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ABSTRACT

Agriculture forms the cornerstone of human existence and serves as the fundamental basis for
all production. It is the foundation upon which every nation’s economy is built. As populations
expand, the demand for food production rises correspondingly. This growth, however, is
accompanied by climate change and a scarcity of natural resources necessary for agricultural
activities. The agricultural sector is undergoing a transformation through the incorporation of
Information and Communications Technology (ICT), ushering in a new agricultural era. This
shift enhances crop yields, refines decision-making related to crop management, minimizes the
environmental impact of farming practices by lowering chemical consumption, and cuts costs
related to water, electricity, and fuel consumption. Smart agriculture technologies enable
farmers to cultivate crops more systematically and accurately predict outcomes. Nearly every
aspect of farming, from planting to harvesting, benefits from technological advancements.
Consequently, farmers gain a comprehensive understanding of their land, leading to a more
logical production process with fewer arbitrary elements. The term “agriculture field”
encompasses a wide range of services. Meeting the needs of an expanding population using a
single service is increasingly challenging due to growing complexity. Therefore, it is crucial to
select services based on user requirements and quality of service (QoS) with similar
functionality, rather than solely on the functionality of the services. The potential for substantial
QoS with non-linear impacts on the service composition goal function makes this an NP-hard
problem, which cannot be resolved using conventional optimization methods. For such intricate
issues, meta-heuristics approaches offer the best substitute. These can be categorized as bio-
inspired, physical, evolutionary, and swarm intelligence-based approaches. These methods

provide solutions for both single and multi-objective optimization problems.

The primary aim of this thesis is to develop an optimized agricultural planning system tailored
to meet farmer’s needs, offering significant advantages such as remote farm management,
efficient resource utilization, and streamlined processes, ultimately enhancing farmer’s income.
The study addresses the optimization of several integrated services in smart agriculture, with
time and cost as dual objectives that must be minimized. In the first phase of the thesis, multi-
objective service composition optimization is conducted using a straightforward approach that
assumes a linear relationship between the cost and time objectives. This phase employs a set of

optimization algorithms—namely, the multi-objective genetic algorithm (MOGA), non-



dominated sorting genetic algorithm (NSGA-II), and multi-objective gaining-sharing
knowledge-based algorithm (MOGSK). However, real-world applications often involve
significant non-linearities that cannot be adequately represented by a linear model. Therefore,
in the second phase, the same service composition problem is reconsidered, this time
incorporating a non-linear relationship between the competing objectives. Lagrange’s
interpolation-based algorithm is used to address these non-linearities, and optimization is
performed using the MOGA, NSGA-II, and MOGSK algorithms. Agricultural data often
contains uncertain factors that must be considered, as they can significantly impact outcomes—
a primary challenge for modern farmers. To address this, in the third phase, a fuzzy inference
system (FIS) is used to assess the impact of these uncertain factors on smart agriculture. In the
final phase, a novel nature-inspired algorithm—the multi-objective electric eel foraging
optimization (MO-EEFO) algorithm—is proposed to tackle real-world optimization challenges
in smart agriculture, as well as in other applications. This thesis aims to provide a customizable
agricultural plan for farmers, allowing them to prioritize either time or cost optimization based

on their specific requirements.



TABLE OF CONTENTS

DECLARATION BY THE SCHOLAR
SUPERVISOR’S CERTIFICATE
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ACRONYMS
CHAPTER-1INTRODUCTION
1.1 Chapter Overview
1.2 Motivation
1.3 Introduction
1.3.1 Service Composition
1.3.2 Multi-objective Optimization Problem
1.3.2.1 Scalarization-based Approach
1.3.2.2 Pareto-based Approach
1.4 Optimization using Meta-heuristic Algorithms
1.5 Research Gaps
1.6 Proposed loT-based Framework
1.7 Objectives of Research Work
1.8 Organization of Thesis
1.9 Summary
CHAPTER 2 LITERATURE REVIEW
2.1 Chapter Overview

[
i
i
IV-v
Vi-X
xi-xii
Xiii-xvi
XVii-xXiii
1-19
1
1-2
3-4
4-9
9-10
10-12
12-13
13-15
16
16-17
17-18
18-19
19
20-35
20

2.2 Review Papers on QoS-based Optimization in Smart Agriculture 20-24

2.3 QoS-based Optimization in Smart Agriculture
2.4 Dealing Uncertainties in Smart Agriculture

2.5 Summary

CHAPTER 3 LINEAR MULTI-OBJECTIVE SERVICE
OPTIMIZATION IN SMART AGRICULTURE USING

COMPUTATIONAL TECHNIQUES
3.1 Chapter Overview

Vi

24-29
29-34

35
COMPOSITION
EVOLUTIONARY
36-70

36



3.2 Linear Service Composition Model 36-39

3.3 Case Study 39-40
3.3.1 Proposed Dataset 41-43
3.4 Methodology for Linear Service Composition Optimization 43
3.4.1 Population Initialization 43-44
3.4.2 Evaluation of Objectives 44
3.5 Linear Service Composition Optimization using MOGA 44
3.5.1 Optimization Algorithm: MOGA 44-48
3.5.2 Proposed Framework 48
3.5.3 Simulation Setup 48-49
3.5.4 Results and Discussions 50-51
3.6 Linear Service Composition Optimization using NSGA-II 51
3.6.1 Optimization Algorithm: NSGA-II 51-54
3.6.2 Procedure of NSGA-II 54-55
3.6.3 Proposed Framework 56-57
3.6.4 Simulation Setup 57
3.6.5 Results and Discussions 57-59
3.7 Linear Service Composition Optimization using MOGSK 59
3.7.1 Optimization Algorithm: MOGSK 59-63
3.7.2 Proposed Framework 63-64
3.7.3 Simulation Setup 64-65
3.7.4 Results and Discussions 65-67
3.8 Comparison of EC Algorithms 67
3.8.1 Pareto Front Analysis 67
3.8.2 Statistical Analysis 68-69
3.9 Summary 69-70

CHAPTER 4 NON-LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION
OPTIMIZATION IN SMART AGRICULTURE USING EVOLUTIONARY

COMPUTATIONAL TECHNIQUES 71-96
4.1 Chapter Overview 71

4.2 Non-linear Service Composition Model 71-72

4.2.1 Basics of Lagrange’s Interpolation 72-73

4.3 Non-Linear Dataset Description 73-77

vii



4.4 Methodology for Non-linear Service Composition Optimization 77-78

4.4.1 Population Initialization 78

4.4.2 Evaluation of Objectives 78

4.5 Non-Linear Service Composition Optimization using MOGA 78
4.5.1 Optimization Algorithm: MOGA 78-79
4.5.2 Proposed Framework 79-80
4.5.3 Simulation Setup 80-81
4.5.4 Results and Discussions 81-82
4.5.5 Comparative Behavioral Analysis of La-MOGA and Li-MOGA 81-83

4.6 Non-Linear Service Composition Optimization using NSGA-11 83

4.6.1 Optimization Algorithm: NSGA-I1I 83
4.6.2 Proposed Framework 83-84
4.6.3 Simulation Setup 84-85
4.6.4 Results and Discussions 85-86
4.6.5 Comparative Behavioral Analysis of La-NSGA-II and Li-NSGA-II
86-88

4.7 Non-Linear Service Composition Optimization using MOGSK 88
4.7.1 Optimization Algorithm: MOGSK 88-89
4.7.2 Proposed Framework 89-90

4.7.3 Simulation Setup 91
4.7.4 Results and Discussions 91-92
4.7.5 Comparative Behavioral Analysis of La-MOGSK and Li-MOGSK
91-93

4.8 Comparison of EC Algorithms 93
4.8.1 Pareto Front Analysis 93-94
4.8.2 Statistical Analysis 94-95
4.9 Summary 95-96

CHAPTER 5 IMPACT OF UNCERTAINTIES ON BOTH LINEAR AND NON-
LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION OPTIMIZATION USING

EVOLUTIONARY COMPUTATIONAL TECHNIQUES 97-119
5.1 Chapter Overview 97
5.2 Fuzzy Logic System 97-99

5.2.1 Fuzzy Inference System for Proposed Architecture 99-107

viii



5.3 Impact of Uncertainties on Linear Service Composition Optimization 107

5.3.1 Optimization Algorithm: NSGA-II 107-108
5.3.2 Proposed Fuzzy-based Architecture 108-109
5.3.3 Simulation Setup 109-110
5.3.4 Results and Discussions 110-112
5.4 Impact of Uncertainties on Non-Linear Service Composition Optimization
112
5.4.1 Phase 1: Lagrange’s Interpolation 112
5.4.2 Phase 2: NSGA-II 112-113
5.4.3 Proposed Fuzzy-based Architecture 112-114
5.4.4 Simulation Setup 113-115
5.4.5 Results and Discussions 115-117
5.5 Behavioral Analysis Comparison of Fuzzy Li-NSGA-II and Fuzzy La-
NSGA-II 117-119
5.6 Summary 119
CHAPTER 6 A NOVEL NATURE-INSPIRED MULTI-OBJECTIVE ELECTRIC EEL
FORAGING OPTIMIZATION ALGORITHM 120-137
6.1 Chapter Overview 120
6.2 Description of Electric Eel Foraging Behavior 120-121
6.3 Mathematical Representation of Electric Eel Foraging Optimization (EEFO)
121
6.3.1 Interaction 122-123
6.3.2 Resting 123-124
6.3.3 Hunting 124
6.3.4 Migration 124-125
6.4 Multi-objective Electric Eel Foraging Optimization 125-127
6.5 Simulation Setup and Result Analysis 127

6.5.1 Benchmark Problems and Comparison with Algorithms 127-134
6.6 Comparison of Proposed MO-EEFO with Other Meta-heuristics ~ 135-137

6.7 Summary 137
CHAPTER 7 CONCLUSION AND FUTURE WORK 138-141
7.1 Conclusion 138-140

7.2 Future Work 140-141



REFERENCES 142-157
LIST OF PUBLICATIONS 158-159



Table no.

Table 1.1

Table 2.1

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 5.1

LIST OF TABLES

Table caption

QoS composition operators

A literature review on service composition optimization
Dataset showcasing atomic services in smart agriculture
Genetic operators for MOGA

Statistical analysis

Simulation operators of NSGA-II

Statistical analysis

Simulation parameters

Statistical analysis

Statistical analysis of various optimization algorithms

Non-linear dataset showcasing atomic services in smart agriculture

Simulation parameters

Statistical analysis of both La-MOGA and Li-MOGA
Simulation operators of NSGA-II

Statistical analysis of La-NSGA-I11 and Li-NSGA-II
Simulation parameters

Statistical analysis of both La-MOGSK and Li-MOGSK
Statistical analysis of various optimization algorithms

Fuzzy rules

Xi

Page no.

32-34

41-42

49

51

58

59

65

67

69

73-77

81

83

85

88

91

93

95

107



Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 6.1

Table 6.2

Simulation parameters
Statistical analysis
Simulation parameters
Statistical analysis

Statistical analysis

Statistical analysis of various algorithms for ZDT problems

Statistical analysis of various compared algorithms

xii

110

111-112

115

116-117

118-119

131-134

136



LIST OF FIGURES

Figure no. Figure caption Page no.
Figure 1.1  General representation of smart agriculture 3
Figure 1.2  Obstacles in implementing smart agriculture 4
Figure 1.3 Applications of IoT in smart agriculture 5
Figure 1.4  Generic workflow 6
Figure 1.5 An instance of service discovery and service selection 8
Figure 1.6  Preference-based multi-objective 11
Figure 1.7  Ideal multi-objective 11

Figure 1.8 An instance of the Pareto front obtained in a multi-objective optimization problem

13
Figure 1.9 Classification of nature-inspired meta-heuristic algorithms 15
Figure 1.10 Proposed IoT-based framework for service composition optimization 16
Figure 3.1 Linear time-cost trade-off of services using slope intercept form 38
Figure 3.2 Understanding of QoS-based service composition 39
Figure 3.3 Sequence diagram showing the flow of service composition 40

Figure 3.4  Solution representation for atomic service by taking time as an objective function
44

Figure 3.5 Solution representation for atomic services including time and cost objective

functions 44
Figure 3.6 Pseudocode of MOGA 47
Figure 3.7 Illustration of MOGA using flow chart 48

xiii



Figure 3.8

Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Figure 3.17

phase

Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22

Figure 3.2

optimization

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Proposed framework for service composition optimization 49
Pareto optimal solutions obtained using MOGA 50
Concept of non-dominated sorting 52
Concept of crowding distance 53
Procedure for NSGA-II 55
Pseudocode for NSGA-II algorithm 55
Flow chart illustration of NSGA-II 56

Proposed framework for service composition optimization using NSGA-II 57
Pareto optimal solutions obtained using NSGA-II 58

(a) Vector x;; fori = 1 during JGSK phase (b) Vector x;; for i = 1 during SGSK

60
Pseudocode for junior gaining sharing phase 62
Pseudocode for senior gaining sharing phase 63
Flow chart illustration for MOGSK algorithm 64
Proposed framework for optimization using MOGSK 65
Pareto optimal solutions obtained using MOGSK 66

Comparison of various evolutionary algorithms for service composition

68
Non-linear time-cost trade-off of services 73
Proposed framework for La-MOGA 79
Flow chart illustration of La-MOGA 80
Pareto optimal solutions obtained using La-MOGA 82

Xiv



Figure 4.5 Behaviour analysis of La-MOGA and Li-MOGA 82

Figure 4.6 Proposed framework for La-NSGA-II 84
Figure 4.7 Flow chart illustration of proposed La-NSGA-II 85
Figure 4.8 Pareto optimal solutions obtained using La-NSGA-II 86
Figure 4.9 Behaviour analysis of La-NSGA-II and Li-NSGA-II 87
Figure 4.10 The proposed framework for La-MOGSK 89
Figure 4.11 The flow chart illustration of proposed La-MOGSK 90
Figure 4.12 Pareto optimal solutions obtained using La-MOGSK 92
Figure 4.13 Behaviour analysis of La-MOGSK and Li-MOGSK 92

Figure 4.14 Comparison of various evolutionary algorithms for service composition

optimization 94
Figure 5.1 Architecture of fuzzy logic 98

Figure 5.2 Input membership functions (a) Management skills (b) Weather conditions (c)

Farmer skills 99-100
Figure 5.3  Output membership functions (a) Time (b) Cost 103-104
Figure 5.4 Proposed architecture for Fuzzy-Li-NSGA-II 108
Figure 5.5 Flow chart of proposed Fuzzy-Li-NSGA-II approach 109
Figure 5.6 Distinct possible case scenarios of smart agriculture 111
Figure 5.7 Proposed architecture for Fuzzy-La-NSGA-II 114
Figure 5.8 Flow-chart illustration of Fuzzy-La-NSGA-II 114
Figure 5.9 Distinct possible case scenarios of Fuzzy La-NSGA-II 116
Figure 5.10 Behavioral analysis of Fuzzy La-NSGA-II and Fuzzy-Li-NSGA-II 118

XV



Figure 6.1 Physical structure of electric eel 121

Figure 6.2 Pseudocode of proposed MO-EEFO algorithm 126
Figure 6.3 Flow chart illustration of the proposed MO-EEFO algorithm 127
Figure 6.4 Pareto front obtained by MO-EEFO of ZDT1 function 128
Figure 6.5 Pareto front obtained by MO-EEFO of ZDT2 function 128

Figure 6.6 Comparison of various optimization algorithms of ZDT1 with MO-EEFO 130
Figure 6.7 Comparison of various optimization algorithms of ZDT2 with MO-EEFO 130

Figure 6.8 Comparative analysis of various algorithms for service composition in smart

agriculture 135

XVi



3G

4G

Al

aKNC-GB

akKNCN

aKNC-RF

aKNC-SVM

ALP-GA

ANNs

ARC

BA

BCO

BOA

CMF

COG

DE

LIST OF ACRONYMS

Third Generation
Fourth Generation
Artificial Intelligence

Adaptive K-nearest Centroid Neighbor
Classifier — Gradient Boost

Adaptive K-nearest Centroid Neighbor

Classifier

Adaptive K-nearest Centroid Neighbor

Classifier — Random Forest

Adaptive K-nearest Centroid Neighbor
Classifier — Support Vector Machine

Automated Land Portioning  Genetic

Algorithm
Artificial Neural Networks

Anomaly-aware Robust Service

Composition

Bees Algorithm

Bee Colony Optimization

Butterfly Optimization Algorithm
Cauchy Fuzzy Membership Function
Center of Gravity

Differential Evolution

XVii



EC Evolutionary Computational

EEFO Electric Eel Foraging Optimization
ELM Extreme Learning Machine

EVS Explained Variance Score

Ex-GWO Expanded Gray Wolf Optimization
FAO Food and Agriculture Organization
FBCO Fuzzy Bee Colony Optimization

FCS Fuzzy Cuckoo Search Algorithm

FFA Firefly Algorithm

FGSA Fuzzy Gravitational Search Algorithm
FIS Fuzzy Inference System

FL Fuzzy Logic

FLS Fuzzy Logic System

FRRWLX Fuzzy Rough Set Roulette Wheel Selection

with Laplace Crossover

FS Farmer Skills
Fuzzy-La-NSGA-II Fuzzy Lagrange’s NSGA-II
Fuzzy-Li-NSGA-II Fuzzy Linear NSGA-II

GA Genetic Algorithm

GIS Geographic Information System

GSA Gravitational Search Algorithm

XViii



GSK

GSM

HMM-ACO

laaS

ICA

ICT

I-GWO

loT

IT2FLC

JGS

JGSK

KNN

La-MOGA

La-MOGSK

La-NSGA-II

LDR

LED

Gaining Sharing Knowledge-based
Algorithm

Global System for Mobile Communication

Hidden Markov  Model-Ant  Colony

Optimization
Infrastructure as a Service
Imperialist Competitive Algorithm

Information and Communication

Technologies

Incremental Gray Wolf Optimization
Internet of Things

Interval Type-1I Fuzzy Logic Controller
Junior Gaining Sharing

Junior Gaining Sharing Knowledge Phase

K-Nearest Neighbor
Lagrange’s Multi-objective Genetic
Algorithm

Lagrange’s Multi-objective Gaining Sharing
Knowledge-based Algorithm

Lagrange’s Multi-objective Non-Dominated

Sorting Genetic Algorithm
Light Dependent Resistor

Light Emitting Diode

XiX



Li-MOGA

Li-MOGSK

Li-NSGA-II

LoRa

LoW-PAN

MAE

MAPE

MedAE

mhCPPmp

ML

MO-EEFO

MOGA

MOGSK

MOM

MOPSO

MS

MSE

XX

Linear Multi-objective Genetic Algorithm

Linear Multi-objective Gaining Sharing

Knowledge-based Algorithm

Linear Multi-objective  Non-Dominated

Sorting Genetic Algorithm

Long Range

Low-power Wireless Personal Area Network
Model Evaluation Metric

Mean Absolute Percent Error

Median Absolute Error

Multi-heterogeneous UAVs Coverage Path
Planning with Moving Ground Platform

Machine Learning

Multi-objective  Electric Eel Foraging

Optimization
Multi-objective Genetic Algorithm

Multi-objective Gaining Sharing Knowledge
based Algorithm

Mean of Maximum
Multi-objective Particle Swarm Optimization
Management Skills

Mean Squared Error



MSLE

NLP

NP-Hard

NPK

NSGA-II

NSWOA

PaaS

PDCA

pH sensors

QoS

RCGA

RFID

RMSE

RSRWLC

RWFX

RWLX

RWSX

SA

SaaS

Mean Squared Logarithmic

Natural Language Processing
Non-deterministic Polynomial-time Hard
Nitrogen, Phosphorus, and Potassium
Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Whale Optimization
Algorithm

Platform as a Service
Plando-check-act

Potential of Hydrogen sensors
Quality of Service

Real Coded Genetic Algorithm
Radio Frequency Identification
Root Mean Square Error

Rough Set Real Coded based Genetic
Algorithm with Roulette Wheel Selection

and Laplace Crossover
Roulette with Flat
Roulette with Laplace
Roulette with Simple
Simulated Annealing

Software as a Service

XXi



SBX

SC

SCO

SFAIS

SGS

SGSK

SLA

SMS

SSA

T1FGSA

TIFLC

TSFX

TSLX

TSSX

UAVs

UML

uoD

uv

wC

Wi-Fi

Simulate Binary Crossover

Service Composition

Service Composition Optimization

Smart Farm Automatic Irrigation System
Senior Gaining Sharing

Senior Gaining Sharing Knowledge Phase
Service Level Agreement

Short Message Service

Social Spider Algorithm

Type-1 Fuzzy Gravitational Search Algorithm
Type-I Fuzzy Logic Controller
Tournament with Flat

Tournament with Laplace

Tournament with Simple

Unmanned Aerial Vehicles

Unified Modelling Language

Universe of Discourse

Ultraviolet

Weather Conditions

Wireless Fidelity

XXii



WiMax Worldwide Interoperability for Microwave

Access

WOA Whale Optimization Algorithm

WSNs Wireless Sensor Networks

WTMCS Water Tank Monitoring and Control
Subsystem

ZDT Zitzler-Deb-Thiele

XXiii



CHAPTER-1
INTRODUCTION



CHAPTER-1

INTRODUCTION

1.1Chapter Overview

The QoS-based service composition optimization problem and its application in smart
agriculture are thoroughly explained in this chapter. Depending on whether the problem is
single-objective or multi-objective, it focuses on solving these challenges through optimization
using different evolutionary algorithms that are influenced by nature and biology. The chapter
also describes the two categories into which multi-objective problems fall: preference-based
and ideal multi-objective. Scalarization techniques are employed for preference-based

approaches and Pareto-based techniques are used for ideal solutions to solve these difficulties.
1.2 Motivation

By 2100, it is predicted that there will be 11.2 billion people on Earth. Large amounts of food
are necessary for this group to survive. However, because of the high costs, labor requirements,
and time required for food production, traditional agriculture will not be able to meet this level
of demand for food in the future. Also, the wastage of resources is significantly increasing due
to the lack of knowledge about efficiently utilizing the available resources. Thus, the concept
of smart agriculture is introduced [1].

