JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION-2025

B.Tech-VI Semester (CS&IT)

COURSE CODE (CREDITS): 20B1WCI732 (2)

MAX. MARKS: 15

COURSE NAME: From Graph to Knowledge Graph

COURSE INSTRUCTORS: Ravindara Bhatt

MAX. TIME 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q.No	T	Ouestion /	CO	Marks
Q1	a)	The following statement may or may not be correct. In each case, either prove it (if		3
		it is correct) or give a counterexample (if it isn't correct). Always assume that the		
		graph G = (V, E) is undirected. Do not assume that edge weights are distinct unless		
		this is specifically stated. Let e be any edge of minimum weight in G, then e must		
		be part of some MST. [CO 1]	 	
	b)	Show how to find the maximum spanning tree of a graph, that is, the spanning tree		
		of largest total weight. [CO1]		
	c)	Every Eulerian simple graph with an even number of vertices has an even number		
		of edges. Prove or disprove [CO1]		
Q2	a)	Which of the following are graphic sequences? Provide a construction or a proof of	1	3
		impossibility for each. i. (4, 4, 3, 3, 2, 1, 1, 0) ii. (5,5,5,4,2,1,1,1) [CO 1]		
	b)	An orientation of a graph G is a digraph D obtained from G by choosing an		
		orientation (x > y or y -> x) for each edge xy E E(G). An oriented graph is an		
		orientation of a simple graph. A tournament is an orientation of a complete		
		graph Consider the following algorithm whose input is a tournament T.		
		Select a vertex x in T.		
in.	Mary No.	i. If x has indegree 0, call x a king of T and stop.		
	100	i. Otherwise, delete {x} U N ⁺ (x) from T to form T'.		
1	D	i. Run the algorithm on T'; call the output a king in T and stop. ve that this algorithm terminates and produces a king in T. [CO 1]		
ļ	PTO	ve that this algorithm terminates and produces a king in 1. [CO 1]		
		OR		
		Design a linear-time algorithm for the following task.		
		Input: A connected, undirected graph G.	İ	
		Question: Is there an edge you can remove from G while still leaving G connected?		

	Can you reduce the running time of your algorithm to O(V)?		
Q3	a) Let T be a tree with average degree a. In terms of a, determine n(T). [CO 1] b) Compute the diameter and radius of the biclique K _{mn} . [CO1]	1	3
	OR		
	Prove that every graph with diameter d has an independent set at least $(1+d)/2$ vertices. [CO1]		
	c) Let T be a minimum-weight spanning tree in a weighted connected graph G. Frove that T omits some heaviest edge from every cycle in G. [CO1]		
	OR OR		}
	Let G be a rooted tree where every vertex has 0 or k children. Given, k for what values of n(G) is this possible? [CO1]		
Q4	State True or False? Justify your answer? [CO3] a) RDF does not uniquely identify instances of relationship of the same type. b) The process of associating a statement and a specific resource representing the statement is formally called reification. c) Simple ntriples notation has a set of triples terminated by a periods, where URI's are inside angle brackets d) Simple ntriples notation has a set of triples terminated by a bracket, where URI's are inside angle brackets. e) Wikipedia is a knowledge graph. f) The number of triplets in the RDF example given below is:	3	3
Q 5	 a) Find all pairs of people who are exactly 2 hops away from each other in the Movie graph (Cypher Query). [CO3] b) Create a new person node with the name "Student_1" and the born year 2004, and then add the label "Student" to the node (Cypher Query). [CO3] c) How can you create a new movie node with the label "Animation" and the title "Toy Story1", and also set the release year to 2025, but only if it doesn't already exist (Cypher Query)? [CO3] 	3	3