JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025 B.Tech- IV Semester (ECE) COURSE CODE (CREDITS): 18B11EC411 (3) MAX. MARKS: 15 COURSE NAME: ANALOG INTEGRATED CIRCUITS COURSE INSTRUCTORS: Dr. Shruti Jain MAX. TIME 1 Hour Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems | ON | Jor solving problems | | | |----------|---|--------|-------| | Q.No. | | CO | Marks | | Q1
Q2 | i. For a given op-amp PSRR = 70dB, CMRR = 10⁵, Ad = 10⁵ Calculate the numerical value of PSRR. ii. If the output voltage changes by 20V in 40 μsec. Evaluate Slew rate. iii. Help Sita in drawing current mirror circuit using dual input and single output differential output. iv. Shyam wants to evaluate input impedance of level translator circuit? Help in evaluating the same and also explain each terminology used in the formula. v. Draw the different configurations of an open loop operational amplifier. i. Determine the output voltage of the content of the interval of | [CO 2] | 5 | | Q2 | =200μV, V₂= 160μV. The amplifier has differential gain of 4000 and the value of CMRR is 150. ii. Explain block diagram representation, ideal conditions, and equivalent circuit of an operational amplifier. | [CO 2] | 2+3 | | | i. If $I_{E1} = I_{E2} = 144.87 \mu A$, and voltage gains are 100 and 125 respectively. Calculate average bias current and the offset current. iii An emitter biased dual input balanced output differential amplifier has the following specifications: $V_{CC} = 10V$, $-V_{EE} = -10V$, $R_{C1} = R_{C2} = 2.7 \text{K}\Omega$, $R_{inl} = R \text{in}_2 = 50\Omega$, $R_E = 3.9 \text{K}\Omega$, $R_E = 100\Omega$, $I_E = 2.02 \text{mA}$, $V_{BE} = 0.715 \text{V}$, $\beta_{ac} = \beta_{dc} = 100$. Calculate the voltage gain (with and without darlington pair). | [CO 1] | 3+2 |