JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-VI Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS):18B1WCE639

MAX. MARKS: 25

COURSE NAME: Open Channel Flow and Hydraulic Machine

COURSE INSTRUCTORS: Ashish Kumar

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No	Question								CO	Marks	
Q1	We want to design the rectangular channel which have minimum cost of										2
'	construction. What parameters should we consider for this?										İ
$\sqrt{2}$	A conical draft tube having diameter at the inlet as 2.0 m and pressure head of										5
	water equal to 3.3 m (absolute). The discharge at the outlet is 30 cumec with a										
	velocity of 1.2 m/sec. If the atmospheric pressure head is 10.3 m and losses										
	between the inlet and outlet of the draft tube is 0.1 m; find the length of the draft										
(2)	tube immersed in the water. Total length of the tube is 6.5 m. Design a low-cost field experiment using the float method to estimate discharge in										
Q3 (a)	Design a low-cost field experiment using the float method to estimate discharge										3
	a small stream. What considerations would you take into account to ensure accuracy and repeatability?										
Q3 (b)											
Q3 (b)	The following measurement was taken with a current meter and eco depth recorder at a particular section of a river to measure the stream flow. Compute the discharge										5
	at a particular section of a river to measure the stream flow. Compute the discharge of the river.										
	of the fiver.										
	Distance from	0	2	T 4	6	8	10	12	7		
	left edge (m)		-				10	12			
	Depth of water	0		2.5	3.8	2.2	1.2	0	1		
	(m)									!	1
· ·	Average	0	0.5	1.25	2.04	1.56	0.43	0	1		
	Velocity (m/s)										
Q4	An inward flow reaction turbine running at 500 rpm has external diameter of 7									CO4	4
	cm and a width of 18 cm. If the guide blade angle is 20° and the absolute velocity of water at inlet is 25 m/sec, find (a) The discharge of the turbine (b) The runner vane angle at inlet										ļ.
Q5 (a)	(b) The runner va	ne an	gle at n	nlet			 				
Q5 (a)	Explain how the stage-discharge rating curve is developed. Why is it important to									CO3	2
Q5 (b)	use simultaneous measurements of stage and discharge during its construction?									CO3	
(v)	(a) Find the may	A broad-crested weir of 1 m length, has 50 cm height of water above its crest.									4
	(a) Find the maximum discharge. Take Cd = 0.65. Neglect velocity of approach. (b) If the velocity of approach is to be taken into consideration, find the maximum discharge when the channel has a cross-sectional area of 50 m² on the upstream side.										
									i		l