Jaypee University of Information Technology, Waknaghat

TEST-2 Examination - April 2025

B.Sc. IV Semester (Mathematics and Computing)

Course Code/Credits: 24BS1MA412/3

Max. Marks: 25

Course Title: Multivariable Calculus in Machine Learning

Course Instructors: RAD

Max. Time: 1 Hour 30 Min

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

		5, 100	
Q.No	Question	CO	Marks
Q1	Consider the function $f(x,y) = 2x^2 + y$:	CO-1	5
	(a) Find the gradient of the function $f(x, y)$.		
	(b) Find a unit normal to the level curve $f(x, y) = 1$ at $\mathcal{P}(-1, 1)$.		÷ 1.
Q_2	Consider the region bounded by curves $y = x^2$ and $y = -(x-2)^2 + 4$:	CO-2	5
	$u = -(x \frac{1}{3})^{2} + 4$ $x = 0$ $x = 2$		···
	(a) Set up the limits for the double integral $\iint_R 1 dx dy$.		
	(b) Use double integral to calculate the area of the shaded region.		
Q3	A vertical water tank is in the shape of a cylinder with height $h=2$ meters and radius $r=1$ meter. The density of water varies with depth due to temperature differences, modeled as	CO-2	5
	$ \rho(x, y, z) = 1000 + 2z \text{ kg/m}^3 $		
	where z is the depth of water measured from bottom $(0 \le z \le 2)$.		
1	(a) Find the total mass $\int_0^2 \int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \rho(x,y,z) \ dx dy dz$ of the water in the tank.		
	(b) Compute the total weight of the water in the tank in Newtons.		
	(c) If the tank drains at a rate of 10 liters per second, how long will it take to empty completely?		

Q.No	Question	CO	Marks
Q4	Consider the force field $\mathbf{F}(x,y) = \langle x^2, -xy \rangle$ in moving a particle along the unit circular path from $(1,0)$ to $(0,1)$.	CO-3	5
			* ·
	(a) Give the parameterization $\mathbf{r}(\mathbf{t}) = x(\mathbf{t})\mathbf{i} + y(\mathbf{t})\mathbf{j}$ of the path.		
	(b) Find the work done by the force field.		
Q_5	Consider the vector field $\mathbf{F}(x,y) = \langle 2xy - 3, x^2 + 4y^3 + 5 \rangle$.	CO-3	5
	A(-1,2) - B(2,3) C 0 1 2 x		
	(a) Show that F is <i>conservative</i> by showing that it is <i>gradient</i> of potential function $f(x, y) = x^2y - 3x + y^4 + 5y$.	4	
	(b) Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ along the curve \mathcal{C} as shown in the figure.		

* * * * *