Over the last twenty years, smart agriculture has been continuously studied. Modern 0T
technology has improved farming practices [2]. Researchers have focused on several
applications in smart agriculture, such as tracking the food supply chain [3], employing image
sensors for crop monitoring [4], greenhouse agriculture [5], and open-field agriculture [6]. A
few control objectives, such as the use of fertilizers and pesticides, have also been put into
practice [7]. Apart from that, other technologies such as Information and Communication
Technologies (ICT), unmanned aerial vehicles (UAVs), machine learning (ML), cloud
computing, and artificial intelligence (Al) techniques have also played a crucial role in
providing solutions to these critical issues of inadequate chemical application, poor irrigation

systems, and yield prediction [8].



One way to describe agriculture would be as a set of services used to get the intended result. It
is now difficult for a single service to satisfy the degree of expectations made by users. This
leads to service composition (SC) which can be characterized as a collection of basic services.
New composite services are obtained by combining various atomic services. These services
could have similar functionality but differ in terms of Quality of service (QoS) attributes [9].
Many times, several candidate services make it difficult to 2abell QoS constraints. Thus, the
task is to identify the most suitable service to ensure the composite service satisfies the user’s

functional and non-functional requirements [10].

Solving these complex composite services is difficult as they are non-deterministic polynomial-
time hard (NP-hard) and cannot be resolved in the polynomial time domain. Thus, one solution
is to apply nature-inspired meta-heuristics algorithms. They are showing immense potential as
an effective substitute for traditional methods based on mathematical and dynamic
programming. In reality, conventional approaches (which promise to discover the best solution)
are frequently only practical for small-scale instances of the problems and may involve a
significant amount of computational effort due to the great complexity and difficulty of
optimization problems. On the other hand, metaheuristic-based algorithms may typically find
better and even optimal solutions in less time when applied to real-life applications [11]-[12].
Since various services are combined, one objective cannot purely satisfy the user’s
requirements, thus, multiple conflicting objectives are formulated as a multi-objective

optimization problem.

The research work provides the optimization of various services involved in the field of smart
agriculture by considering time and cost as multiple conflicting objectives that need to be
minimized. The novelty of the work lies in the fact that no work in the literature has been
focussed on service composition optimization (SCO) in smart agriculture. Also, there are
potential benefits of this research work in the lives of farmers such as remote farm management,
optimized resource utilization, increased yield production with professional management, and
optimized processes thereby increasing their income along with a contribution to food security.
It would be more beneficial to the farmers/landowners who are unavailable on-site due to

various job commitments.



1.3 Introduction

Among the most important sectors of the global economy is agriculture. It contributes
significantly to developing economies like India, where it makes up 15% of the country’s GDP.
According to the figures of World Bank, the global employment share of the agriculture sector
exceeds 25%. The prominence of the agriculture industry in context of employment is higher
in emerging economies like India, where over two-thirds of the population depends on
agriculture as a monetary resource, either directly or indirectly. It is responsible for over 40%
of employment creation [13]. According to Food and Agriculture Organization (FAO)
predictions, the world’s population is expected to reach 9.73 billion in 2050, indicating a surge
in food demand [14].

Figure 1.1: General representation of smart agriculture



However, using this structure for smart agriculture is fraught with difficulties. The various
primary barriers to integrating technology in smart agriculture are shown in Figure 1.2. To
successfully integrate the new loT technology and realize the notion of smart agriculture, all

these obstacles must be minimized.
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Figure 1.2: Obstacles in implementing smart agriculture

Agricultural logistics have been improved by the introduction of other technologies also such
as Radio Frequency Identification (RFID), Wireless Sensor Networks (WSNs), Arduino UNO,
Raspberry Pi (all involved in the physical layer of 10T), fog computing, big data, cloud
computing, and artificial intelligence (all services in the service layer provided for application
layer) [16]. Figure 1.3 illustrates a few of the applications of 10T in smart agriculture.

1.3.1 Service Composition

An 10T service is a decentralized structural unit that can be either atomic or composite. It
functions as the digital representation of an object’s actions. An atomic service is a self-



contained, well-defined behavioral unit that cannot be further subdivided into other services

[17].
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Figure 1.3: Applications of [oT in smart agriculture

On the other hand, a composite service is an advanced entity that combines numerous (atomic

or composite) services to provide functionality and value. Can therefore readily handle the

complex requirements of the user. For instance, an air conditioning composite can incorporate

both a temperature and a humidity sensing service. All concrete/candidate services are

interchangeable and functionally equivalent to each other [18]. These services can be combined

and this process is called compositionality which is realized by a composition mechanism.

Therefore, a things infrastructure, a concept of what a service is, and a choice of composing

methods are required by an loT system [19]. By taking into account two functional

dimensions—control flow and data flow—the service composition method establishes a



purposeful connection between services. Data flow describes how data is transferred between
services whereas control flow describes the sequence in which communications take place [20].

A workflow, which can be hybrid, control-driven, or data-driven, is a set of distinct processes
used to realize a computational activity. Tasks, actors, transitions, procedures, thorns, activities,
and units are other names for phases in a control-driven workflow [18]. These steps can be
carried out in branching, looping, sequencing, or parallelizing. When data becomes available,
a data-driven workflow takes action without specifically defining any control flow components.
Certain steps in a hybrid workflow are data-driven, and others are control-driven [21]. A generic
workflow is shown in Figure 1.4 [18], which starts with task 1, decides whether to perform task
2 or task 3 based on branch conditioning, and then starts tasks 4 and 5 concurrently using

parallel mode.

X » Branching Mode . Start Task

0 Parallel Mode O End —— Control Flow

Figure 1.4: Generic workflow [18]

Workflows are crucial in systems because they blend services into intricate tasks that automate
a particular context. For instance, in a smart home, a workflow that regulates a room’s
temperature in reaction to environmental changes can be automated. In the area of smart
agriculture, a workflow can be set up concurrently to forecast diseases, assess data from harvest
sensors, and take necessary action. In smart agriculture, this circumstance leads to the formation

of the service composition problem.

In the context of smart agriculture, as a result of increased freedom and knowledge, farmers can
now have some degree of control over their operations, including selecting crops that will
produce the highest yields under the existing and anticipated climatic circumstances. The
population’s expectations have grown as a result of these breakthroughs in the use of artificial

6



intelligence, leading to complex user demands in daily life. Meeting user’s requirements can

therefore frequently be challenging.

To satisfy user’s those complex requirements, services are combined which is known as service
composition. In other words, service composition can be defined as an aggregation of basic
services. Service composition cannot be defined in a predetermined way. However, a range of
non-functional attributes, sometimes known as QoS attributes, such as time, cost, availability,
scalability, and dependability, are used to characterize those services. For instance, one might
choose the fastest, least-priced service, or even the option that falls somewhere in the middle
[22]. The QoS attributes are guaranteed by a contract between service providers and users, as
indicated by the Service Level Agreement (SLA). To ascertain if a composite service can meet
the SLA, consideration must be given to the 7abelled7es of the user’s requests in atomic

services [23].

Four steps are usually involved in creating QoS-based IoT services: plan composition, service
discovery, QoS-based service selection, and service composition execution. An 10T application
is generally composed of two stages. First, several action flows are used to combine the current
classes, each of which contains a collection of atomic services, into a new service class. Second,
the 10T application’s components are selected from among the top candidate services from these
classes. Both the data flow rules between candidate services and their order of invocation are
shown in the composition plan. Following that, the service discovery phase chooses tasks from
a group of services’with comparable functionality while taking QoS into account. The service
selection step follows, during which the user selects the required services based on their needs.
Services are finally composited by considering techniques that use global optimization or local
selection. Figure 1.5 illustrates an instance of service discovery and service selection while
considering time and cost as QoS factors [24]. Two services and the three candidate services
that accompany them have been taken in this specific instance. The goal functions are assumed
to be time and cost minimization. To achieve service composition, the candidate service with
the lowest time and cost for both services concurrently was selected during the service selection

step.

Any service composition problem’s process can be defined using one of four possible
architectural patterns: conditional, parallel, loop, and sequence. For every architectural pattern,
a unique QoS composition rule is established as shown in Table 1.1. For example, the highest



response time indicates the response time of a parallel composition consisting of more than one
service. The total time it takes for all services to respond when they are called sequentially is
known as the global response time. Each service is called with a probability p; in the case of a

conditional pattern, and the response time is an average depending on these probabilities.

User’s Task

Service Discovery

Service Selection

Figure 1.5: An instance of service discovery and service selection [24]

The response time will be multiplied by the number of loop cycles in a loop structure. A few of
the QoS attributes have corresponding rules, tabulated in Table 1.1 [25] where ¢; defines the

response time, r; is the reliability, a; specifies the availability and c; denotes the cost of it"



service. The other factor k defines the number of loop cycles and p; is the probability with

which each service is called.

Table 1.1: QoS composition operators [25]

QoS Sequence (m Parallel (n Loop Condition
attribute serial parallel
services) services)
Response m max {t; k.t m
p S oy S et
time =1 =t
Reliability m " rk "
T T - bi-Ti
=1 i=1 i=1
Auvailability m " ak "
a; oag - bi-a;
=1 i=1 i=1
Cost m n k.c n
oG S - bi-G
=1 =1 i=1

It is imperative to distinguish between an atomic service and a candidate service. It is
hypothesized that for every atomic service, multiple candidate services exist. For example,
separate reservation services might be utilized for the same flight. Different QoS attributes are
used to characterize each atomic service. Thus, it’s critical to understand which candidate
service is chosen to apply an atomic service. This optimization problem is thus, a combinatorial
multi-objective optimization problem. Locating the optimal service composition is an NP-hard
problem. This indicates that, except for the really basic situations (a small number of atomic
and candidate services), an exhaustive search method is not feasible. Hence, evolutionary
computational (EC) approaches or meta-heuristic algorithms are used to provide optimal or

near-optimal solutions.
1.3.2 Multi-objective Optimization Problem

The service composition problem integrates several services acknowledging the user’s
preferences and different QoS criteria. A single objective is unable to satisfy the needs of
several users at once due to the numerous services involved and the number of requests they

have. Thus, it is possible to characterize this problem as a multi-objective optimization



problem. This type of problem aims to find a set of optimal solutions that further provide a
trade-off among multiple objectives. A multi-objective problem can be either a maximization

or minimization problem, depending upon the user’s requirement.

Commonly, a multi-objective problem consists of many objectives and several constraints that

can be formulated as in equation 1.1 which is as follows:

fO) = (i), f2(2), oo frn ()T (1.1)

wherem=1,2,3,..., M

subject to
h;(x) <0, l=1,2,3,develop, L (1.2)
gx(x) =0, k =1,2,3,develop, K (1.3)

Equations 1.2 and 1.3 define the inequality and equality constraints, respectively.
Here, f,,(x) is the m*" objective function

x is the decision variable representing the solution

k are the equality constraints

[ are the inequality constraints

There are two categories of multi-objective problems: Preference-based and Ideal. While
Pareto-based approaches are frequently utilized to solve ideal problems, scalarization-based
approaches are typically used to solve preference-based problems. Figures 1.6 and 1.7 show the
preference-based and ideal multi-objectives, respectively [106].

1.3.2.1 Scalarization-based Approach

A technique known as scalarization can be used to reduce a multi-objective problem to a single-
objective problem. The global evaluation function, often known as the “fitness”, “utility”, or
“objective function”, is a crucial component of this method. This function assigns a score to
every solution, enabling the determination of which solution is superior to the others. Fitness

functions can be organized into two categories: Weighted sum-based and fraction-based [25].
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Figure 1.6: Preference-based multi-objective [106]
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Figure 1.7: Ideal multi-objective [106]
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For instance, in fraction-based, the fitness function can be outlined as in equation 1.4 given

below

f(x) — wq*Cost (x) (1-4)

wy* Reliability (x)+ ws*Availability (x)

In weighted sum, the fitness function can be outlined as given in equation 1.5
f(x) = wy * Cost (x) + w, * Reliability (x) + w; * Availability (x) (1.5)
In both equations 1.4 and 1.5, w; defines weights associated with each attribute and i = {1, 2, 3}.

Scalarization techniques establish a relation between possible solutions, calculating the convex
fusion of objective functions. Scalarization-based approaches have a drawback in the form of
the aggregation function, as weighted sums do not guarantee user priorities and there is no
standard way for calculating weights. Additionally, it lacks a criterion to verify non-dominance
in the final solution produced by the single-objective algorithm. The weighted sum approach
has several drawbacks, including subjectivity, Pareto Front convexity [26], differences between
objective function shapes, and the number of solutions. Weighted sum aggregation is only
appropriate for convex problems, while Pareto-based approaches can approximate the Pareto
Front for both non-convex and convex problems. Additionally, weighted sum aggregation is
inappropriate for functions with different shapes, and scalarization approaches returns only one
solution per run. Ultimately, the diversity of solutions is lost when using a scalarization-based

method.
1.3.2.2 Pareto-based Approach

Multiple objective functions are simultaneously optimized in the majority of real-world issues.
These roles typically include competing and in conflict goals. When there are conflicting
objective functions in multi-objective optimization, there exist several optimal solutions rather
than just one. In this case, no approach can be deemed superior to any other in terms of
achieving every goal. Pareto-optimal solutions are those that are the best available. Let us
suppose a multi-objective optimization problem has two solutions, x;and, x,which can either
dominate or not. In minimization problem, a solution x; dominates x, if certain conditions are

met. Non-dominated solutions within the search space are called Pareto-optimal and form the
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Pareto-optimal set or Pareto front. These solutions cannot be improved without worsening
another objective. Thus, the set of viable non-dominated solutions is known as the Pareto-
optimal set [27].

Time

2
Cost

Figure 1.8: An instance of the Pareto front obtained in a multi-objective optimization problem [28]

As an illustration, Figure 1.8 displays candidates in a two-dimensional objective space while
taking time and cost into account as QoS attributes [28]. The possibilities A, B, and C that are
clustered together in the set stand for the non-dominated, or Pareto front, trade-off solutions
[28].

1.4 Optimization using Meta-heuristic Algorithms

The modern age of information technology is causing numerous optimization problems in fields
like bioinformatics, computer vision, big data analytics, and 10T. However, most problems are
NP-hard and cannot be handled in a polynomial time domain. Therefore, precise mathematical
methods can only be used in small-scale instances. Instead of losing up, the researchers
considered using potential approximation techniques that could identify a workable solution in

the allotted amount of time. Based on the randomization method, these algorithms can be
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classified into heuristics and meta-heuristics. Heuristic algorithms and meta-heuristics differ
significantly in that the former is more dependent on the specific task at hand. These algorithms
are limited to solving certain particular problems. By contrast, meta-heuristic algorithms apply
to nearly all optimization problems since they employ the so-called “black box” optimizer [29].
A meta-heuristic is a process for locating, creating, or choosing an imperfect search algorithm
to offer a sufficiently excellent solution to an optimization problem, especially when the
knowledge is insufficient. These algorithms ensure optimal results since they explore the whole
search space through successive generations of advancement. They offer intriguing benefits
over standard methods, such as locating good solutions with less computing work and
progressing swiftly toward extremely good solutions. As a result, they provide an incredibly
effective means of handling complex, large-scale problems [30]. On the whole, meta-heuristics
can be viewed as a category of cognitive self-learning algorithms that imitate intelligent
processes and behaviors found in thinking, sociology, nature, and other fields to find close to
optimal solutions to challenging optimization problems. These nature-inspired meta-heuristic
algorithms can be classified into various groups naming evolutionary-based algorithms, bio-
inspired algorithms, swarm intelligence-based algorithms, physics-based algorithms human-

inspired algorithms, and miscellaneous algorithms, and are illustrated in Figure 1.9 [31].

a) Evolutionary Algorithms — The ideas of Darwin’s theory of natural selection, which is
predicated on the survival of the fittest in a particular environment, serve as the basis
for evolution-based algorithms. These algorithms begin with an initial collection of
populations, and as a result, a search process is carried out across a number of iterations
until the finest practical answer is found. Examples are genetic algorithm (GA) [32],
granular agent algorithm [33], bio-geography-based algorithm [34] etc.

b) Bio-inspired Algorithms — These algorithms are focused on distributed, decentralized,
self-organizing, and flexible intelligence observed in biological systems. Examples are
bacteria foraging optimization [35], artificial immune system optimization [36],
artificial humming bird [37] etc.

¢) Swarm intelligence-based Algorithms —Social insect or animal behavior are the sources
of inspiration for swarm intelligence approaches. In it, each person possesses
its behavior and intelligence, but the combination of
individuals are given greater authority to tackle challenging issues. Examples are fish
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d)

f)

swarm optimization [38], artificial bee colony optimization [39], dragonfly optimization
[40] etc.

Physics-based Algorithms — These algorithms are based on physics and motivated by
the laws regulating a natural phenomenon such as the law of gravity, thermodynamics,
electromagnetism etc. Examples are simulated annealing [41], sine cosine algorithm
[42], water cycle algorithm [43] etc.

Human-inspired Algorithms — These algorithms take inspiration from humans. Every
person engages in non-physical activities like mind activities and physical activities that
impact his performance which forms the basis of these algorithms. Examples are
teaching-learning optimization [44], brain storm optimization [45], league
championship optimization [46] etc.

Miscellaneous Algorithms — Those algorithms which cannot be classified in a particular
group are put together in miscellaneous algorithms. For example, queuing search

optimization [47], chemical reaction-inspired optimization [48] etc.

Classification of Nature-inspired
Meta-heuristic Algorithms

v A

Evolutionary based Bio-inspired based
algorithms algorithms

L 4 h 4

Swarm intelligence Physics-based
based algorithms algorithms

A 4 Y

Human inspired Miscellaneous

algorithms algorithms

Figure 1.9: Classification of nature-inspired meta-heuristic algorithms [31]
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1.5 Research Gaps

The following research gaps have been found after a careful examination of the literature.

a) Lack of research on service composition optimization in smart agriculture, despite

its application in other fields.

b) The concept of ideal multi-objective optimization is barely used for service

composition optimization problems in distinct applications.

1.6 Proposed IoT-based Framework

To enforce the service composition optimization in smart agriculture, Figure 1.10 illustrates the

proposed IoT-based framework for the same. The sensor, network, cloud, service composition,

and application (user interface) layers are its five layers.

Sensor Layer Network Layer Cloud Layer Service Composition Layer
@ . | © e |
i~ ] \\v"’j/ ‘ ... \ C)D 8 ‘ Service Discovery
—~ AN A4 ‘
AINE—~NW 4 e, I
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000 Techniques
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Figure 1.10: Proposed loT-based framework for service composition optimization

a) Sensor Layer: This layer is in charge of gathering information from a variety of IoT sensors,

including cameras, motion sensors, temperature sensors, and moisture sensors in the soil.
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b) Network Layer: This layer establishes a communication channel between the servers and the
data gathered from sensors. For instance, Wi-Fi (Wireless Fidelity), Bluetooth, Zigbee, LoRa
(Long Range), and LoW-PAN (Low-power Wireless Personal Area Network).

¢) Cloud Layer: This layer provides a range of sub-services across several private, public, or
hybrid clouds and acts as virtual storage. There are three options: Platform as a Service (PaaS),
Infrastructure as a Service (IaaS), and Software as a Service (SaaS). In our study, a sequential
workflow for fourteen services relevant to apple orchard establishment is considered which can

be taken from the cloud layer as it stores the data.

d) Service Composition Layer: The fourth and most crucial layer of the framework is the service
composition layer. To satisfy the user’s complex requirements, it is divided into multiple sub-
services. First, cloud services are identified, next the necessary services are chosen among the
available cloud options, and lastly, services are composed. To optimize the composite services

according to user demands, this layer is linked with optimization algorithms in our work.

e) Application Layer: The application layer is necessary to provide end users with access To the

services that were developed in the preceding step.

