4. What is the time and space complexity of your algorithm.			
	The same and space complexity of your argorithms.	i		