JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

M. Tech.-II Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 21M1WEC239 (3)

MAX. MARKS: 25

COURSE NAME: CMOS DIGITAL DESIGN TECHNIQUES

COURSE INSTRUCTORS: Dr. HARSH SOHAL

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	What are the various design abstraction levels in CMOS VLSI	CO 1	4
	Design? Explain in detail with the help of a block diagram		
	highlighting the hierarchy.		
Q2	Explain and highlight their importance of the following terms w.r.t.	CO 1	5
	CMOS IC industry: (a) NRE costs (b) RE costs (c)Scalability		:
	(d) Energy delay product (e) Reliability		
Q3	(a) What is the impact of interconnect parasitic on the VLSI	CO2	3-4
	interconnects? How can we classify different types of parasitic in IC		
	interconnects?		
	(b) For the wire schematic given in the Fig.1. below, draw its (a) all		-
	inclusive model (b) capacitive only model		
	transmitters receivers	: 	
	Fig. 1	:	

Fig.1.

Q4	Explain the concept of Ellmore Delay with the help of an RC network.	CO2	3	
	What are the advantages and disadvantages of using this model for			
	delay modeling?			:
Q5	Using complementary static CMOS Logic design technique, design	CO3	3+3	
•	and implement the following:			:
:	(a) a two input NAND gate		;	:
	(b) $F = \overline{D + A.(B + C)}.$	•	i !	
	Also mention the Pull-up and Pull-down networks in the designed	:	i	
	circuits.	:		•