Thus, the research work in this thesis explores the service composition layer in smart
agriculture, by first analyzing data, then combining relevant services, and optimizing them

using EC techniques to get the optimal composition plan for its users.
1.7 Objectives of Research Work

Optimization of service composition has been the subject of extensive investigation. However,
its application in smart agriculture remains unexplored. Therefore, this work employs distinct
meta-heuristic approaches to achieve optimization in this domain. Motivated by this gap, the

following objectives have been framed for this research.

a) Linear multi-objective service composition optimization in smart agriculture using EC

techniques such as
»  Multi-objective Genetic algorithm (MOGA)

»  Non-dominated Sorting Genetic Algorithm I (NSGA-II)
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»  Multi-objective Gaining Sharing Knowledge based algorithm (MOGSK)

b) Non-linear multi-objective service composition optimization in smart agriculture using

EC techniques such as
»  Multi-objective Genetic algorithm (MOGA)
»  Non-dominated Sorting Genetic Algorithm I (NSGA-II)
»  Multi-objective Gaining Sharing Knowledge based algorithm (MOGSK)

¢) Impact of uncertainties on both linear and non-linear service composition optimization
in smart agriculture using fuzzy inference system (FIS).
d) To develop a novel Multi-objective Electric Eel Foraging Optimization (MO-EEFO)

algorithm for real-world optimization problems.
1.8 Organization of Thesis

The thesis is classified into seven chapters. The detailed description is given below.

Chapter 1 describes the service composition problem and how it can be solved using various

meta-heuristic algorithms.

Chapter 2 covers insights into the work done in the field of smart agriculture. It also includes
various single and multi-objective optimizations done in smart agriculture using distinct meta-

heuristic algorithms.

Chapter 3 discusses the first objective of the thesis i.e. multi-objective optimization of
composited services by establishing a linear relationship between the two objectives by using

MOGA, NSGA-II, and MOGSK algorithms.

Chapter 4 addresses the second objective i.e. multi-objective optimization of composited
services by establishing a non-linear relationship between the two objectives by using MOGA,

NSGA-II, and MOGSK algorithms.

Chapter 5 deals with analyzing the impact of uncertainties on both linear and non-linear multi-

objective service composition optimization by using a FIS.
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Chapter 6 proposed a novel nature-inspired MO-EEFO algorithm for solving real-world

applications.

Chapter 7 concludes the thesis along with the clarification of future work.
1.9 Summary

This chapter provides an extensive understanding of the service composition problem and how
it relates to real-world smart agricultural challenges. It illustrates the successful implementation
of several well-established EC approaches that are available to address these challenges.
Various methods for tackling multi-objective optimization problems, such as Pareto and
scalarization-based methods, are discussed as the problem can be formulated as one.
Furthermore, a detailed discussion of the identified research gaps and proposed IoT-based
framework along with the dataset as well as the study’s objectives is provided to conclude the

chapter.
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CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

QoS-based service composition optimization plays a crucial role in satisfying the user’s
complex needs when multiple services with comparable capabilities exist but have distinct QoS
metrics. Given that the problem is NP-hard, meta-heuristics are frequently helpful in identifying
the optimal solution while adhering to the imposed global constraints, which satisfies the
complicated needs of the user. Various researchers have focussed on this idea in a variety of
domains using loT, artificial neural networks (ANNs), cloud computing, and ML. Applications
covered in the literature include traveling salesman problems, smart healthcare, supply chain

management, and many more.

This chapter initially covers all the reviews and surveys done in the field of smart agriculture,
followed by diversified optimization methods used for handling various agricultural-related
issues. Eventually, a literature table is provided that compares existing literature on service

composition with the research gap found for the study of this thesis.
2.2 Review Papers on QoS-based Optimization in Smart Agriculture

P.P. Ray et al. [49] have provided a review of the various loT-based agricultural applications
that offer guidance for further agricultural research in agriculture. They have given a thorough
overview of the various communication technologies used in agriculture, including Bluetooth,
LoRa, Arduino modules, WiMax (Worldwide Interoperability for Microwave Access), and
802.11 (Wi-f1). The kinds of cloud services offered by a few IoT-based cloud platforms, as well
as their costs, times, data visualization capabilities, and real-time data collection, were also
compared. In addition, the sensors, cloud support, and application types of the most popular
IoT sensory systems were compared. The authors came to several important conclusions about
topics for further study, including fish farming, data analytics cost optimization, and smart
irrigation systems. However, the comprehensive literature review of loT in advanced

agriculture was not the main focus of this paper.
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After conducting a thorough literature study, A. Khanna et al. [50] have characterized IoT as an
actual paradigm shift in precision agriculture. It has described every communication technology
that might be utilized with the IoT as well as the different [oT applications that were especially
related to precision farming. The barriers in this area are described as data privacy,
interoperability, scalability, virtualization, reliability, mobility, and availability. They have also
thought that the main concerns for further study should be the right deployment of sensors,

service composition, cost, and discovery.

Another comprehensive evaluation of IoT applications in smart agriculture can be found in Wen
Tao et al. [51]. The challenges encountered along with the usage of IoT sensors and other
communication methods in agriculture are analyzed in-depth. The authors have summarized
that three main issues that need to be addressed are cost, data reliability, and IoT device

standardization.

A review, by A. Srivastava et al. [52], has explored how DevelopoT technology develops
helping farmers overcome many of their challenges in the agricultural sector. However, it also
explains that to effectively apply technology to improve agriculture, problems like equipment

cost, data security, [oT node power savings, fault tolerance, and data privacy must be resolved.

V.P. Kour et al. [53] have given a summary on the expansion of the growth of IoT in smart
agriculture and conclude that building solutions that are both power — and cost — optimized

presents substantial problems that need to be overcome.

An overview of the application and effects of IoT based on cloud in climate-smart agriculture
is provided by E.G. Symeonaki et al. [54]. A few applications are described in detail, such as
cloud agro-systems and cloud services based on the PDCA (plando-check-act) cycle of
agriculture. The authors discovered that although these technologies have many benefits, there
is still a lack of integration in the experimental phase. The main issues that need to be resolved
include farmer training centers, inexpensive network coverage, user-friendliness, and

appropriate standardization for IoT devices.

B. Sinha et al. [55] have provided a review on how to work with [oT to elevate productivity and
optimization of costs in smart agriculture. Precision farming, livestock monitoring, crop
management, irrigation management, etc. are the important aspects of [oT in smart agriculture.

They have also provided a comprehensive description of sensors like temperature sensors, soil
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moisture sensors, potential of hydrogen (pH) sensors, ultraviolet (UV) sensors, etc. The authors
concluded their work by considering security, scalability, dependability, and resource

optimization as the biggest issues that need to be tackled in the future.

In their review, Saiz-Rubio et al. [56] have discussed how data-driven management, sometimes
known as “Agriculture 5.0,” might be applied to sustainable agriculture to save costs while
protecting the environment. The authors have talked about the idea of “Agriculture 5.0,” which
is essentially the application of robotics and artificial intelligence combined with unmanned

machinery and autonomous decision-making systems.

A thorough analysis of bio-inspired algorithms for agriculture has been given by C. Maraveas
et al. [57], who divided them into four categories: multi-objective, evolutionary, ecology, and
swarm intelligence-based techniques. The finest algorithms for agricultural yield, land
planning, pest management, and fertilizer optimization, according to their description, are GA,
ant colony optimization (ACO), firefly, and cuckoo algorithms. Particle swarm optimization
(PSO) is the most appropriate algorithm for predicting irrigation, though. It has also been noted
that compared to single-objective approaches, multi-objective approaches yield a greater
number of nearly optimum solutions. The paper concludes that while hybrid strategies have
received limited attention, bio-inspired artificial neural networks outperform other algorithms

in the field. No algorithm can perform every type of function.

Using meta-heuristics, Masdari et al. [58] have presented a thorough review of the literature on
QoS-based service composition. To tackle the web service creation challenge, they categorized
the literature into seventeen different meta-heuristics and compared each one with certain meta-
heuristic qualities. The authors conclude that, after PSO, GA is the most frequently utilized
technique for solving service composition problems. The majority of the evaluation was
covered by fitness value parameters, then time-related parameters. Numerous articles use the

QWS dataset, followed by random datasets for web service composition.

As an application of Al in agriculture, M. Pathan et al. [59] have covered precision agriculture,
crop phenotyping, and disease identification utilizing deep learning, ML, ANNs, WSNs, 10T,
fuzzy logic, and GA. They concluded that it can produce high productivity at low labor and cost

costs and lower environmental risk.
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S. Qazi et al. have contributed to an overview of the use of Al and IoT technology in smart
agriculture, accompanied by a few predictions for subsequent generations [60]. They give
instances of a few smart irrigation methods based on [oT, such as the usage of neural networks,
fuzzy logic (FL), UAVs, and soil-based methods like drip irrigation and aeroponics. The authors
also discuss pest-weed identification, phenotyping, and plant disease prognosis using deep
learning. The authors conclude by listing a few challenges that still need to be met, such as the
international consortium for the development of coherent wireless sensing systems,

cyberattacks, and the ever-increasing cost of technology.

A. De et al. [61] have emphasized in their study of fuzzy implementations in the agri-supply
chain how important it is to focus on the entire agri-supply chain as opposed to just enhancing
agri-production. The eight primary challenges that are recognized include land appropriateness,
irrigation, production practices, transportation, insufficient cold storage, drought management,
waste management, environmental concerns, and sustainability. It is mentioned that the
problems that have not yet gotten enough attention are waste management, transportation,
inadequate cold storage, and drought management. Furthermore, real-time applications require

the study of geographic information systems (GIS) and big data.

F. Valdez et al. [62] have given a survey on the use of FL with nature-inspired approaches to
solving difficult optimization issues. This article covers the three most crucial methods:
gravitational search algorithm (GSA), PSO, and ACO. According to the authors, using
optimization techniques in conjunction with FL yielded better results than using optimization

algorithms alone.

Smart farm management applications of ML are demonstrated by A. Sharma et al. [63]. They
have clarified that while regression techniques are better for predicting the weather, crop
production, and soil qualities, deep learning algorithms including decision trees, random
forests, convolutional neural networks, and support vector machines are good for identifying
plant diseases. Drones, robotics, intelligent harvesting, and irrigation systems are all essential
for reducing the need for human labor. To make this industry more sustainable, they have
mentioned chatbots based on natural language processing (NLP) and hybrid algorithms in their

paper analysis conclusion.

The power and promise of computer technologies employed in agriculture, namely ML and IoT

data interpretation, have been shown by R. Akhter et al. [64]. A prognostic model for the Scab

23



apple disease has also been suggested for apple farms in the valley of Kashmir region. They
asked farmers about the newest agricultural technologies and how they affected yield output to

further elucidate the survey.

A survey of big data applications in smart farming is given by S. Wolfert et al. [65]. They
claimed that its reach is impacting every link in the food supply chain and offering farming
predictions. On top of that, the significant growth in IoT gadgets is producing a large amount
of diverse data that can be captured, examined, and utilized in decision-making processes
through the implementation of big data. The authors draw a continuum between two extreme
scenarios for the future of smart farming: closed proprietary systems and open collaborative
systems. Some other topics, like security, openness of platforms, privacy of data, and intelligent

analytics, have also been covered.
2.3 QoS-based Optimization in Smart Agriculture

Ocampo et al. [66] have provided a study that uses GA to reduce the energy cost of two motor
pumps in a smart farm, with the requirement that there be enough energy available for both
pumps. Moreover, restrictions were implemented. Each solution is viewed as a set of weights
that need to be multiplied by the sensor readings that correspond to it. Three mutation operators
(Uniform, adaptive feasibility, gaussian), six crossover operators (Scattered, single point, two-
point, intermediate, heuristic, and arithmetic), tournament selection, crossover probability =
50%, and population size variation between 50 and 500 with a spacing of ten are all included.
After testing several settings, the authors conclude that several simulations are needed to find
the optimal solution. The paper’s conclusion is ambiguous because neither trade-off points nor

a specific optimal solution have been taken into account.

Hakli et al. [67] have presented a novel GA-based method for autonomous land partitioning.
The goal function is defined as the product of three competing parameters: the location of
cadastral parcels, the degree of cadastral parcels, and the fixed facilities multiplied by two. The
block’s unique number is utilized to start the random population. The simulation operators in
the suggested model—population size = 20, number of generations = 50, roulette wheel
selection method, single point crossover, swapping mutation, mutation probability = 0.1, and
crossover probability = 0.8—are applied to a completed project of Alanozu by the authors. A

comparison is made with another study in which the model took 4.8 hours to optimize a 3-
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hectare block with six parcels, whereas the suggested technique takes just eight hours to
optimize a 109-hectare block with eighteen blocks and thirty-three parcels. The authors
demonstrate their accomplishment by contrasting the target function results with the identical
land portioning carried out by the designer. They discovered that the suggested Automated land
portioning genetic algorithm (ALP-GA) is significantly better.

Roy et al. [68] have presented a design for terrace gardening and outdoor spaces that uses GA
to forecast rainfall based on actual data from Kolkata, West Bengal, India. If rainfall is not
expected, a system based on sensors in terrace gardening determines whether soil moisture is
below a predetermined point. If so, an Arduino UNO relay module and global system for mobile
communications (GSM) module receive the signal, which activates the water pump until the
soil sensor’s threshold value is reached. In outdoor regions, the moisture sensor’s signal is
transmitted to a mobile device via an ESP8266 Wi-Fi module, which directs the UAV to
disperse water where it is desired. Although the roulette wheel is selected, no information

regarding crossover and mutation is given.

A GA-based UAV path planning method is proposed by Shivgan et al. [69] to minimize energy
consumption by limiting the number of turns while covering a region. They run the experiment
with waypoints = 10, 25, 50, and 100. The parameters are swapping mutation, two-point
crossover, and tournament selection. The authors compare the optimal solutions with a greedy
technique to assess the outcomes. According to the authors, the suggested GA uses two to five

times less energy than the greedy method.

Through the optimization of the path coverage of 40 sensor nodes connected to greenhouses
using the hop-to-hop delivery technique, Gaofeng [70] have illustrated the use of evolutionary
algorithms for cost optimization. Thirty iterations in all were conducted, with the twentieth

iteration yielding the best value of 3838 for the optimal path determination.

Use of meta-heuristics along with artificial intelligence like machine learning, deep learning is

also taking smart agriculture to the next level.

Acharjya et al. [71] have presented a model for crop identification based on regression, the K-
nearest neighbor (KNN) method, real coded genetic algorithm (RCGA), and hybridization of
fuzzy rough sets. Using a fuzzy real set, redundant attributes are eliminated in the first step,

after which the data is split into training, testing, and validation sections. Regression, KNN, and
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RCGA are used in the analysis of training data. Six combinations are possible for this:
Tournament with Laplace (TSLX), Roulette with Laplace (RWLX), Tournament with Simple
(TSSX), Roulette with Simple (RWSX), Roulette with flat (RWFX), and Tournament with flat
(TSFX). These combinations can be made using simple crossover, flat crossover, Laplace
crossover, roulette wheel selection, and tournament selection. Using data from Tamil Nadu’s
Tiruvannamalai district’s Krishi Vigyan Kendra, all of these combinations are compared for
success rate, accuracy, and execution time with the goal function being the lowest mean squared
error. The optimal combination among them is found to be fuzzy rough set roulette wheel
selection with Laplace crossover which can be abbreviated as FRRWLX. For a variety of crops
grown in the Tiruvannamalai district, the authors also compare their findings with five other
methodologies and a rough set real coded based genetic algorithm with roulette wheel selection
and Laplace crossover (RSRWLC). The conclusion of the paper states that the FRRWLX
technique is the best of all of the others.

R.I. Mukhamediev et. al [72] have developnvestigated the use of flight planning for
heterogeneous UAVs in monitoring and agrotechnical measure implementation to address
coverage challenges. For multi-heterogeneous UAV coverage path planning, an approach based
on GA called multi-heterogeneous UAVs coverage path planning with moving ground platform
(mhCPPmp) is suggested. It offers flyby calculations, optimal UAVs subset selection, and a

10% cost savings over algorithms that do not take into account heterogeneous UAVs.

Farzad Kiani et. al [73] have suggested two evolutionary computational algorithms: Expanded
Gray Wolf Optimization (Ex-GWO) and Incremental Gray Wolf Optimization (I-GWO) for 3D
robot path planning. With a 55.56% success rate utilizing the Ex-GWO algorithm, the suggested
methods effectively locate collision-free pathways for robots in large-scale farmlands while

minimizing resource consumption and process costs.

For IoT-based smart agriculture applications, S. P. Singh et al. [74] have suggested a novel
fitness function termed service cost that takes into account localization rate, lifetime, coverage
rate, energy consumption, and delays utilizing loT-based wireless sensor networks. When the
results of the proposed extended differential evolution (DE) algorithm are compared to those of
the whale optimization algorithm (WOA), PSO, GA, and firefly algorithm (FFA), it is

discovered that the proposed algorithm produces better results.
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H. Babazadeh et. al [75] have focused on maximizing agriculture output and water productivity
in arid and semi-arid regions. They employ a simulated annealing method (SA) and MOGA
based on experimental data from two conductive agricultural seasons in 2010 and 2011. The
results demonstrate that MOGA is more capable of optimizing grain yield and water

productivity at the same time.

To optimize the benefit-cost ratio and output energy for watermelon growing in Iran while
limiting greenhouse gas emissions, S. Shamshirband et al. [76] employed MOGA. The findings
indicate a simultaneous average drop of 33% in greenhouse gas emissions and 28% in energy

intake.

Using data for the Tamil Nadu region of Coimbatore, N. Sivakumar et al. [77] have presented
a model for minimizing the use and cost of fertilizers by utilizing the FFA. To ensure that crops
meet the NPK (nitrogen, phosphorus, and potassium) requirement, they have applied two
different types of fertilizers—Complex (STD-10 and STD-3) and Simple (Urea and SSP)—to

eleven distinct regional crops.

In the Coimbatore, Tamil Nadu, area, N. Thilagavathi et al. [78] have worked on the optimized
use of agricultural land utilizing social spider algorithm (SSA), ACO, and LINGO global server.
They have taken into account that the goal function is to cultivate the right crops and crop
combinations to minimize the need for water and optimize overall returns, or profit. Four
situations are chosen. Every major crop (sugarcane, maize, cholam, three varieties of gingelly,
paddy, cotton, and groundnut) in Scenarios 1 and 2 has a small — to medium-sized land area
(twenty thousand to forty thousand sq. m) and a medium-sized land area (forty thousand to one

lakh sq. m).

Bahram Saeidian et al. [79] have proposed an imperialist competitive algorithm (ICA) to
maximize overall income for all lands by optimizing water allocation at the farm level utilizing
temporal agriculture data. Compared to other algorithms such as PSO, bees algorithm (BA),

and GA, the proposed algorithm was found to provide superior income.

Another smart agriculture system based on IoT, created by G. Sushanth et al. [80], makes
decisions about plant watering based on temperature, moisture, and humidity readings.

Moreover, a motion detector sensor employs an Arduino board to monitor animal activity in the
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field. The farmer receives updates via short message service (SMS) via Wi-Fi, third generation

(3G), and fourth generation (4G). This work lacks the use of any optimization technique.

A wireless sensor-based system for crop irrigation has been proposed by J. Muangprathub et al.
[81]. The three main components of this framework are mobile applications, web-based
applications, and hardware. A hardware module is used to collect data from soil moisture
sensors. A web-based application is then developed to modify the data obtained using data
mining, and a mobile app is used to water the field manually or automatically. The actual
experiment used vegetables grown at home and lime as the crops to be assessed. It was
conducted in three different villages in the Makhamtia region of Thailand. The study showed
that 72—81% and 29-32 degrees, respectively, are the ideal temperatures for producing a decent
crop of homegrown veggies and limes, respectively. However, no concept of optimization

was used.

A SmartFarmNet platform that is based on the IoT has been presented by Jayaraman et al. [82]
for automated data collection from gadgets such as mobile phones, cameras, weather stations,
and WSNSs. This data is then correlated to verify crop performance and forecasts for any farm.

The data has been stored in the cloud for later processing and outputs.

