JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- 2025 B.Tech-VIII Semester (ECE)

COURSE CODE (CREDITS): 24B1WEM831(2)

MAX. MARKS: 15

COURSE NAME: SOFT COMPUTING PARADIGMS

COURSE INSTRUCTORS: Munish Sood

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks			
Q1	Suppose we have a simple fuzzy inference system to determine the wash time of a domestic dish washer. Using Mamdani's approach design a controller to determine the wash time of a domestic dish washer. Assume the input as dirt and grease on utensils. Use three descriptors for input variables and five for output variable. Find out the wash time for 60% dirt and 10% grease.	2 **	4			
Q2	Find the membership value assignment using Rank Ordering for the pair wise consumer preference for a brand of cars as given in the following table	1	3			
	BMW Benz Jaguar Audi Rolls					
	Royce					
	BMW 51 54 52 67					
	Benz 48 47 84 58		}			
	Jaguar 46 62 14 53 Audi 45 53 47 64					
	Rolls Royce 26 42 40 38					
Q3	Using center of sums method for defuzzification, find the union of two	2	4			
Qu'	fuzzy sets given by the following figure					
	μ \uparrow C_2					
	0.8					
	0.5					
	0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8					

Page 1 of 1

Q4	Consider two fuzzy sets		1	4
	$A_{\sim} = \left\{ \frac{0.5}{2.0} + \frac{0.45}{4.0} + \frac{0.25}{6.0} + \frac{0.75}{8.0} + \frac{1}{10.0} \right\}$ $B_{\sim} = \left\{ \frac{0.6}{2.0} + \frac{0.35}{4.0} + \frac{0.5}{2.0} + \frac{0.35}{2.0} + \frac{0.5}{2.0} +$	}		
	Calculate (i) $\overline{A_{\sim} \cup B_{\sim}}$ (ii) $A \cap \overline{A_{\sim}}$ 4.0 6.0 8.0 10.0)	ĺ	
L				