JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech- VI Semester (ECE)

COURSE CODE (CREDITS): 18B11EC612 (4)

MAX. MARKS: 15

COURSE NAME: VLSI TECHNOLOGY

COURSE INSTRUCTORS: Dr. Shruti Jain

MAX. TIME 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No.	Question	CO CO	Marks
Q1	i. A MOSFET in saturation has a drain current of 1mA for Vos =		5
	0.5 V. If the channel length modulation coefficient is 0.5 V-1 the		
	output resistance (in the $k\Omega$) of the MOSFET is		
	ii. Tell Sita when the gate to source voltages is negative.		
	iii. The expression for threshold voltage for the enhancement mode	100.13	
	n-MOS is	[CO 1]	
	iv. Drain and gate terminal of n- channel MOSFET are connected		
	together. Voltage V_i is applied on drain terminal. For this		
	configuration, give the voltage current relationship.		
	v. The Fermi potential for depletion mode p-substrate is		
Q2	i. An nMOS transistor, operating in the linear resistance region with	[CO 2]	3+2
	$V_{\rm DS} = 0.1 \text{V}$, is found to conduct 60 μ A for $V_{\rm GS} = 2 \text{V}$ and 160 μ A for		
	$V_{\rm GS} = 4 \text{V}$. What is the apparent value of threshold voltage $V_{\rm th}$? If		
	$k_{\rm n}$ = 50 μ A/V ² , what is the device W/L ratio? If the device is		
	operated at $V_{GS} = 3V$, at what value of V_{DS} , will the drain end of the		
	MOSFET channel just reach pinch off.		
	ii. Explain different regions (using energy band) when MOS system		
	works under external bias for an <i>n</i> -channel MOS transistor.		
Q3	i. An n-MOS transistor is fabricated with the following physical		7
. 1	parameters $N_D = 10^{20} \text{ cm}^{-3}$, $N_A(\text{substrate}) = 10^{16} \text{cm}^{-3}$, $W = 10 \mu \text{m}$, Y		
_	= 5 μ m, $L = 1.5 \mu$ m, $x_j = 0.4 \mu$ m, reverse bias voltage = 2.5V,		
	$F_{c} = 2.98 \times 10^{-8} \text{ F/cm}^2$ $M_{c} = 0.04 \text{ Find gauge}$ 4:60		
10, 100	capacitance and drain diffusion capacitance for linearly graded		
	junction. Assume that there is no channel implant.	[CO 1]	2+3
**:	ii. In a technology for which the gate oxide thickness is 20nm,	• 1	
	find the value of N_A , for which $\gamma = 0.5 V^{1/2}$. (b) If the doping	 	
	level is maintained but the gate oxide thickness is increased to		
	100nm, what does γ become?		