A hybrid model of machine learning incorporating a Butterfly optimization algorithm (BOA)
with 10T has been presented by A. Gupta et al. [83] for crop yield optimization. The study has
been broken down into three stages by the authors: pre-processing, feature selection (using the
Variance Inflation Factor algorithm and correlation-based feature selection), and classification.
A dual-layer model for classification is demonstrated: an extreme learning machine (ELM)
method for crop yield prediction, and an adaptive K-nearest centroid neighbor classifier
(aKNCN) model for estimating soil quality and subsequently classifying them into various
classes. Metrics such as Mean Absolute Percent Error (MAPE), Mean Squared Logarithmic
Error (MSLE), Accuracy, Mean Squared Error (MSE), Median Absolute Error (MedAE), EVS
(Explained Variance Score), Root Mean Square Error (RMSE), Model Evaluation metric
(MAE), and their contrast analysis with aKNC-GB (adaptive K-nearest centroid neighbor
classifier — Gradient boost), aKNCN-ELM-BOA, aKNC-ANN, aKNC-RF (adaptive K-nearest
centroid neighbor classifier — Random forest), aKNCN-ELM, and aKNC-SVM (adaptive K-
nearest centroid neighbor classifier — Support vector machine) are taken into account when

evaluating performance. The suggested approach, according to the authors, outperforms the
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others in every comparison of metrics. Nevertheless, its complexity, requirement for constant

internet access, and vast training data set are its drawbacks.
2.4 Dealing Uncertainties in Smart Agriculture

Fuzzy bee colony optimization (FBCO), as developed by O. Castillo [84], is a widespread type-
II fuzzy logic technique for adapting dynamic parameters of the Bee colony optimization (BCO)
method for the optimum performance of water tank controller and mathematical functions. Nine
fuzzy inference rules for FBCO have been taken into consideration for the Mamdani fuzzy
system with a trapezoidal membership function. The two input variables are diversity, and
iteration, and the two output variables are alpha («) and beta (f), which have respective
ranges of 0—1 and 2-5. Level (high, okay, low) and rate (positive, none, negative) are the
input variables for the water tank controller in case of the primary benchmark problem, while
the output variable is a valve with five membership functions of the triangle type
(openfast, openslow,nochange, closeslow, closefast). Then, fifteen experiments have
been conducted for each of the ten mathematical functions. The Type-I fuzzy logic controller
(T1IFLC), original BCO, and an Interval Type-II fuzzy logic controller (IT2FLC) were
compared with FBCO. The findings highlighted that FBCO executes better than the others in

relation to convergence rate, and stability.

Drawing from the plant’s innate defense mechanism, C. Caraveo et al. [85] have created a
modified predatory pray optimization approach that uses Type-II fuzzy logic to preserve
balance. By dynamically altering the variables, the autonomous robot’s travel path has been
modified to reduce errors. The Mamdani kind of fuzzy controller has been used when the input
variables are angular velocity and linear velocity, and the output variables are left and right
torques. Together with nine fuzzy inference rules, two different membership function types are
used: trapezoidal for positive and negative terms and triangular for zero terms. By contrasting
it with FBCO, its viability has been examined. Based on statistical analyses, the author’s
optimization approach and fuzzy logic system (FLS) have significantly improved performance

and stability.

M. Guerrero et al. [86] created a “uzzy’control system that would continuously change the
parameters—the probability of discovering host bird (P,) and scale factor () to improve the

convergence rate. This system is known as the fuzzy cuckoo search algorithm (FCS). Five

29



benchmark functions with various dimensions ranging from eight to one hundred and ttwenty-
eight—Griewank, Rastringin, Ackley, Spherical, Rosenbrock—have been used to test the
suggested technique. The Mamdani fuzzy system type, comprising three fuzzy rules and
triangular membership functions 30abelled as high, medium and low, has been applied to a
single input (iterations) and output (P, or ). The research concludes with a comparison
between FCS (P;) and FCS (f), and cuckoo search, showing that FCS () exceeds the
performance when compared with other two algorithms for four out of five functions when the

number of dimensions increases.

A unique method for dynamically modifying parameters (¢ and kbest) in Fuzzy gravitational
search algorithm (FGSA), which is based on interval Type-II fuzzy logic, has been presented
by F. Olivas et al. [87]. To test it, they first optimized fifteen key mathematical benchmark
functions, and then they worked on a fuzzy controller that regulates the temperature of hot and
cold water. In the process of optimizing mathematical functions, iterations, which range from
0 to 1, and diversity (high, medium and low) are input variables. a, which spans from 0 to
100, and kbest, which spans from 0 to 1, are taken into account as output variables. There are
nine fuzzy inference rules for a fuzzy controller; its inputs are flow and temperature, and
its outputs are hot and cold. Nine fuzzy inference rules make up the fuzzy controller’s inputs
(temperature and flow) and outputs (hot and cold). Its efficacy is further confirmed by
comparison with the Type-I Fuzzy GSA for altered parameters (TIFGSA) and the original GSA.
The suggested algorithm, according to the authors, performs better for local or global searches

than the other two nearby algorithms.

To ensure that farms only utilize the appropriate number of fertilizers, G. Lavanya et al. [88]
have developed a revolutionary NPK sensor that is outfitted with an LED (light emitting diode)
and an LDR (light dependent resistor). This sensor allows for thorough monitoring of the
nutrients present in the soil. [oT is utilized to transmit data to Google Cloud for speedy
information retrieval, while fuzzy system is used to apply the Mamdani inference model to
identify vitamin deficiencies in sensed data. When defining IF — THEN rules, output levels are
categorized as very high, high, medium, low and very lowby using ranges of 0.8-1, 0.5-0.8,
0.3-0.5, 0.1-0.3, and 0-0.1, respectively. Its efficacy is evaluated with a software and hardware
model. Three test samples of red, mountain, and desert soil were collected for the hardware
testing. Data is sent from NPK sensors to the cloud servers for software simulations while taking

metrics like jitter, throughput, and end-to-end delay into account. The authors stated in
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conclusion that their approach, when used with a smart, low-cost, and accurate IoT system,

produces high crop production.

In order to maximize water resources, Cruz et al. [89] have suggested using a fuzzy logic-based
decision assistant tool for the water tank monitoring and control subsystem (WTMCS) in a
smart farm automatic irrigation system (SFAIS). The water tank’s state determines how much
priority the power management system has when it comes to turning on the pump. Priority
levels have been determined by keeping an eye on the water level (L) and its
variations in water level (DL).  While  values of L  are  fuzzified as
full (F),normal (N) and empty, values of (DL) are defined as
high (HP), medium (MP)and low (LP). The three priority levels are defuzzed. With the
defuzzification method of center of gravity, they have defined nine fuzzy IF — THEN rules for
making decisions in order to establish the relationship between input and output variables. The
authors conclude that WTMCS is more likely to supply the farm with the best possible

distribution of power and water resources.

A method based on fuzzy logic has been developd by R.P. Sharma et al. [90] to prevent pests in
amillet and rice field by persistently monitoring the expansion of pests. Temperature, humidity,
and rainfall data samples were collected in real-time by the suggested system using an
IoT monitoring mechanism, which produced a data collection. GA has utilized this data as
training to refine the fuzzy-based prediction system’s rules. GA has found a correlation between
meteorological variables and insect breeding requirements using conditioned data from the
cloud. The linguistic parameters of the Cauchy fuzzy membership function (CMF), which
include very high (VH), high (HI), moderate (MOD),low (LO) and very low (VL), have
been derived from this correlation. The suggested approach has been tested in the Madhya
Pradesh region of Gwalior, where the right environment is present for pests to flourish in rice
and millets. The authors have determined that there are high and high incidences of pests, and

this technique will assist farmers in taking preventive action in advance.

A fuzzy-based zoning smart irrigation system has been presented by H. Benyezza et al. [91]
with the aim of optimizing greenhouse water and energy use. To do this, they have separated
the greenhouse into various zones, used a node equipped with a soil moisture sensor in each
zone, transferred data to a fuzzy system for best decision-taking, and utilized the cloud layer to

store data for remote access. A real six-square-meter field has been divided into two zones and
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irrigated with tomato water for eight days to test its efficacy. After doing a comparative analysis
with three other approaches suggested in the literature, it was discovered that the suggested
algorithm outperformed other state-of-the-art for the identical trial area regarding energy

consumption and water usage, by 65.22% and 26.41%, respectively.

Table 2.1 presents an overview of the current literature on service composition and elucidates

how the research presented in this thesis differs from other investigations.

Table 2.1: A literature review on service composition optimization

Article [Ref.] Description Parameters Types of | Applications
objectives
N. Kashyap et | Minimized time and | Population size = | Preference- No
al. [92] cost & maximized 100 based application
reliability using multi- taken
o No. of services = o
a Hyper-heuristic objective
10 -50
approach
No. of candidate
services = 10-
50/service
P. Asghari et al. | Proposed a model for | No. of services = | Preference- Smart
[93] predicting disease 8 based Healthcare
using techniques of multi-
o No. of candidate o
data mining and ‘ objective
services =
provided composited
: - 6/service
medical prescriptions.
Location, cost, and
time as QoS metrics.
Not providing
optimal solutions
using any EC
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technique is a

limitation

N. Kashyap et | Minimized time and | Population size = | Preference- No
al. [94] cost and maximized 100 based application
reliability using GA multi- taken
No. of services = o
and PSO. GA objective
10-50
performed better than
PSO No. of candidate
services = 10-
50/service
N. Kashyap et | Minimized time and | Population size = | Ideal multi- No
al. [95] maximized reliability 100 objective application
using NSGA-II taken
_ i No. of services =
algorithm in IoT
10
No. of candidate
services = 10, 30
and 50/service
M. Razian et Proposed a new Conducted a Preference- Smart
al. [96] Anomaly-aware series of based healthcare as
Robust service experiments. multi- motivation
Composition (ARC) objective scenario

algorithm to address
the issue of QoS

value uncertainty in

an [oT context that is

always changing.

Cost is minimized
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GA

No. of services =

2

No. of candidate
services =

9/service

S. Sefati et al. | Five QoS parameters | No. of services = | Preference- No
[97] optimized using 63 based application
hidden Markov multi- taken
No. of candidate o
model, and ACO objective
services = 1000-
(HMM-ACO)
10000/service
P. Kumar et al. Seven QoS No. of services = | Preference- No
[98] parameters have been 2,4,6,8,10 based application
optimized using multi- taken
o No. of candidates o
a decision tree and objective
= 5-200/service
GA
R. Boucetti et | Nine QoS parameters | Population size = | Preference- No
al. [99] optimized using 20 based application
neural network and objective taken

After a comprehensive review of the existing literature on QoS-based optimization in smart
agriculture, it is evident that service composition optimization in smart agriculture has not yet
been investigated, and the idea of using ideal multi-objective optimization is still barely
implemented. Moreover, the literature reveals that real-world smart agriculture systems involve
numerous uncertainties that are often overlooked. Addressing these uncertainties is crucial for
developing practical and robust optimization solutions. Overall, there is a significant research

gap in applying multi-objective service composition optimization and checking the impact of

uncertain conditions in smart agriculture.
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2.5 Summary

This chapter offers a few insights from related work in the literature to understand the research
gaps in the area of QoS-based service composition optimization. After carefully examining the
literature, it has been discovered that the service composition problem has not yet been
investigated in the context of smart agriculture, and the ideal multi-objective is barely used in
this field. Another finding is that multi-objective optimization is useful in smart agriculture
because it may resolve conflicting objectives with ease, as only multiple objectives can satisfy
the user’s complicated requirements instead of a single objective optimization. Furthermore,
there are a lot of uncertain factors to consider while solving smart agriculture problems in the
real world. Therefore, the multi-objective QoS-based service composition optimization in smart

agriculture applications is the overarching focus of this thesis’s study.
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CHAPTER 3

LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION
OPTIMIZATION IN SMART AGRICULTURE USING
EVOLUTIONARY COMPUTATIONAL TECHNIQUES

3.1 Chapter Overview

QoS-based service composition optimization is crucial for fulfilling the user’s complex
requirements. Local service selection and global composite service optimization are two
approaches for this. For dispersed systems where centralized management is impractical, local
selection works well whereas global optimization involves selecting the best candidate service
for all atomic services in a workflow, aiming to achieve the top-quality composite service within
the constraints set by the users. Thus, population-based meta-heuristic approaches have been

widely used to tackle the issue of service composition optimization.

This chapter examines the idea of service composition in real-world smart agriculture
applications by focusing on minimizing two important QoS-based metrics—cost and time.
Additionally, it looks at how these goals are linearly related and discusses how to optimize

composite services using three different EC techniques.
3.2 Linear Service Composition Model

Service composition is a combination of multiple web services, defined by QoS characteristics
like time, scalability, cost, availability, and throughput. A service pipeline is used to route user
requests, producing candidate service lists with distinct QoS requirements. The objective of the
study is to offer the optimal solution for the apple orchard establishment and management in
the Kullu and Shimla areas of Himachal Pradesh (a state in India) to address the multi-objective
problem of associated time and cost in the growing surroundings. Let us suppose that there is
total "s" services that are involved in the cultivation of apple harvests; these services are all
regarded as atomic services with distinct QoS metrics. Out of which, each service "i" can have
different candidate services or options based on QoS metrices which are time and cost in this

case. It is assumed that each service i has a minimum completion time denoted by min _time

and maximum completion time denoted by max _time along with c_min and c_max as the
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minimum and maximum cost for completion of that particular service. This complete concept
can be mathematically expressed using equations 3.1 to 3.11 where equation 3.1 shows how

atomic services (AS;) can be described using candidate services (CS;;) while equation 3.2

shows how these candidate services CS;; are reliant on QoS factors [98].
AS; = {CSi1,CSi3,CSiz, ... CSij, o, CSitt} .1
CS;; = {QoS(CSy;)} where,1<i <sand1<j<k (3.2)

Equation 3.3 below can be used to define the service composition once the QoS-based

appropriate candidate service has been chosen.
C = {C51;,CS;;,CS3j, ..., CSg;} (3.3)

Further, since this work considers minimizing the time and cost associated with the various
atomic services as the objective function so the related time and cost with each service can be

described using equations 3.4 and 3.5, respectively.

T = {ty,ty, t3, oo, by oo, ts} (3.4)
C ={c1,c5,C3, .., Ciy wer) Cs} (3.5
Where, t; and c; are the time and cost of i*"* service, respectively.

The mathematical description of the objective function is given in equation 3.6 whereas "T"
and "C" defines total time and total cost associated with all services given in equations 3.7 and

3.8, respectively.

Minimize (T, C) (3.6)
T= Y1t (3.7)
C= i1 (3.8)

For cost objective (c;), it can be defined as the linear function of t; by using the slope-intercept

form shown in equation 3.9.
Ci = mitl- + a; (39)
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(max _cost); — (min _cost);

Where, m; = (3.10)

(min_time);— (max _time);
and a; = (max _cost); — (min _cost); (3.11)

Here, m; is the slope of i" service, indicating the rate of change in cost with respect to time

and «; is y-intercept.

The concept of the linear relationship between time and cost used in this work is illustrated in

Figure 3.1 [119].

Cost A
Maximum
Cost :
Minimum ‘
Cost E
! : > Time
Minimum Maximum
Time Time

Figure 3.1: Linear time-cost trade-off of services using slope-intercept form [119]

Figure 3.2 offers a general view of the QoS-based service composition strategy for better
understanding. In Figure 3.2, a service composition plan is portrayed, comprising three atomic
services. A variety of cloud-based services must be chosen from a pool of candidate services in
order to carry out this approach. For every atomic service, let’s say there are four candidate
services. So, the key question is: which candidate service ought to be picked? This choice is

made in the service selection phase when the relevant candidate services are picked in
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accordance with the defined QoS metrics. The service composition plan is then finally carried

out after the best candidate services have been chosen.

Service (IE;)mposmon @ N
an A5, 45, AS;
& .
Service Discovery Discovery .. 7 3
7
Cloud
ACSM . €S54 - CSay
CSy5 . CS;; - €Sss
CS1s s CS
CS14 . Sz - CS3s

Candidate Services

QoS metrices based

Service Selection .
selection

Service Composition A - e o
CSy1 CSy3 CSaa

Figure 3.2: Understanding of QoS-based service composition
3.3 Case Study

Most researchers have focused on reducing fertilizer usage, improving irrigation management
systems, and increasing crop productivity and profitability; however, the integration of these
diverse services and their optimization to achieve multiple objectives simultaneously has not
yet been investigated. This optimization of integrated services can help provide customized
optimal plans to the farmers and users. To understand this concept, an illustrative scenario of
service composition in smart agriculture is explained. Consider a scenario where “Company A”
creates an agricultural plan for its customers/users, offering the following atomic services
related to apple tree cultivation and management.

e Soil Testing and Analysis

e Apple Variety Selection

e Orchard Establishment

e Tree Planting
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e Fertilizer Application

e [rrigation System Installation

e Pest and Disease Control

e Pruning and Training

e Crop Monitoring and Management

e Harvesting

e Packaging and Labelling

e Sorting and Grading

e Storage and Cold Chain Management

e Marketing and Distribution

The complete service composition process is illustrated in Figure 3.3 using a unified modelling

language (UML) diagram [96]. In this scenario, customers will approach the company with

specific service requests. The company will then create a tailored plan that incorporates only

the services desired by the customers. This customized plan will be based solely on the services

explicitly requested by the users.

Company A

Request
User au >

[

Composited plan

Service-1

Service-2

=== | Service-n

i Request

___________________ ISPPPP.“.SP_]

e o

|1____________

Request

Response

Response

Figure 3.3: Sequence diagram showing the flow of service composition [96]
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3.3.1 Proposed Dataset

To enforce the service composition optimization in agriculture, a survey on establishing and
managing apple orchards has been conducted on the fifty-three farmers of the Shimla and Kullu
regions of Himachal Pradesh (a state in India). Based on their responses, a dataset has been
created that includes the basic fourteen services starting from soil testing to marketing and

distribution, required to establish and manage the apple orchard within one acre of an area.

The criteria for including and excluding the responses are as follows:
a) Inclusion criteria
e People who respond to the minimum 70% of questions.
b) Exclusion criteria
e People with no experience of apple orchards.

e People who are unwilling to respond to less than 70% of questions.

Those fourteen services along with corresponding cost and time metrices are cataloged in Table

3.1.

Table 3.1: Dataset showcasing atomic services in smart agriculture

Service Atomic Services Cost (in rupees)) Time (in
Number days)
1 Soil Testing and Analysis 10000 7
5000 14
2 Apple Variety Selection 4000 1
2000 3
3 Orchard Establishment 200000 30
50000 90
4 Tree Planting 10000 2
7000 6
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5 Irrigation System Installation 150000 7
50000 14
6 Fertilizer Application 100000 14
50000 28
7 Pruning and Training 30000 7
15000 21
8 Pest and Disease Control 100000 14
70000 28
9 Crop Monitoring and 50000 60
Management
20000 120
10 Harvesting 70000 14
35000 28
11 Sorting and Grading 30000 7
15000 14
12 Packaging and Labelling 90000 14
60000 28
13 Storage and Cold Chain 50000 60
Management
25000 120
14 Marketing and Distribution 80000 90
40000 180
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The two primary QoS metrics in this study that must be simultaneously minimized to give the
user an optimal plan are cost and time. Take the service of soil analysis and testing, for instance.
For this service, there are two options: one that costs 10,000 rupees and takes seven days, and
another that costs 5,000 rupees and takes fourteen days. There is a possibility of having other

options that fall between these cost and time frames, offering a wide variety of choices.

An ideal solution based on the user’s specific preferences is needed to identify the best option.
For example, a user may select the second option if he/she is more concerned about the cost as
this option increases the time taken but is cheaper. However, if the priority of the user is time
over cost, he/she may opt for faster service. Whether the user wants to save time, cut costs, or
strike a compromise between the two, the objective is to choose the service option that best
suits his/her priorities. However, if the user values time over cost, they may opt for the faster
service, even if it costs more. Similarly for the second service which is apple variety selection,
speaking with specialists or researching several apple varieties that are appropriate for the soil
and climate in the area is a must. So, it can take either one day with a cost of 4,000 rupees or
three days with a cost of 2,000 rupees or in between. The same will happen for other services.
Thus, this work provides an optimal service composition plan for the farmers/users for an entire

agricultural process, ensuring that farmers achieve the best possible outcomes for their field.
3.4 Methodology for Linear Service Composition Optimization

To get the optimal responses for service composition, various distinct meta-heuristics can be
used. There are two basic stages to these meta-heuristics that are included in each algorithm

used in this work.
3.4.1 Population Initialization

Initializing the population is a foremost and crucial stage in any meta-heuristic algorithm. It
involves representing a possible solution in a manner that the algorithm can understand. The
population initially consists of “N” solutions equivalent to population size, each solution is
represented with a string [ty, ¢, t3, ..., t;, ..., t;] where min _time < t; < max _time. The
size of the string equals the aggregate number of services considered, with indices denoting the
corresponding number and contents indicating the specific candidate for each service. Figure

3.4 illustrates the solution representation process, using time as the objective measure [119].
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This work in this thesis consists of fourteen atomic services involved in apple orchard

establishment and management.

t, t, ty |- - t,

F 3
y

A n-tuple string
Figure 3.4: Solution representation for atomic services by taking time as an objective function [119]
3.4.2 Evaluation of Objectives

After initializing the population using time as an input variable, the next step includes
evaluating cost using slope intercept form as both have a linear relationship between them and
already shown in equations 3.9 to 3.11. The pictorial representation of solution after calculating

both objectives for fourteen atomic services is portrayed in Figure 3.5.

Sl Sz 53 S4_ S5 Sﬁ S7 SB Sg Slﬂ Sll SIZ 513 514 Time Cost

t1 ty t3 ty ts ts ty tg ty tio | t1x | tiz | tiz | tia T C

Figure 3.5: Solution representation for atomic services including time and cost objective functions

Thus, this step generates a potential population of solutions by using linear slope intercept form

to estimate the cost for composite services corresponding to the service time.

After these two steps, the further mechanism for generating Pareto optimal solutions for multi-

objective problem is followed as per the pseudocode of specified meta-heuristic algorithm.
3.5 Linear Service Composition Optimization using MOGA

This section describes how the composited services with a linear relationship between time and

cost objectives are optimized using MOGA.
3.5.1 Optimization Algorithm: MOGA

A population-based optimization method inspired by nature that imitates the behavior of genetic
processes is called a genetic algorithm. John Holland initially suggested this automated and

computerized search method in 1990 [32]. Unlike traditional searching algorithms, the GA
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begins the search from an arbitrarily created primary collection called the population. A single
chromosome comprises every member of the population. A chromosome is a binary code-like
sequence of characters for a binary-coded genetic algorithm. In every generation, the fitness
function is computed to determine how effectively the current set of chromosomes is working.
It’s a quality that, whether it’s maximization or minimization, must always be at its peak. The
next step in GA is parent selection, which is important since the fitness of the next generation
directly affects how optimizations turn out. After that, the chosen parents experience crossover
procedure, and mutation procedure to produce the offspring, which are new chromosomes. Only
the fittest chromosomes will survive in the newly generated population since the chromosomes
are picked as per their fitness function, eliminating any unwanted chromosomes. Pareto
optimum solutions are the chromosomes on which the population converges after several

repeats [100].

The procedures listed below must be completed in order to use GA to achieve a globally

optimized Pareto optimal solution for multi-objective problems.
a) Initialization of the Population and Encoding

The population is the total number of possible ways to solve a particular problem. A gene is an
element’s index, whereas a chromosome refers to a single solution. Therefore, a chromosome
1s made up of genes, and a population is made up of several chromosomes. This work depicts
the chromosome by using a string with gene number equal to the number of atomic services

taken as mentioned in subsection 3.4.1.
b) Fitness Function

To determine the fitness value for each chromosome, the fitness function must be defined after
the population has been initialized. It takes the value of the chromosome that fits the best out
of all those compared at each iteration. The fitness function can be set to maximize or minimize
based on the needs of the user. The fitness functions that this work has adopted are cost and

time minimization.
¢) Selection Mechanism

The population’s average quality is greatly increased via selection, which transfers the better-

quality chromosomes to the following generation. Every iteration generates a “N” number of
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new individual offspring from “N” number of pre-existing individual parents. Parents and
children have to compete with each other to make it into the next iteration. This study makes
use of a tournament selection approach in which a tournament is created by selecting "p"
random chromosomes from the population. The chromosome with the best fitness among them
is selected as the tournament winner and advances to the following round. It continues until the

number of parents becomes equal to the population size [101].
d) Crossover Mechanism

The first genetic change introduced to a mating pool’s chromosomes is called a crossover.
Establishing a communication channel between two chromosomes is the goal of crossover. By
exploring new offspring, the algorithm aims to identify superior offspring based on the
discovered fitness value. This work employs simulated binary crossover (SBX) with a
probability equal to ¢ in our work. There are two different coefficients () for the SBX operator
to assess based on the values of the rand function, which has random values between 0 and 1.

Equation 3.12 is defined in the following two cases:

(2 *xrand) /3 if rand < o

g = ) _ (3.12)
A ranan 7 otherwise

Furthermore, SBX generates two offspring from a pair of randomly selected parental solutions
drawn from the existing population. Ultimately, one of the children is retained based on equal
likelihood [102]. The primary contribution of SBX to the whole algorithm is its ability to

expedite the Pareto Front blending process by recombining different solutions.
e) Mutation Mechanism

A mutation operation is performed on the new offspring chromosome to change one or more
genes in order to establish the new chromosome. This mechanism uses a polynomial
distribution index parameter 7, that determines how much the solution can be disrupted by
controlling the magnitude of variations. A random number u between 0 and 1 is chosen by the
operator. Based on this random number, the mutated parent p’ is created for a given parent "p"

shown in equation 3.13 given below.
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p+ G_L(p— xi(L)) ifu< 0.5
p'= — 7w _ (3.13)
p + Oy (xl. —p) ifu>0.5

Next, the following formulas in equations 3.14 and 3.15 are used to determine one of the two

parameters 8, and Oy .

1
6, = (2u)a+m —1 ifu<0.5 (3.14)
_ 1
6p=1— (2(1 —u))a+tmm ifu<0.5 (3.15)
Here, xl-(L) and xl.(R) defines the lower and upper bounds of the i** variable of the solution. &,

and 8y regulates the extent to which the mutation pushes the solution in the direction of the
lower and upper bounds, respectively. Thus, early convergence and population diversity are
preserved by the mutation [103]. The polynomial mutation is utilized in this work to replace

genes.

Below is presented the pseudocode for MOGA in Figure 3.6.

Algorithm: MOGA
Begin
Solution Representation, ¢ := 1, Maximum allowed generation = T;
Initialize random population P(t);
Evaluate P(t) and assign rank using non-dominated sorting
while t <T do
M(t) = Selection (P(t)); %Selection%
Q(t) = variation (M(t)); % Crossover and Mutation%
Evaluate Q(t); % Offspring%
P(t+1):=Q();
t=t+1,
end while

End

Figure 3.6: Pseudocode of MOGA
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To elucidate the concept of MOGA, a flow chart is presented in Figure 3.7 below.
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Figure 3.7: Illustration of MOGA using flow chart

3.5.2 Proposed Framework

This framework operates across various tiers of [oT infrastructures. IoT sensor data is stored in
cloud-based services. Numerous services provide comparable functionalities but with differing
QoS characteristics. Initially, services with similar functions are identified during the discovery
phase. Subsequently, services are chosen from the available options to meet user requirements,
based on QoS criteria. Complex user requests typically require multiple services, necessitating
a service composition phase. The composited services are then optimized using MOGA to

provide a series of Pareto solutions. The whole framework is portrayed in Figure 3.8.
3.5.3 Simulation Setup

The proposed approach is run on a desktop computer equipped with 16 GB RAM, and
MATLAB R2013a software. The various parameters required to be set while executing MOGA
are structured in Table 3.2. When trade-off points hold steady for three subsequent iterations—

achieved in 1000 iterations—the search for optimal solutions is terminated.
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Figure 3.8: Proposed framework for service composition optimization

Table 3.2: Genetic operators for MOGA

Parameters Values
Population Size 200
Selection Mechanism Tournament
Selection
Crossover Operator SBX
Mutation Operator Polynomial
Mutation
Crossover Probability 0.9
Mutation Probability 0.07
No. of iterations 1000
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3.5.4 Results and Discussions

Figure 3.9 displays the simulation results for the service composition optimization problems,
wherein after a predetermined number of iterations, the Pareto optimal solutions are found. The
results show that MOGA generates trade-off points between time and cost parameters in the
realm of smart agriculture by offering diverse Pareto optimal solutions for multi-objective
optimization problems. The solutions offered show the range of choices farmers can make in

response to their complicated and varied needs.

Table 3.3 provides a statistical analysis of the simulation outputs for a more in-depth look at

the data.
0 x 10° Service Composition Optimization using MOGA
[ I I I I I
*  MOGA
9 - .
8 - .

Cost (in rupees)
-.J
T

4 [ | | | | | [
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Time (in days)

Figure 3.9: Pareto optimal solutions obtained using MOGA
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Table 3.3: Statistical analysis

Algorithm
Objectives
Maximum
Minimum
Standard
Deviation
Mean
Median
Mode
Range

MOGA | Time 666 335.2 97.48 467.7 | 445.7 335.2 330.8

Cost 8.951e+ | 4.719e+ | 1.25e+05 | 6.424 | 6.183 | 4.719e+0 | 4.232
05 05 e+05 | e+05 5 e+05

3.6 Linear Service Composition Optimization using NSGA-II

This chapter section explains how NSGA-II is used as an optimization algorithm to serve

service composition optimization in smart agriculture.
3.6.1 Optimization Algorithm: NSGA-II

NSGA-II is an enhanced version of the NSGA algorithm, which was introduced by N. Srinivas
and K. Deb in 1995 [104]. Among the many shortcomings of the original method were its
excessive computing complexity, lack of a distribution parameter, and inadequacy of elitism.
To address these issues, Deb proposed a multi-objective evolutionary algorithm called NSGA-
I in 2002 [105]. This improved algorithm employs non-dominated sorting and crowding
distance techniques to discover a well-distributed set of solutions and enhance diversity for

various multi-objective problems.
The basic foundation of the NSGA-II algorithm is defined below.
a) Non-dominated Sorting

This method involves ranking population members based on Pareto dominance. The process of
non-dominated sorting commences by assigning the highest rank to non-dominated individuals
in the initial population. These top-ranked members are then moved to the first front and
excluded from the original population. Subsequently, the remaining population undergoes non-
dominated sorting. The non-dominated individuals from this subset are given the second rank

and placed in the second front. This ranking and sorting continue until every member of the
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population is dispersed over different fronts in accordance with their designated ranks, as

illustrated in Figure 3.10 [106].
b) Elitism-preserving operator

The elitism-preserving strategy is a method that maintains the best solutions within a population
by directly moving them to the subsequent generation. This approach ensures that the most
effective, non-dominated solutions discovered in each generation continue to exist in future

generations until they are surpassed by superior solutions.

Front-4

Minimize f,

Front-3

Front-2

Pareto Front Front-1

[
>

Minimize f;
Figure 3.10: Concept of non-dominated sorting [106]
¢) Crowding Distance Concept

The concentration distribution of solutions enclosing a particular solution is estimated using

crowding distance. This measure is calculated by taking the average distance between two
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solutions on either side of the solution for each objective. The solution with the greater
crowding distance is seen as being in a less crowded region when two solutions with distinct
crowding distances are compared. As illustrated in Figure 3.11 [106], the crowding distance of
the i*" solution is represented by the average side length of the cuboid. Let £ denote the k"
value of any objective function for the i** individual, and fi™** and fi™" represent the
maximum and minimum values of the k" objective function across all individuals,
respectively. The crowding distance of the i*" individual is then outlined as the average distance
between the two closest solutions on either side, as expressed in equation 3.16.

, i+1_ pi—1
cD() = B L fe (3.16)

i=1 flznax _f’:nin

Cuboid

Minimize f,

Pareto Front

v

Minimize f;
Figure 3.11: Concept of crowding distance [106]
d) Selection Mechanism

The selection of individuals for the subsequent generation employs a crowded tournament

selection mechanism, which considers both the ranking and crowding distances of population
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members. The process for choosing between two individuals for the next generation follows
these rules:
e  When the two individuals have distinct ranks, the individual with the superior rank is
chosen to advance to the following generation.
e In cases where both individuals share an identical rank, the one with the larger crowding

distance is selected for the following generation [106].
e) Genetic Operators

Crossover and mutation operators are essential genetic operators that produce offspring
populations from the parent population, guarantee diversity, and efficiently explore the search
space. The process of combining two parent solutions to create one or more offspring is called
crossover. The SBX [107] is utilized as a crossover operator in NSGA-II. Although it operates
on real-coded individuals, it resembles the single-point crossover behavior of binary-coded
genetic algorithms. To create offspring that are identical to their parents but introduce
variability, the SBX operator exchanges components of two parent solutions to produce fresh
individuals. The crossover operator creates the offspring, while the mutation operator adds tiny,
random alterations to it. Preventing premature convergence to local optima and preserving
genetic variety in the population depends on this. The Polynomial Mutation [108] is frequently
applied to real-coded individuals in NSGA-II. This operator introduces variances into its

offspring by slightly altering the choice variables according to a probability distribution.
3.6.2 Procedure of NSGA-II

The algorithm’s process starts by creating an initial population P; of "N" members. A new
population Q; is then formed through crossover and mutation of P, . These two populations are
combined to create R; which is then evaluated via non-dominated sorting. The members of

R, are then categorized into several distinct fronts based on their degree of non-domination.

The subsequent step involves selecting "N" members from R, to form the subsequent
population P, ;. If the first front contains “N" or more members, "N" individuals are chosen
from its least crowded areas to create P,,,. However, if the first front has fewer than
"N" members, all of them are progressed directly to the subsequent generation. The unused slots
are filled with members from the smallest crowded areas of the second front. This process

continues with subsequent fronts until P, reaches "N" members. The same method is used to
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generate future populations (P44, P43, etc.) until the stopping criteria are met [105]. Figure
3.12 illustrates the procedure of NSGA-II [105]. Figure 3.13 presents a simplified and easily
comprehensible outline of the steps involved in the NSGA-II with the help of pseudocode.
Further, the flow chart for the same is displayed in Figure 3.14.

Non-dominated Sorting Pryq
14 \ P
Fy Spemmmmmmmeme
F2 @ T ] -D
Py
F3 @ T T _.D
! Crowding Distance
Fy ' Sorting
r=A
% L
1 1
1 | I
1
-i- !

Ry= P, U @,

Figure 3.12: Procedure for NSGA-II [105]

Algorithm: NSGA-II
Begin

Solution Representation, t := 1, Maximum allowed generation = T;
Initialize random population P(t);
Evaluate P(t) and assign rank using dominance depth method and diversity using
crowding distance method to P(t);
while t<T do
M(t) := Selection (P(t)): %Crowded Binary Tournament Selection%
Q(t) = variation (M(t)); % Crossover and Mutation%
Evaluate Q(t); % Offspring%
Merge population P(t) = (P(t) U Q(b);
Assign Rank using dominance depth method and diversity using Crowding
distance operator to P(t);
P(t + 1) == Survivor (P(t)):
t=1t4+1;
end while
End

Figure 3.13: Pseudocode for NSGA-II algorithm
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Figure 3.14: Flow chart illustration of NSGA-II

3.6.3 Proposed Framework

This framework functions on different loT infrastructure layers. Cloud-based services are used
to store data from [oT sensors. Many services offer similar features, yet they have different QoS

attributes. During the discovery phase, services with comparable functions are first found.
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Based on QoS criteria, services are then selected among the available possibilities to satisfy
user requirements. A service composition step is required because complex user queries usually
ask for many services. After that, NSGA-II is used to optimize the composited services, yielding

a collection of Pareto optimal solutions. Figure 3.15 illustrates the entire framework.

Service Discovery

— Service Selection

l

Service Composition

|

Service
Optimization using
NSGA-II

Smart Agriculture

Figure 3.15: Proposed framework for service composition optimization using NSGA-II
3.6.4 Simulation Setup

The main parameters utilized to validate the algorithmic performance are listed in Table 3.4.
Time and cost minimization are the main goals of the optimization process, and the fitness
function is made to balance these goals. When the trade-off between the two goals is maintained
for three consecutive iterations—usually within 1000 generations—the search process comes

to an end.
3.6.5 Results and Discussions
Following the simulation, the Pareto optimum solutions show a distinct movement toward the

coordinate axes, as seen in Figure 3.16.
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Table 3.4: Simulation operators of NSGA-II

Parameters Values
No. of iterations 1000
Population Size 200

Mutation Probability (P,,) 0.07

Crossover Probability (P.) 0.9
% 10° Service Composition Optimization using NSGA-II
10 T | | | | | I
*  NSGA-II
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Figure 3.16: Pareto optimal solutions obtained using NSGA-II

This movement demonstrates the effectiveness of the NSGA-II algorithm by effectively

minimizing both cost and time. The graph shows a successful balance between the competing
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goals with an equitably dispersed set of trade-off points along the Pareto front. The algorithm’s
supremacy in resolving multi-objective optimization problems is confirmed by the solution’s

closeness to the origin, which shows that it consistently finds optimal configurations.

A thorough statistical analysis is included in Table 3.5 to support this graphical representation

and provide additional insight into the algorithm’s robustness and performance.

Table 3.5: Statistical analysis

Algorithm
Objectives
Maximum
Minimum
Standard
Deviation
Mean
Median
Mode
Range

NSGA- | Time 686.9 335.6 101.6 4745 | 449.9 335.6 351.3

Cost | 8.854e+ | 4.494e+ | 1.301e+05 | 6.206 | 5.853 | 4.494e+0 | 4.361
05 05 e+05 | e+05 5 e+05

3.7 Linear Service Composition Optimization using MOGSK

This part covers a human-inspired evolutionary computational algorithm known as the Gaining
sharing knowledge-based algorithm (GSK) for optimizing the composed services of smart

agriculture applications.
3.7.1 Optimization Algorithm: MOGSK

GSK is a revolutionary optimization approach inspired by human strategies, has been created
recently. It adheres to the concept of acquiring and disseminating information globally to a
human being. GSK mostly depends on two crucial phases: Junior-gaining-sharing knowledge
(JGSK) phase and Senior-gaining-sharing knowledge (SGSK) phase. Everyone acquires
knowledge and then imparts it to others along with their own opinions. Early on in life, humans
learn from their small social networks of friends, neighbors, and family. Out of a natural
curiosity to learn more about other people in the population, they try to share what they have
learned and their opinions with others who may not be from their social networks. However,
they may lack the knowledge or expertise to categorize the citizens of their area. In line with
the same idea, people in their middle or subsequent years attempt to learn more by interacting

with a larger network, including social media acquaintances, coworkers, and friends, and seek
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out ways to share their thoughts and opinions with those who can use it the best. Those beings
possess the requisite expertise to categorize and swiftly rate individuals as being either good or
wicked [109]. The earlier mentioned process can be explained mathematically step-wise as

follows-

Step 1: Initially, population size is defined (Here, assumed to be Np) and it is randomly
initialized. Let x; where i = {1, 2,3, ... ... , Np} be the population’s individuals. Each individual
x; canbe defined as x;; = {Xj1, Xi2, X3, Xigser oon ,,»Xip}, where D is the domain of knowledge
that an individual is provided with, defining its dimensions. Furthermore, the corresponding
fitness values of individuals are defined by f;, wherei ={1,2,3, ... ... ,Np}. All concepts of
junior gaining sharing (JGS) and senior gaining sharing (SGS) are illustrated in Figure 3.17 (a)

and (b), respectively using a vector x;; [111].

Junior Dimensions (in yellow) Senior Dimensions (in green)
X11 X12 X13 X1D-1 X1D
(a)
Junior Dimensions (in green) Senior Dimensions (in yellow)
X11 X12 X13 X1p-1 X1p
(b)

Figure 3.17: (a) Vector x;; for i = 1 during JGSK phase (b) Vector x;; for i = 1 during SGSK phase [111]

Two important conclusions have been drawn from Figure 3.17. First, the number of updated
dimensions utilizing the JGS strategy throughout the JGSK phase is larger than the number of
updated dimensions utilizing the SGS strategy. Second, the number of updated dimensions for
each vector during the senior phase using the SGS strategy is larger than the number of updated
dimensions using the JGS strategy. Additionally, the magnitude of the knowledge rate (k),
which must also be considered when calculating the necessary number of dimensions that will
be substituted using both phases, will control the amount of knowledge that will be passed down
through generations using JGS and SGS strategies. Another parameter is the knowledge factor
(kf) (any real number > 0) that controls the entire acquired and shared knowledge to be

incorporated to the current generation of individuals over the course of generations and
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knowledge ratio (k,) (any number between 0 and 1 including them) that controls the entire

gained shared knowledge to be passed down over generations [110].

Step 2: Then, the dimensions of each phase are calculated using the formula in Equations 3.17

and 3.18 given below-

_m\k
Djunior = (problemsize) * (GernG) (3.17)
Dgenior = (problemsize) — Djunior (3.18)

Here, G is the ongoing generation.

Gen is describing the total number of generations.

Dsenior and Djy 0y are the dimensions of the senior and junior phases, respectively.
Step 3: JGSK Phase

Because of curiosity and a desire to learn about others, each person tries to learn from the closest
and most reliable individuals who are part of small groups while also attempting to provide

knowledge to someone who does not belong to or is not a member of any group.

At this phase, each person tries to learn from the most reliable and closest people who are part
of small groups while simultaneously trying to impart knowledge to someone who is not
connected to or is not a part of any group out of eagerness and a desire to learn about others.
Accordingly, utilizing the junior strategy, upgrading each individual can be calculated as

follows:
a) Sort each person in descending order by their objective function value:

Xpests === == Xic1) Xy Xig1y eer onn »y Xworst

b) Next, choose two other individuals (the closest individuals) who are better (x;_;) or worse
(x;41) than the existing individual to establish the knowledge-gaining source. Additionally,

choose another person at random (x,) to serve as a knowledge-sharing source [111].

Step-4: SGSK Phase
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Utilizing the information that is already available and relevant expertise from the best, better,
and worst individuals within a given community are the main goals of this phase. Utilization
refers to the influence and result of others—both good and bad—on an individual. Thus, by

using the senior strategy updating each individual can be calculated as follows:

a) All people are ranked based on objective function in ascending order, and then they are

separated into categories: best individual, better individual, and worst individual.

b) Then to form the gaining part, two vectors are randomly chosen from the top and bottom
200p% individuals of the present population and for sharing part, the third vector is chosen
from the middle Np — (2 * 200p%). This process is repeated for each individual, x;. The
pseudocodes for both JGSK and SGSK phases are shown in Figures 3.18 and 3.19, respectively
[112].

Algorithm: Junior Gaining Sharing Knowledge Phase

Begin
Fori=1: Np
Forj=1:D
If rand < k,
If £ () < f (%)
X = g+ ke x [(og — xp) + (4 — 1))
else

new

End (if)
Else xj;* = xl-'}ld
End (If)
End
End

= x+ ke [(n—1 — x40) + (4 — %))

Figure 3.18: Pseudocode for junior gaining sharing phase
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Algorithm: Senior Gaining Sharing Knowledge Phase

Begin
Fori=1: Np
Forj=1:D
If rand < k,
It f(x) < fQm)
xinjew = X + kf * [(xp—best - xp—worst) + (xm - xt)]
else
xiT}l_EW =X+ kf * [(xp—best - xp—worst) + (xi - xm)]
End (if)
Else x;;*" = x{}l‘i
End (If)
End
End

Figure 3.19: Pseudocode for senior gaining sharing phase

In the flowchart illustration of Figure 3.20, the proposed MOGSK’s entire process is depicted.
3.7.2 Proposed Framework

In this multi-objective optimization, fast nondominated sorting, crowding distance, and the
Pareto dominance relation are used to generate those nondominated solutions, which promote
diversity, enhance exploitation and exploration, help to increase coverage, and hasten

convergence to the Pareto solutions. The proposed framework is displayed in Figure 3.21.

Its working involves the initialization of parameters like population size, number of
generations, knowledge rate, knowledge ratio, and knowledge factor. The entire population is
then randomly initialized, and the evaluation of each individual’s fitness value follows. On the
initial population, fast nondominated sorting is employed to obtain the non-dominated plus
sorted solutions according to distinct fronts and crowding distance. MOGSK then upgrades the
junior/senior population state just like GSK. Until the final requirement of the maximum

number of iterations is met, these procedures are carried out repeatedly.

These steps are continued until the end condition of the maximum number of iterations is

settled.
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Figure 3.20: Flow chart illustration for MOGSK algorithm

3.7.3 Simulation Setup

The goal of the service composition optimization problem is to minimize the dual objectives of
cost and time, with the fitness function directing the search. The parameters used to assess the
algorithm’s efficacy are listed in detail in Table 3.6. When the trade-off considerations persist

unchanged after three iterations—typically within 1000 iterations—the search process is said

to be over.
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Figure 3.21: Proposed framework for optimization using MOGSK

Table 3.6: Simulation parameters

Parameters Values
Population size 200
No. of iterations 1000
Knowledge rate 10

Knowledge factor 0.5
Knowledge ratio 0.9

3.7.4 Results and Discussions

The Pareto optimum solutions found following the simulation are depicted in the graph in
Figure 3.22. The solutions are shown to be getting closer to the coordinate axes, indicating that

time and cost have been reduced at the same time. The trade-off between these two goals is
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highlighted by this convergence toward the origin, where each point denotes a distinct time-
cost balance. The MOGSK algorithm’s efficacy in managing such multi-objective problems is
further supported by the even distribution of the Pareto front, which indicates that it may

produce a wide range of optimal solutions.
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Figure 3.22: Pareto optimal solutions obtained using MOGSK

For an accurate view of the results obtained, statistical analysis has been tabulated in Table 3.7.
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Table 3.7: Statistical analysis

E ? s z E g = § ) b
£ b5+ £ £ < £ S = S g’
5 ) = = S o 2 54 § =
20 = s = g 5 = = 7
< S = = 2=

MOGS Time 693.4 335 99.59 487.2 | 465.5 335 358.5

Cost 8.72e+0 | 4.444e+ | 1.169e+05 | 5.935 | 5.568 | 4.444e+0 | 4.276
5 05 e+05 | e+05 5 e+05

3.8 Comparison of EC Algorithms

This section compares the Pareto optimal solutions derived from the service composition
optimization problem in smart agriculture using three different EC approaches. Time and cost
minimization are the main goals of this optimization, and their interaction is governed by a
linear relationship. The effectiveness of each algorithm in balancing these two competing goals
is the main focus of this investigation. There are two ways to decide which algorithm is
performing better for multi-objective optimization problems. One is the Pareto front analysis

and another is statistical analysis.
3.8.1 Pareto Front Analysis

Pareto front analysis involves graphing the solutions generated by each algorithm, with the axes
representing competing objectives, such as cost and time. The resulting visual representation
allows for the examination of trade-offs between these objectives. The Pareto front, composed
of non-dominated solutions, illustrates the optimal compromises attainable. By examining and
contrasting the configurations and distributions of Pareto fronts produced by different
algorithms, its capacity to deliver diverse and optimal solutions can be assessed. Generally, a
superior algorithm generates a Pareto front that is nearer to the graph’s origin, signifying
reduced costs and time. Figure 3.23 illustrates the comparison graph of Pareto optimal solutions

obtained utilizing MOGSK, NSGA-II, and MOGA.

As illustrated in Figure 3.23, NSGA-II generates a diversified set of solutions than MOGSK
and MOGA. A more extensive and diverse Pareto front which is represented by the line
connecting the non-dominated solutions indicates superior performance as well as a broader

range of efficient solutions in NSGA-II.
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Figure 3.23: Comparison of various evolutionary algorithms for service composition optimization

3.8.2 Statistical Analysis

Pareto front analysis is enhanced by statistical analysis, which offers a numerical method to
evaluate algorithm performance. This approach involves computing various metrics for the
Pareto optimal solutions, including mean, standard deviation, and range. These measurements
aid in quantifying the convergence of solutions produced by each algorithm. For example, a
larger standard deviation in costs or times may suggest diverse solutions across multiple runs.
Statistical tests can be employed to determine if the observed differences in performance
metrics between algorithms are statistically significant, enabling the identification of superior

algorithms in generating optimal solutions.

Those numerous performance measures that demonstrate NSGA-II’s efficiency and
dependability in comparison to the other algorithms are shown in the form of statistical analysis

in Table 3.8. It shows a larger standard deviation across its results which depicts the capability
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of producing a diversified set of Pareto optimal solutions. This suggests that NSGA-II can
investigate a broader solution space and offer a wider range of trade-offs that efficiently balance

time and cost.

Table 3.8: Statistical analysis of various optimization algorithms

E .g £ E E .g = § ) @
£ 3 £ £ < £ S = S £’
5 8 = = s = 2 5 § s
20 = s = - = = 7
= S = = =

MOGSK | Time | 693.4 335 99.59 487.2 | 465.5 335 358.5

Cost | 8.72e+0 | 4.444e+ | 1.169e+05 | 5.935 | 5.568 | 4.444e+0 | 4.276
5 05 e+05 | e+05 5 e+05

NSGA-II | Time | 686.9 335.6 101.6 474.5 | 449.9 335.6 351.3

Cost | 8.854e+ | 4.494e+ | 1.301e+05 | 6.206 | 5.853 | 4.494e+0 | 4.361
05 05 e+05 | e+05 5 e+05

MOGA | Time 666 335.2 97.48 467.7 | 445.7 335.2 330.8

Cost | 8.951e+ | 4.719e+ | 1.25e+05 | 6.424 | 6.183 | 4.719e+0 | 4.232
05 05 e+05 | e+05 5 e+05

3.9 Summary

This chapter discusses the service composition optimization problem in the context of smart
agriculture zooming in around two principal objectives of minimizing cost and time. For a more
straightforward approach, the relationship is established as linear between these objectives.
Three EC approaches—MOGA, NSGA-II, and MOGSK—are used to address this problem.
Every algorithm is used to optimize the composition of services while accounting for specific
requirements and characteristics of agricultural services. Using a variety of performance
metrics, the chapter offers a thorough comparison of these three approach’s performances to
assess how well they accomplish the optimization goals. According to the results, NSGA-II
performs superior to MOGA and MOGSK, showing better outcomes in terms of time and cost

minimization. This highlights the algorithm’s capacity to more effectively negotiate the trade-
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offs between the competing goals. Thus, the chapter concludes by emphasizing the significance
of applying EC approaches to improve service composition optimization in smart agriculture
and proving that NSGA-II is the best approach for this linear multi-objective service

composition optimization problem.

70



CHAPTER-4
NON-LINEAR MULTI-OBJECTIVE
SERVICE COMPOSITION OPTIMIZATION
IN SMART AGRICULTURE USING
EVOLUTIONARY COMPUTATIONAL
TECHNIQUES



CHAPTER 4

NON-LINEAR MULTI-OBJECTIVE SERVICE
COMPOSITION OPTIMIZATION IN SMART AGRICULTURE
USING EVOLUTIONARY COMPUTATIONAL TECHNIQUES

4.1 Chapter Overview

QoS-based service composition is crucial for providing superior and efficient services across
diverse interconnected systems. This challenge frequently requires balancing multiple
competing goals, such as minimizing duration and expenses while adhering to particular quality
criteria for each service element. The intricacy and interrelation of these objectives classify it
as an NP-hard problem, making conventional mathematical approaches inadequate for finding
optimal solutions in a reasonable timeframe. Thus, comes population-based meta-heuristics in

the frame to address this sort of real-world issues.

This chapter presents the idea of optimizing service composition in smart agriculture
applications, with a focus on the non-linear relationship between the goals of minimizing cost
and time. The emphasis on non-linear relationships reflects real-world complexities, where
factors are often more intricate than simple linear correlations. Additionally, the section delves
into the optimization of these combined services using three distinct EC techniques, each
designed to address the unique challenges presented by non-linear dynamics in service

composition.
4.2 Non-linear Service Composition Model

The process of QoS-based service composition entails the selection and combination of
individual atomic services to form a composite service that satisfies predetermined QoS
standards. These standards typically encompass metrics namely reliability, time, cost, and
availability. For every atomic service, multiple candidate services may be available for
selection. The candidate service that optimally satisfies the QoS criteria, is selected for
incorporation into the composite service. As this study is based on providing an optimal solution
for apple orchard establishment and management in distinct regions, suppose there exists a total

of "s" services with each having various candidate services represented by "k" along with their
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corresponding minimum time, maximum time, minimum cost and maximum cost QoS metrics.
The entire mathematical framework for this concept is properly explained in equations 3.1 to
3.8, which can be found in section 3.2. Additionally, to characterize the non-linear relationship
between time and cost objectives to deal with the non-linearities present in services of real-
world scenarios, Lagrange’s interpolation method is employed. This approach is elaborated in

section 4.2.1.
4.2.1 Basics of Lagrange’s Interpolation

Lagrange interpolation is a method for determining a polynomial that precisely matches
observed values at specific points. It is the method of choice since it is easy for researchers to

calculate and provides accurate estimation [113, 114].

Given "s" distinct services, each of which is associated with atime t; (i = 1,2,3,...,s) and a
corresponding cost c;, there exists a total cost "C" for all services. The non-linear relationship
between t; and c; is defined using Lagrange’s polynomial which is expressed from equation 4.1
to 4.2 where equation 4.1 gives the Lagrange’s function to calculate the cost of each i*"service
(i=1,2,3,...,5) and equation 4.2 provides the total cost "C" of all service for minimizing

objectives.

t—t

Ci(t) = ?:1 Cj [T=1 t,_tm 4.1)
mzj ™

€ =351 Gi(®) (42)

C could be represented in the form of Lagrange’s using equation 4.3 given below.

=T, cli® 43)

This concept of the non-linear relationship between time and cost can be illustrated with the

help of Figure 4.1 [119].
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4.3 Non-Linear Dataset Description

Agricultural data sometimes shows complex interactions and non-linear patterns instead of
simple, linear tendencies. Thus, this work intends to provide more efficient non-linear
optimization, which is more suited to capturing the complex dynamics found in agricultural
service data, by modeling these non-linearities. Table 4.1 shows this non-linear dataset and

catalogs fourteen basic services that are essential to the establishment and management of apple

Minimum

Time

Figure 4.1: Non-linear time-cost trade-off of services [119]

Maximum

Time

orchards. Per-acre data is used in this investigation.

Time

Table 4.1: Non-linear dataset showcasing atomic services in smart agriculture

Service Atomic Services Cost (in rupees) Time (in days)
Number
1 Soil Testing and Analysis 10000 7
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9500 8
7000 10
5700 13
5000 14
Apple Variety Selection 4000 1
3700 1.5
3000 2
2400 2.5
2000 3
Orchard Establishment 200000 30
174000 45
125000 54
65000 77
50000 90
Tree Planting 10000 2
9600 3
8200 4
7400 5
7000 6
Irrigation System Installation 150000 7
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127000 9

97000 10

75000 13

50000 14

Fertilizer Application 100000 14
96000 17

81000 21

73000 25

50000 28

Pruning and Training 30000 7
27000 12

21000 15

19000 19

15000 21

Pest and Disease Control 100000 14
97000 17

87000 21

76000 27

70000 28

50000 60
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Crop Monitoring and 46000 77
Management
34000 91
25000 111
20000 120
10 Harvesting 70000 14
68000 19
49000 23
41000 25
35000 28
11 Sorting and Grading 30000 7
28000 8
26000 11
19000 13
15000 14
12 Packaging and Labelling 90000 14
88000 17
76000 22
69000 26
60000 28
13 50000 60
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Storage and Cold Chain 48000 72
Management
42000 89
29000 107
25000 120
14 Marketing and Distribution 80000 90
78000 97
61000 122
44000 167
40000 180

Distinct options are available for the user to select any one of them in terms of cost and time to
get his/her customized optimal service composition plan. For instance, take service number 5
which is the irrigation system installation. This service offers several choices according to
different costs and time duration. The fastest option, which costs 150,000 rupees and takes 7
days to complete, is perfect for people who value time. Under this, an automatic drip system
can be installed. There are other less expensive options, including paying 50,000 rupees to have
the installation finished in 14 days for a pipe-based system. Time and cost can be balanced with
intermediate alternatives like 9 days for 127,000 rupees where a basic sprinkler system can be
installed or 13 days for 75,000 rupees where a semi-automated sprinkler system can be installed.
So, the users can select the best choice based on their urgency and financial limitations. The
same rule follows for other services too. Thus, a customized plan can be made to satisfy each
user’s particular demands by choosing the best alternative for each service depending on their

priorities, including financial limits, and time constraints.
4.4 Methodology for Non-linear Service Composition Optimization

In service composition, meta-heuristic algorithms are commonly employed to find optimal

solutions. These methods typically involve two crucial steps: initializing a set of potential
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solutions and assessing objectives which are time and cost in our case to steer the optimization

process. Every algorithm utilized in this work includes both steps.
4.4.1 Population Initialization

A critical step in meta-heuristics is population initialization, which generates a varied set of
potential solutions and guarantees a thorough investigation of the solution space. A properly
initialized population can greatly increase the algorithm’s efficiency by speeding up the
convergence rate and the search for optimal solutions. For a population size of “N”, each
solution can be represented with a string [ty, ¢, t3, ..., t;, ..., t;] Where min _time < t; <

max _time. A comprehensive description of this is provided in section 3.4.1.
4.4.2 Evaluation of Objectives

After the population is initialized, the next step involves evaluating the objectives. This study
considers time and cost as minimizing objectives. So, the total time (T') is calculated by taking
a summation of all the times associated with various services where the total cost (C) is
evaluated using Lagrange’s interpolation method (refer section 4.2.1) as both objectives have
non-linear relationship between them. For a visual representation, refer to Figure 3.5. Thus, this
step creates a population of possible solutions by applying Lagrange’s interpolation method to

calculate the associated costs with composite services.

The pseudocode of the designated meta-heuristic algorithm is then followed after these two

steps to generate Pareto optimal solutions for multi-objective problems.
4.5 Non-Linear Service Composition Optimization using MOGA

This section describes how the composited services with a non-linear relationship between cost
and time objectives are optimized using MOGA and named Lagrange’s multi-objective genetic

algorithm (La-MOGA).
4.5.1 Optimization Algorithm: MOGA

MOGA is an optimization method that imitates genetic processes that occur in nature. It
originates with an arbitrarily generated population, with each member consisting of a single

chromosome. The fitness function is calculated atevery iteration, ensuring optimal
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performance. Parent selection is crucial, as the fitness of the next generation affects
optimizations. Only the fittest chromosomes survive, eliminating unwanted ones. Pareto

optimum solutions are those where the population converges after multiple repetitions.
4.5.2 Proposed Framework

The proposed framework is shown in Figure 4.2. This architecture works across multiple IoT
tiers. Cloud services are used to store IoT sensor data. Although the functionality of many
services is similar, their QoS features are not. Consequently, during the service discovery phase,

services with comparable functionality were first found.

Consequently, services with comparable functionality were initially found during the phase of
service discovery. Selecting the services that best fit the user’s needs from the list of options is
the next step. This decision is based on features that are consistent with the time and cost metrics
used to measure QoS. A single service cannot handle the user’s complicated demands. As a

result, the following step completes service composition.

Service Discovery

|

Service Selection

= e

Service Cornposmon

Lagrange ]
Lnterpflation
Service
Composition
Optimization using
MOGA

Smart Agriculture

Figure 4.2: Proposed framework for La-MOGA
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The next step involves initializing all genetic operators like the size of the population, maximum
termination criterion in terms of generations, and probabilities of both crossover and mutation.
The cost of each service is then calculated using Lagrange’s interpolation during the population
initialization step, which corresponds to the generation of random time between each service’s
maximum and minimum times. The procedure is then carried out by computing the crowding
distance and producing non-dominated solutions. Lastly, the offspring is produced by crossing,
mutation, and selection processes. The complete process is iterated till the convergence

requirement is satisfied. The flow chart depicted in Figure 4.3 shows the stages involved.

| Initialize Parameters |
L 2

Initialization of Population
i 2

| Evaluate Time |

k3
Evaluate Cost using Lagrange’s
Interpolation
¥

Evaluate Fitness function of each

Individual
L 2

‘ Crossover Mutation

T Generate new

Selection Population
T No Convergence

9 .

Yes

Optimal Pareto
solutions

Figure 4.3: Flow chart illustration of La-MOGA
4.5.3 Simulation Setup

The proposed approach is run on a desktop computer with MATLAB R2013a version installed.
The details of the simulation parameters used are tabulated in Table 4.2. When the trade-off
points stay the same for three consecutive iterations—achieved in 1000 generations—the search

is terminated.
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Table 4.2: Simulation parameters

Parameters Values
Population size 200
Number of generations 1000

Crossover type SBX crossover
Crossover probability (P,) 0.9

Mutation type Polynomial

mutation

Mutation probability (B,,) 0.07

4.5.4 Results and Discussions

Figure 4.4 displays the Pareto optimal solutions obtained for the service composition
optimization using La-MOGA where the impact of non-linearities on cost has been examined
which illustrates the real-life scenario of any agriculture problem. According to the analysis,
the profile is heading in the direction of the coordinate axes, minimizing time and cost while
obtaining trade-off points. These trade-off points depict the various options a farmer can have

to choose from as per their requirements.
4.5.5 Comparative Behavioral Analysis of La-MOGA and Li-MOGA

The behavior of the proposed algorithm La-MOGA is evaluated with the Li-MOGA algorithm
(a linear time-cost relationship) and shown in Figure 4.5. It can be concluded from Figure 4.5
that both La-MOGA and Li-MOGA provide diversified Pareto solutions. The complexities and
non-linearities inherent in real-world smart agriculture systems deter a linear relationship
between cost and time objectives. Consequently, the Pareto solutions derived from La-MOGA

and Li-MOGA algorithms exhibit marginal disparities due to these non-linearities.
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Figure 4.4: Pareto optimal solutions obtained using La-MOGA
x 10°  Behaviour Analysis of La-MOGAand Li-MOGA for Service Composition Optimization
9.5 T T T T I
f : : : * La-MOGA
: +  Li-MOGA

g _%\ ........... .................................................................. |

5 I | | 1 i

350 400 450 500 550 600 650

Time (in days)

Figure 4.5: Behaviour analysis of La-MOGA and Li-MOGA
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Statistical analysis is the best method for fully understanding the findings. Thus, both La-
MOGA and Li-MOGA are statistically summarized in Table 4.3.

Table 4.3: Statistical analysis of both La-MOGA and Li-MOGA

E g E E = g = = -5 5]
£ 5 £ = T = S S S S
&b Y = £ 8 3 = < = >
<« o > = ® A
La- Time 637.9 355.7 79.18 457.8 | 433.8 355.7 282.2
MOGA
Cost 9.057e+ | 5.007e+ | 1.151e+05 | 6.669 | 6.425 | 5.007e+0 | 4.05e
05 05 e+05 e+05 5 +05
Time 593.5 361.7 65.4 454.4 | 444.2 361.7 231.8
Li-
MOGA Cost 8.464e+ | 5.058¢e+ | 1.07e¢+05 | 6.514 | 6.407 | 5.058e+0 | 3.406
05 05 et+05 e+05 5 et+05

4.6 Non-Linear Service Composition Optimization using NSGA-II

This section elaborates on how the service composition with a non-linear relationship between
objectives is optimized using NSGA-II and named Lagrange’s multi-objective non-dominated

sorting genetic algorithm (La-NSGA-II).
4.6.1 Optimization Algorithm: NSGA-II

NSGA-II is a popular meta-heuristic evolutionary algorithm, developed in 2002 by K. Deb. It
uses the concept of non-dominated sorting and crowding distance to find uniformly distributed
solutions for multi-objective optimizations. The algorithm starts by sorting random individuals,
and then forming a parent population using binary tournament selection. After the parent
population undergoes crossover and mutation operators to produce offspring, the combined

population is used to construct the subsequent population [105].
4.6.2 Proposed Framework

The proposed framework for optimizing service composition involves five layers: sensor,

network, cloud, service composition, and application layer. Information from the IoT sensors is
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collected through the sensor layer, the network layer connects data to servers, the cloud layer
offers various sub-services, and the service composition layer composes services based on user
demands. The application layer makes these services available to end users, ensuring efficient
and effective service composition in the apple crop production process. Figure 4.6 illustrates
the proposed framework for La-NSGA-II. The whole concept of the proposed La-NSGA-II is
illustrated through a flow chart in Figure 4.7.

|
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Lagrange’s
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Figure 4.6: Proposed framework for La-NSGA-II
4.6.3 Simulation Setup

The algorithm’s effectiveness is assessed using a set of simulation parameters outlined in Table
4.4. The primary goal is to reduce both time and cost across various smart agriculture services.
The algorithm continues its search until the balance between these objectives remains stable for

three successive iterations.
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Figure 4.7: Flow chart illustration of proposed La-NSGA-II

Table 4.4: Simulation operators of NSGA-II

Parameters Values
No. of iterations 1000
Population Size 200

Mutation Probability (P,,) 0.07

Crossover Probability (P.) 0.9

4.6.4 Results and Discussions

The simulation outcomes of service composition optimization using La-NSGA-II produce a

range of Pareto-optimal solutions that successfully strike a balance between time and cost
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factors. A distinct movement toward the coordinate axes is shown in Figure 4.8. This diverse
set of options along the Pareto front enables farmers to choose the solution that aligns best with
their particular requirements, finding an ideal compromise between time and cost
considerations. These findings demonstrate the capability of La-NSGA-II to deliver adaptable

and efficient solutions for services in the realm of smart agriculture.
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Figure 4.8: Pareto optimal solutions obtained using La-NSGA-II

4.6.5 Comparative Behavioral Analysis of La-NSGA-II and Li-NSGA-II

The behavior of the proposed algorithm La-NSGA-II is evaluated with the Li-NSGA-II
algorithm (a linear time-cost relationship) and shown in Figure 4.9. Different solution patterns
show how adaptable two algorithms—Li-NSGA-II and La-NSGA-II—are to multi-objective
optimization in smart agriculture, with one method using a linear relationship between

objectives and the other a non-linear relationship. A smoother, more uniformly distributed
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Pareto front is produced by the Li-NSGA-II, emphasizing consistent trade-offs between goals.
The intrinsic complexity and non-linearities of real-world smart agriculture scenarios, such as
resource interdependencies and changing environmental circumstances, are better captured by
the non-linear relationship. Because agricultural service optimization is complex and dynamic,

the non-linear approach produces a wide range of Pareto optimal solutions.
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Figure 4.9: Behaviour analysis of La-NSGA-II and Li-NSGA-II

A thorough statistical analysis is provided in Table 4.5 to support the interpretation of the
simulation results. This analysis provides a deeper understanding of the algorithm’s
applicability for real smart agricultural scenarios by highlighting key performance indicators
that evaluate each algorithm’s behavior and efficacy under linear and non-linear objective

relationships.
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Table 4.5: Statistical analysis of La-NSGA-II and Li-NSGA-II

£ > £ £ T g = = @ g
= > E E T = g = £ £
So = 5 £ g 3 = = = &
<« o = = ©n A
La- | Time | 6886 | 328 1068 | 456.1 | 4253 | 328 | 360.6
NSGA-
I Cost | 9.737e+ | 4.451e+ | 1.576e+05 | 6.504 | 6.188 | 4.451e+0 | 5.286
05 05 e+05 e+05 5 e+05
. Time | 6894 | 335.1 1066 | 4763 | 446 | 3351 | 3543
NSGA- | ot | 8.805e+ | 4.473e+ | 1.32¢+05 | 6.21e | 5.937 | 4.473e+0 | 4.331
I 05 05 +05 | e+05 5 405

4.7 Non-Linear Service Composition Optimization using MOGSK

The non-linear link between objectives of service composition optimization is addressed in this
section using the MOGSK algorithm, an optimization technique inspired by human behavior.
It is named Lagrange’s multi-objective gaining sharing knowledge-based algorithm (La-

MOGSK).
4.7.1 Optimization Algorithm: MOGSK

MOGSK is an optimization algorithm that focuses on acquiring and disseminating global
information just as humans do, thereby making it an algorithm based on human behavior. It
relies on two phases: JGSK and SGSK. Early on in life, humans learn from small social
networks, sharing their knowledge with others. In their middle years, they interact with larger
networks, sharing their knowledge and opinions. This process helps them categorize and rate
individuals as good or wicked. Knowledge rate, knowledge ratio, and knowledge factor are
three crucial factors that are used in both the JGSK and SGSK phases. The quantity of
knowledge that will be passed down across the generations using the JGS and SGS strategy will
be controlled by the value of the knowledge rate. Another criterion is knowledge factor (any
real number > 0) that controls the entire knowledge that has been acquired and disseminated to

the present generation of individuals over the course of generations and knowledge ratio (any
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number between 0 and 1 including them) that controls the entire gained shared knowledge to

be passed down over generations [110].
4.7.2 Proposed Framework

The proposed algorithm of La-MOGSK has used the principle of non-dominated sorting and
crowding distance to generate non-dominated solutions that promote diversity, enhance
exploitation and exploration, help to increase coverage and hasten convergence to the Pareto

optimal solutions. The proposed framework is portrayed in Figure 4.10.
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Figure 4.10: The proposed framework for La-MOGSK

For LA-MOGSK, parameters such as number of generations, population size, knowledge rate,
knowledge ratio, and knowledge factor are initialized. Following a random initialization of the
population, the fitness value of each individual is assessed. The cost objective function is
calculated using Lagrange’s interpolation method. Non-dominated sorting is utilized on the
original population to provide non-dominated plus sorted solutions based on crowding distance
and different fronts. Then, La-MOGSK adjusts the junior/senior population status using

the junior/senior gaining sharing phase. Until the eventual requirement of the maximum
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generations is met, these procedures are carried out repeatedly. The flow chart illustration for

La-MOGSK is shown in Figure 4.11.

Initialize Population size, maximum generations, knowledge ratio, knowledge
factor, knowledge rate, top and bottom percentage of individuals

v

Evaluate time

!

Evaluate cost using Lagrange’s interpolation

!

Evaluate the fitness of each individual
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}

Calculate number of gained and shared dimensions of both
Junior and senior phases using experience equation for each

A4 A 4

Apply junior gaining sharing knowledge phase Apply senior gaining sharing knowledge
to each individual phase to each individual

| |
¥
Update each individual

!

Update global best solution

No

Parecto optimal
solutions

Convergence?

Figure 4.11: The flow chart illustration of proposed La-MOGSK
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4.7.3 Simulation Setup

The simulation parameters used for service composition optimization using the proposed
framework La-MOGSK are tabulated in Table 4.6. It continues to search in the solution space

until solutions remain unchanged for three successive iterations.

Table 4.6: Simulation parameters

Parameters Values
Population size 200
No. of iterations 1000
Knowledge rate 10

Knowledge factor 0.5
Knowledge ratio 0.9

4.7.4 Results and Discussions

The Pareto optimum solutions obtained using La-MOGSK are illustrated through the graph
pictured in Figure 4.12. It is evident that it produces solutions closer to the origin, indicating
the successful minimization of both time and cost objectives. A well-optimized set of trade-offs
is indicated by the concentration of points nearer the origin, where lower values for both
objectives are attained. These results demonstrate the algorithm’s capacity to generate superior
solutions crucial for decision-makers in intricate optimization scenarios, like smart agriculture,

where effective resource allocation is vital.
4.7.5 Comparative Behavioral Analysis of La-MOGSK and Li-MOGSK

The behavior of the proposed La-MOGSK is evaluated with Li-MOGSK (a linear time-cost
relationship) and is illustrated in Figure 4.13. It can be observed that both La-MOGSK and Li-
MOGSK provide diversified Pareto solutions. The complexities and non-linearities inherent in
real-world smart agriculture systems deter a linear relationship between time and cost
objectives. Consequently, the Pareto solutions derived from La-MOGSK and Li-MOGA

algorithms exhibit marginal disparities due to these non-linearities.
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For an accurate view of the results obtained, statistical analysis has been tabulated in Table 4.7.

Table 4.7: Statistical analysis of both La-MOGSK and Li-MOGSK

E E § g E .g = § ) g).o
T > E E = g = & £
S = 5 £ g 3 = = = &
<« o > > @n A
La- | Time | 6912 | 3289 | 9833 | 4518 | 456.8 | 3289 | 362.3
MOGS
K Cost | 9.715e+ | 4.437e+ | 1.513¢+05 | 6.443 | 5.658 | 4.437e+0 | 5.278
05 05 e+05 e+05 5 e+05
. Time | 6328 | 3275 | 75.06 | 4321 | 426.9 | 3275 | 305.3
MOGS | o5t | 9.669e+ | 4.701e+ | 1.203e+05 | 6.578 | 6.298 | 4.701e+0 | 4.969
K 05 05 e+05 | e+05 5 e+05

4.8 Comparison of EC Algorithms

This section of the chapter analyses the Pareto optimal solutions derived from three distinct EC
techniques by considering cost and time as objective functions with a non-linear relationship
between them. To ascertain which algorithm performs best, the evaluation uses two techniques:

Pareto front analysis and statistical analysis.
4.8.1 Pareto Front Analysis

In Pareto front analysis, the solutions produced by every algorithm are graphed, with the axes
signifying conflicting goals like cost and time. It reveals optimal compromises and compares
different algorithm’s metrics. Plotting the Pareto fronts of various algorithms allows one to
determine which strategy offers a better trade-off between goals; convergence to the true Pareto
front and diversity of solutions are significant indicators. Normally, superior algorithms
produce a Pareto front closer to the graph’s origin, indicating reduced costs and time. Figure
4.14 illustrates the comparison graph of Pareto solutions obtained using La-MOGSK, La-
NSGA-II, and La-MOGA.
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It is evident from Figure 4.14 that the La-NSGA-II produces a more diversified set of solutions
than La-MOGSK and La-MOGA. In contrast to La-MOGSK and La-MOGA, the La-NSGA-II
algorithms exhibit improved performance by offering diversified solutions along the Pareto
front, enabling a wider exploration of the solution space.

Cgmparison of Evolutionary Computational Techniques for Non-linear Service Composition Optimization
10 i | | | | |

I
* La-MOGSK
O La-NSGA-II
La-MOGA

Cost (in rupees)
-.J
T

4
300 350 400 450 500 550 600 650 700
Time (in days)

Figure 4.14: Comparison of various evolutionary algorithms for service composition optimization

4.8.2 Statistical Analysis

Statistical analysis is carried out to provide more depth to the algorithm comparison. The mean,
standard deviation, and range are among the metrics that are obtained for the Pareto optimum
solutions using this method. For instance, in a multi-objective optimization context, a lower
mean value typically denotes better performance for time or cost objectives.
Table 4.8 presents a statistical analysis of the various performance metrics that illustrate the
effectiveness of La-NSGA-II compared to alternative algorithms. Its results exhibit a higher

standard deviation, indicating that it is capable of producing a diverse range of Pareto optimal
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solutions. This implies that La-NSGA-II can efficiently balance time and cost by exploring a

larger solution space and providing a greater range of trade-offs.

Table 4.8: Statistical analysis of various optimization algorithms

£ S £ £ = =
= > =~ ©° = N
% = = = g 3 = = = &
< ) > > ©n Q
La- Time 693.5 3334 103.4 473 482.6 484.8 360.1
MOGS
K Cost 8.94e+0 | 4.441e+ | 1.397e+05 | 6.13e | 5.401 | 5.385e+0 | 4.5e+
5 05 +05 e+05 5 05
La- Time 684.2 329.3 107.7 465 438.4 329.3 354.9
NSGA-
1 Cost 9.716e+ | 4.504e+ | 1.53e+05 | 6.415 | 5.927 | 4.504e+0 | 5.213
05 05 e+05 | e+05 5 e+05
La- Time 624.9 372.4 12.27 467.6 | 454.5 372.4 252.5
MOGA
Cost 8.18e+0 | 5.041e+ | 9.004e+04 | 6.361 | 6.174 | 5.041e+0 | 3.14e
5 05 e+05 | e+05 5 +05

4.9 Summary

This chapter examines the service composition optimization problem in the context of smart
agriculture focusing on two major objectives minimizing cost and time. Using the Lagrange
interpolation method, a non-linear relationship between the objective functions is constructed
to capture the inherent non-linearities involved with such applications. To solve this
optimization problem, three evolutionary computation methods are used: La-MOGA, La-
NSGA-II, and La-MOGSK. A thorough analysis of the algorithms using a variety of
performance criteria shows that La-NSGA-II performs better than La-MOGA and La-MOGSK.
The capacity of La-NSGA-II to successfully negotiate trade-off points between competing
objectives is demonstrated by this finding. The importance of using evolutionary computation

approaches for service composition optimization in smart agriculture is highlighted in the
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chapter’s conclusion, which also shows that NSGA-II performs superior for non-linear multi-

objective service composition optimization.
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CHAPTER 5

IMPACT OF UNCERTAINTIES ON BOTH LINEAR AND NON-
LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION
OPTIMIZATION USING EVOLUTIONARY
COMPUTATIONAL TECHNIQUES

5.1 Chapter Overview

Technological advancements have optimized conventional farming processes, enabling the
agriculture sector to meet population growth demands. Selecting the best services out of all the
services available is crucial to meeting the user’s complex requirements. The composition of
those selected services is called service composition and evolutionary optimization is emerging
to achieve it. Real-world smart agriculture applications involve many uncertain factors that
create obstacles to retrieving critical findings from the data and are a prime concern for modern
farmers. Thus, fuzzy set theory has been developed to better manage the intricacies of uncertain

data.

This chapter assesses the impact of various uncertain factors that occur in real-world agriculture
scenarios on the optimization of composited services. It illustrates how these uncertainties,
which range from human to environmental factors, impact the process of proficient service

compositions through the use of the NSGA-II algorithm.
5.2 Fuzzy Logic System

In the year 1965, Lofti Zadeh formally established fuzzy logic (FL), a branch of Boolean logic.
Contrary to the principles of modal logic, it is a modification of classical set theory. This has
the advantage of introducing the idea of confidence to verify an event, enabling it to continue
to occur in a state that is not either true or false [115]. It is a more successful method for making
decisions to problems because it can mimic human reasoning flexibility and the ability to handle

uncertain and non-linear systems. Figure 5.1 illustrates the fuzzy logic architecture [116].
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The detailed parts of a typical fuzzy logic system are listed below [116].

Inf
Input — Fuzzification nierence Defuzzification — — Output
Procedure

T [ |

Fuzzy Knowledge Base

Database Rule Base

Figure 5.1: Architecture of fuzzy logic [116]

a) Fuzzifier: This segment transforms quantitative numerical input into qualitative linguistic
variables by applying a membership function. Although there are many different functions in
the literature, the Gaussian, triangular, and trapezoidal functions are the most commonly used

ones.

b) Knowledge base: A database and a rule base form the basis of this unit. Databases assign
Fuzzy Sets (FSs) to inputs, which FSs subsequently translate into fuzzy membership values.
After getting FSs from the database, the rule base builds a set of few rules for rule inference.
Stated differently, inference rules are collections of numerous rules that link the system’s fuzzy

inputs and outputs. These rules appear as “IF-THEN” rules:
IF< Condition-I > OR/ AND < Condition-II > (OR/AND...) Then action on the outputs.
This indicates that rules have an antecedent and consequent structure.

¢) Inference Engine: The inference block, which is the central component of FLC, uses fuzzy
contribution and inference rules in FL to mimic human reasoning. The numerical processing of
these rules can yield the linguistically fuzzy output of the controller. There are two types of FL
systems: Mamdani type and Sugeno type. Sugeno is more accurate at approximation, while

Mamdani-type is more-effective in interpretation [117].

d) Defuzzifier: This part is employed in the defuzzification process.
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At this point, the inference engine’s multiple commands could be integrated into one cohesive
output, transforming the qualitative linguistic variable into numerically-based quantitative data.
Center of gravity (COG) and mean of maximum (MOM) defuzzification methods are the two

most widely used ones [118].
5.2.1 Fuzzy Inference System for Proposed Architecture

This work employs an inference system of the Mamdani type. The input attributes selected for
modeling the proposed framework are Management Skills (MS), Weather Conditions (WC), and
Farmer Skills (FS). Each attribute is partitioned into five variables that are linguistic by utilizing
the Mamdani inference system. For the various combinations of input attributes, time and cost
are taken as output. Five fuzzy sets, VeryLess, Less, Average, Good, and Excellent, characterize
the first input; VeryPoor, Poor, Fair, Good, and VeryGood, describe the second input &
VeryLow, Low, Medium, High, and VeryHigh, describe the third input. Seven linguistic values
have been obtained for the outputs: VerySmall, Small, SmallMedium, Medium, LargeMedium,
Large and VeryLarge for the cost; VerySmall, Small, SmallMedium, Medium, LongMedium,
Long and VeryLong for the time. These membership functions are defined over the “Universe
of Discourse (UOD)”. It is presumed that the range of UOD for cost and time is € + 0.2C and
T + 0.2T, respectively.

The specifics of the input membership functions are displayed in Figure 5.2.

[ [ I I

VerylLess Less Medium Good VeryGood

(@)
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Figure 5.2: Input membership functions (a) Management skills (b) Weather conditions (c) Farmer skills

The mathematical formulation of each membership function for input attribute Management

Skills (MS) is provided in equations 5.1 to 5.5 given below.

0 ; u<o
0.25—u
UyLess(U) = 025 ; 0<u<0.25
0 ; u>0.25

(5.1)
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0 ; u<O0oru>20.5

u
— ; 0<u<0.25
Hress(W) = 0.25
05-u  y25<u<0s5
0.25 = 7 =u=0
0 ; u<0.250ru>0.75
U025 s cu <05
——— ; 025<u )
.uMedium(u) = 0.25
0.75—u . 05 <y < 075
0.25 ;P sUsT
( 0 ; u<050ru>1
| 8205 ey <ors
0 05<u )
UGooa(U) = 0.25
1-u o 75 <u<i
0.25 =us
0 ;: u<0.75
=40 s o<t
HvGood 0.25 ) . SUsS
0 ; u>1

(5.2)

(5.3)

(5.4)

(5.5)

For each membership function of input attributes Weather Conditions (WC) and Farmer Skills

(FS), the corresponding equations are defined from equations 5.6 to 5.10 and 5.11 to 5.15,

respectively.

0 ; u<o
= {22"" . gou<o2s
UyBad = 0.25 ; <u<0.
0 ;: u>0.25

101

(5.6)



0 ; u<O0oru>0.5

u
— ; 0<u<0.25
.uBad(u) = 0.25
05-u = y25<u<05
025 =~ ~eX=u=w
0 ; u<0250ru>0.75
4025 s <u<0s5
—— ; 025<u )
.uMedium(u) = 0.25
0.75—u . 05 <y < 075
025 =~ o =U=Y
( 0 ; u<050ru>1
| ©=05 0.5 < u < 0.75
— ; 05<u )
UGooa(U) = 0.25
1-u o 75 <u<i
025 @~ 0 =U=
0 ;: u<0.75
u—0.75
.uVGood(u) = W ; 0.75<u<1
0 ; u>1
0 ; u<o
0.25—-u
UyLow(U) = o025 : 0<u<0.25
0 ; u>0.25
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—_

0 ; u<0.250ru>0.75

(5.12)

“-025 s <u<05
—_— 25<5u .
Umedium (W) = 0.25
0.75—u . 05 < < 075
025 =& O=u=E
(5.13)
( 0 ; u<05o0ru>1
| 2205 w075
; S<u .
BHigh(W) = 0.25
L-u . o7s<us<t
025 = T u=
(5.14)
0 ; u<0.75
o = 42075 s cu<
.uVngh 0.25 ; . sSu=s
0 ; u>1
(5.15)
The specifics of the output membership functions are displayed in Figure 5.3.
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1
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Figure 5.3: Output membership functions (a) Time (b) Cost

The mathematical formulation of each membership function of output attributes Time and Cost
are provided in equations 5.16 to 5.22 and 5.23 to 5.29, respectively.

0

Cu<11.2
1214 —u
Uysman (W) = —oo1 112 <u<12.14
0 ; u>12.14
0 ; u<11.2oru>13.06
-2 cu <1214
—_— , L SU .
Usmau (W) = 0.94
1306 —u 4 <u<13.06
092 &~ ~orErsusLe
0 ; u<i12.14oru> 14
u—12.14
H <
Hsmedium (W) = 0.92 ;1214 =u <13.06
MU 1306 <u<14
0.94
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0 ; u<13.060ru> 1494
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Unedium (W) = 0.94
14.94—u

0.94

; 13.06<u<14

; 14 <u<1494

0 ; u<14oru > 15.86

u—14 14 < u < 14.94
—_ <u )
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(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

Fuzzy rules govern the controller’s operation. A total of 6125 (5 X 5 x 5 x 7 x 7) rules are

necessary, with 250 IF-THEN rules defined using Mamdani inference. These fuzzy rules

integrate prior experience and expert knowledge to establish connections between input and

output variables [119]. Table 5.1 presents a selection of fuzzy inference rules. These guidelines

provide logical direction for selecting the optimal set of solutions for the composite services.
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Table 5.1: Fuzzy rules

Rule | Management | Weather | Farmer Time Cost
Skills Conditions | Skills

1 VeryGood Good  |VeryHigh Small Small
2 VeryGood VeryBad [VeryHigh Long Large
3 Good Good  |VeryLow| SmallMedium | SmallMedium
4 Medium VeryBad | Medium Long Large
5 Less Good Low | LongMedium | LargeMedium

......... VeryLess Medium |VeryLow| VeryLong VeryLarge

These guidelines will determine the smart choices for identifying the best set of solutions for
the combined services. The optimal choices have been determined through the application of

expert knowledge and empirical data.
5.3 Impact of Uncertainties on Linear Service Composition Optimization

This section covers how various uncertain factors like environmental, human-based, or
economic influence the optimization process of service composition problem by using a FIS

considering a linear type of relationship between cost and time objectives.
5.3.1 Optimization Algorithm: NSGA-II

The algorithm starts with a randomized population, which is subsequently organized using the
non-dominated sorting procedure, where all solutions that are not dominated are assigned rank
1 and have been temporarily eliminated from the initial population, followed by the subsequent
set of solutions being ranked as 2, and so on until all possible solution sets are ranked. Then,
the current population is subjected to a binary tournament selection technique, which selects
one solution based on rank from the current population, and when two solutions are on the same

front, the crowding distance theory is utilized for the selection mechanism.

Once parents are selected, offspring are produced by applying crossover and mutation operators
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to the parent population. The subsequent population is formed by selecting the best solutions
from the blended pool of offspring and parents. This process repeats until the criteria for
termination are met, which could be either predetermined generations or when the solutions

reach a saturation level [105].
5.3.2 Proposed Fuzzy-based Architecture

Application-based model’s uncertain, imprecise, and subjective behavior can be solved by using
either fuzzy logic or fuzzy set theory. Fuzzy logic models have been demonstrated to be capable
of handling the unpredicted behavior of the environment variables about agricultural datasets

in many recent tests and studies [120].

The primary goal of modeling systems for smart agriculture is to determine the best way to
optimize the system for the particular kind of dataset being studied. Finding an algorithm that
can resolve numerous uncertain attributes in agricultural data sets is challenging because these
properties are extremely variable and dependent on other factors. It performs a comparable role
to that of human perception. Fuzzy logic can be utilized to create agricultural decisions since it
can handle uncertainty [121]. The proposed framework for Fuzzy Linear NSGA-II (Fuzzy-Li-
NSGA-II) is portrayed in Figure 5.4.

Service Discovery

A4

—  Service Selection
!
O e .e

Service Composition

I
B
‘ i — o Fuzzy Logic

M —  Optimization

\
|

Figure 5.4: Proposed architecture for Fuzzy-Li-NSGA-II
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This system functions across several tiers within an IoT ecosystem, where IoT sensor data is
preserved in cloud-based services. While several providers offer comparable characteristics,
their QoS attributes differ. The initial step involves a service discovery process to identify
functionally similar services. Following this, the required services are chosen from the
discovered options to meet user needs, with selection guided by QoS-based criteria. Since
individual services cannot fully address complex user requests, a service composition phase is
implemented. Various uncertain elements can indirectly affect smart agriculture services. To
evaluate the impact of these uncertainties, a fuzzy logic controller is employed. The process
concludes with the application of optimization operators to an initialized population, aiming to

find Pareto optimal solutions that ultimately satisfy user requirements.

Figure 5.5 illustrates the flowchart for the proposed Fuzzy-Li-NSGA-II algorithm.
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Figure 5.5: Flow chart of proposed Fuzzy-Li-NSGA-II approach

5.3.3 Simulation Setup

MATLAB R2013a version is used to run the proposed algorithm. An FIS has been used to model
it to ascertain how uncertainties would affect the specified multiple objectives and NSGA-II is

used as an optimization algorithm (Optimal algorithm out of MOGA, NSGA-II, and MOGSK).
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Table 5.2 contains a tabulation of the parameters that were utilized to validate the algorithm’s

performance.

Table 5.2: Simulation parameters

Parameters Values
Population Size (Np) 200
Number of Iterations 1,000
Mutation Probability 0.07
Crossover Probability 0.9

5.3.4 Results and Discussions

Examining how the uncertainties present in real-life smart agriculture applications influence
the overall composited services is the aim of this study. For this, a Mamdani FIS has been
designed and after that, the composited services are optimized using the NSGA-II algorithm,
thereby, producing a set of Pareto optimal solutions. Different input variable values are used to
assess their influence on the output variables. Figure 5.6 illustrates four possible distinct cases

of membership functions.

In the first case, each of the three input membership functions—MS, WC, and FS—is equal to
0.2 which can be regarded as a worst-case scenario. This indicates that Management Skills (MS)
are VeryLess, Weather Conditions (WC) are VeryBad, and Farmer Skills (FS) are VeryLow. For
the second case, all MS, WC, and FS are equal to 0.5 meaning all MS, WC, and F'S are at Medium
level, indicating the normal case scenario. For the third instance, MS = 0.5, WC = 0.8, and F'S
= 0.2 meaning that Management Skills (MS) are Medium, Weather Conditions (WC) are
VeryGood, and Farmer Skills (FS) are VeryLow. This shows the mixed-case scenario. The last
case depicts MS, WC, and FS = 0.9 where Management Skills (MS) are VeryGood, Weather
Conditions (WC) are VeryGood, and Farmer Skills (FS) are VeryHigh. showing the best-case
scenarios. It can be observed from Pareto front analysis that best-case scenario provides a more
diversified solution and is also closer to the origin, indicating better solutions than other

scenarios.
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Impact of Uncertaities on Service Composition Optimization using Fuzzy Logic
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Figure 5.6. Distinct possible case scenarios of smart agriculture

To improve readability and clarity, a statistical analysis of the findings is presented in Table 5.3.

Table 5.3: Statistical analysis

) é E S‘ E E g = § i 1)
2 3 B & E T 3 g = 3 =
@) 3 = =i B 8 z = é’ = =2
Z NG = = @ A/
Worst Time 706.7 406.6 81.94 511.3 | 490 406.6 | 300.1

Case
Cost 1039 572 138.3 7599 | 7349 572 467.3

Normal | Time 498.3 352.2 42.89 413.1 | 409.3 352.2 146.1

Case
Cost 962.6 583.1 108.2 734.3 | 722.9 583.1 379.5
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Mixed Time 570.9 375.6 56.04 457 443.8 375.6 195.3
Case

Cost 810.8 509.8 91.39 629 | 607.9 509.8 301

Best Time 575.9 327.4 76.04 429.1 | 4114 327.4 248.5

Case

Cost 1153 432.6 157.3 590.8 | 540.2 432.6 720.5

5.4 Impact of Uncertainties on Non-Linear Service Composition

Optimization

This part of the chapter embraces the impact of various environmental and non-environmental
factors on the optimization process of service composition by using a FIS considering a non-
linear relationship between cost and time objectives to represent the real-world scenarios of
smart agriculture. The non-linear relationship between the cost and time objectives is defined
by Lagrange’s interpolation, which will be covered first. An overview of the NSGA-II
optimization algorithm will come next, and then a description of the proposed architecture
Fuzzy Lagrange’s NSGA-II (Fuzzy-La-NSGA-II).

5.4.1 Phase 1: Lagrange’s Interpolation

A strong mathematical method for estimating unknown values within a certain range of known
data points is Lagrange interpolation. This method is very helpful for interpolation jobs in a
variety of applications because it allows values to be calculated at defined intervals by building
apolynomial that goes through a given collection of points. The non-linear relationship between
the cost and time objectives in service composition optimization for smart agriculture is
established in this work using Lagrange interpolation. This method enables better decision-
making and optimization results by providing a more realistic depiction of the difficulties in

striking a balance between these two crucial goals [122].
5.4.2 Phase 2: NSGA-II

The algorithm begins with a randomized population, organized using non-dominated sorting. It
then uses a selection method of binary tournament to create a parent population, using crowding

distance. Offspring are produced using crossover and mutation operators, and the subsequent
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population is formed by selecting the best solutions from the blended pool. This process repeats

until a termination criterion is satisfied [105].
5.4.3 Proposed Fuzzy-based Architecture

Fuzzy set theory and fuzzy logic models can resolve ambiguous behavior in application-based
models, particularly in agricultural data sets. These models can handle uncertain attributes,
similar to how the brain functions, making smart agricultural decisions easier and more
adaptable to the specific data set being considered [123]. Thus, the proposed fuzzy-based
system explores the influence of fuzzy systems on optimization algorithms for smart

agriculture, illustrating the architecture in Figure 5.7.

This architecture operates on several IoT structure tiers. [oT sensor data is kept in the cloud as
a service. While many services have comparable functionality, their QoS features differ. As a
result, during the service discovery phase, services with comparable functionality were initially
found. The next step is to choose the services from the pool of available options that best suit
the user’s needs. This choice is based on characteristics that are in accordance with cost and
time taken as QoS metrics. Because the requests of user’s are multifaceted, one service couldn’t
be used to satisfy them. Therefore, service composition is completed in the following stage.
The relationship between the cost and time metrics is non-linear since the real scenario is used.
Thus, it is defined using Lagrange’s interpolation method. The services that smart agriculture
offers are indirectly impacted by numerous unknown factors. Fuzzy logic controllers have thus
been used to assess the effects of those factors on services. After initializing the population,
additional optimization operators were applied to obtain Pareto optimal solutions, which
ultimately satisfied user demands. The flowchart to illustrate the proposed Fuzzy-La-NSGA-II

approach is shown in Figure 5.8.
5.4.4 Simulation Setup

The proposed Fuzzy-La-NSGA-II algorithm is tested using MATLAB R2013a version.
Mamdani FIS is used to model the various environmental and human-based uncertainties to
check their impact on the real-world scenario of smart agriculture applications with NSGA-II
as optimization algorithm (Optimal algorithm out of MOGA, NSGA-II, and MOGSK).

Simulation parameters for the optimization algorithm are tabulated in Table 5.4.
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Table 5.4: Simulation parameters

Parameters Values
Population Size (Np) 200
Number of Iterations 1,000
Mutation Probability 0.07
Crossover Probability 0.9

5.4.5 Results and Discussions

Smart agriculture faces uncertainties like environmental and economic factors, requiring robust
optimization strategies to ensure adaptability and resilience. Technology and data-driven
approaches help address these uncertainties, but robust optimization strategies are needed for
optimal results. Thus, this part of the objective has examined the impact of uncertainties on the
proposed architecture of optimizing time and cost by considering a non-linear relationship

between them and optimizing them.

To determine how input variables affect output variables, distinct values are obtained. Four
scenarios involving fuzzy membership functions are depicted in Figure 5.9. All three of the
input membership functions (MS, WC, and FS) are equal to 0.3 in the first case, which can be
considered a worst-case scenario; in the second case, which can be considered a normal-case
scenario, they are all equal to 0.5. A mixed-case scenario is considered by taking MS= 0.5, WC
=0.9, and F'S = 0.3 whereas a best-case scenario is taken by considering all MS=WC=FS=0.8.
As can be seen from Figure 5.9, the best-case scenario offers the most favorable set of Pareto
optimal solutions while the worst-case scenario displays, when compared, the poorer optimal

Pareto solutions.
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Figure 5.9: Distinct possible case scenarios of Fuzzy La-NSGA-II
Table 5.5 presents a statistical analysis to improve the interpretation of the results.
Table 5.5: Statistical analysis
L 'é E E g -g .§ = § ) g!)
2 s 3 E E T = g 5 3 £
S § % 5 E S5 | =| | = >
A D = = -
Worst Time 754.7 360.3 117.8 502.7 | 471.5 360.3 394.4
Case
Cost 1.066e+ | 4.896e+ | 1.778e+05 | 7.164 | 6.698 | 4.896e+0 | 5.76e
06 05 e+05 | e+05 5 +05
Time 686 327.8 108.5 461 | 4324 327.8 358.2
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Normal Cost 9.736e+ | 4.717e+ | 1.558e+05 | 6.569 | 6.123 | 4.717e+0 | 5.019
Case 05 05 e+05 | e+05 5 e+05

Mixed Time 653.5 315.6 102.6 4428 | 4144 315.6 337.9

Case

Cost 9.357e+ | 4.443e+ | 1.484e+05 | 6.267 | 5.828 | 4.443e+0 | 4.914
05 05 e+05 | e+05 5 e+05

Best Time 596.1 301.6 87.78 411.2 | 386.2 301.6 294.5

Case

Cost 8.921e+ | 4.286e+ | 1.447e+05 | 6.057 | 5.712 | 4.286e+0 | 4.635
05 05 e+05 | e+05 5 e+05

5.5 Behavioral Analysis Comparison of Fuzzy Li-NSGA-II and Fuzzy La-
NSGA-II

This section provides a behavioral analysis comparison of Fuzzy-Li-NSGA-II and Fuzzy-La-
NSGA-II by using both Pareto front and statistical analysis. Here, Fuzzy-Li-NSGA-II depicts
a linear relationship between the competing goals of minimizing cost and time whereas Fuzzy-
La-NSGA-II portrays a non-linear relationship for a more realistic experience of real-world
smart agriculture applications. Figure 5.10 presents a behavioral analysis comparison of both

approaches when MS=WC=FS$=0.5 means a normal-case scenario.

It has been analyzed that both provide diversified solutions for their particular relationship
between cost and time objectives. However, the Fuzzy-La-NSGA-II is more reliable in
representing real-world scenarios in the context of non-linear service composition optimization

problems. For a better understanding, statistical analysis is provided in Table 5.6.
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Figure 5.10: Behavioral analysis of Fuzzy La-NSGA-II and Fuzzy-Li-NSGA-II
Table 5.6: Statistical analysis
E | E | RE| 2| 5| s 5
= g 2 E T = S 3 E £
= = < £ s ?, E E E [
< S = = @ A/
Fuzzy Time 676.9 327.1 105.3 455.8 | 421.8 327.1 349.8
La-
NSGA Cost | 9.73%e+ | 4.595e+ | 1.589e+05 | 6.593 | 6.294 | 4.595e+0 | 5.144
I 05 05 e+05 | e+05 5 e+05
Time 694 3353 104.3 482.1 | 453.8 3353 358.7
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Fuzzy Cost 8.744e+ | 4.44e+0 | 1.247e+05 | 6.076 | 5.743 | 4.44e+05 | 4.304
Li- 05 5 e+05 | e+05 e+05
NSGA-

5.6 Summary

In the context of smart agriculture, this chapter explores how uncertainties affect composited
service optimization. A Mamdani fuzzy inference system is used to assess these uncertainties,
providing a methodical way to quantify and examine their effects. The most successful
optimization method for resolving our service composition problem is NSGA-II, which builds
on the results of chapters 3 and 4. As a result, NSGA-II is used as the main optimization
algorithm in chapter 5. The chapter investigates how uncertainties affect both linear and non-
linear objective functions by taking Fuzzy-Li-NSGA-II and Fuzzy-La-NSGA-II, respectively.
To understand the difference between both, a behavioral analysis is provided. Because the
relationship between services in a composition might be either linear or non-linear, the study
shows that both kinds of objectives can be used depending on user requirements. This
adaptability enables customized solutions that fit the unique requirements and dynamics of

scenarios involving smart agriculture.
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CHAPTER 6

A NOVEL NATURE-INSPIRED MULTI-OBJECTIVE
ELECTRIC EEL FORAGING OPTIMIZATION ALGORITHM

6.1 Chapter Overview

Solving multi-objective optimization challenges in real-world applications is challenging when
using mathematical models. As a result, various nature-inspired meta-heuristic approaches are

employed to address these complex problems.

This chapter reflects on the ingenious collective foraging strategies of electric eels found in
nature and considers them as an inspiration for a multi-objective electric eel foraging
optimization algorithm. To enable both exploitation and exploration throughout the process, the
algorithm mathematically replicates the four essential foraging behaviors of interaction,

hunting, migrating, and resting.
6.2 Description of Electric Eel Foraging Behavior

Electric eels, native to South America, are known for their high voltage wires, capable of
releasing 300-800 V to stun prey. With thousands of electrocytes in each of their three separate
sets of electric organs, their organs store energy like small batteries [124]. Figure 6.1 shows the

structure of electric eel [125].

Eels generate 10 V of electrical signals to locate prey, use this feedback for defense, and
communicate with each other. They emit more charge when finding prey, making it an effective
foraging strategy. Eels are swarm-based creatures, using social predation for hunting. They
form a “prey ball” by grouping together, swimming in circles, and herding fish into it before
making a high-voltage raid. It is more likely to catch more prey when hunting in groups,

especially when fish are plentiful [126].
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Figure 6.1: Physical structure of electric eel [125]

6.3 Mathematical Representation of Electric Eel Foraging Optimization

(EEFO)

Effectively navigating intricate problem environments is made possible by EEFO’s dynamic
management of the exploration and exploitation phases. It incorporates effective local and
global search strategies like hunting and migration, displaying higher performance in
comparable tests. Because of its scalability and ease of implementation, EEFO is a reliable
option for solving complex problems and producing high-quality results. The shifting of
exploration to exploitation is managed by a factor called the energy factor Er which is defined
below in equation 6.1 [125].

Er=4xsin(1-————)xin(+) (6.1)

maxiterations T
Here, r; is a random number within (0,1).

When Ef <1, it performs globally whereas for Er > 1, it performs local search by using

resting, hunting, and migrating regions. The flowing subsection in EEFO models foraging

activities.
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6.3.1 Interaction

Every electric eel in EEFO is a candidate solution, and the intended prey is the one that performs
best after every step. They cooperatively interact with other individuals using position
information, a behaviour known as the global exploration phase. They can update their position
by measuring the difference between a randomly chosen eel and the population centre. Eels
churn, or move randomly in various directions, as a means of communication with one another.

The equations 6.2 to 6.6 represent this churn and are given below [125].

C = nl X [Bl, Bz, "'IBSI ...,BD] (62)

n, ~N(0,1) (6.3)
_ (1L ifs==g

B(s) = { . o (6.4)

g = randperm (D) (6.5)

| = [maxiterations—t . r, x (D —2) + 2] (6.6)

maxiterations

In the above equations, maxiterations defines the maximum iterations defined for

convergence, t is the current iteration, C is the churning factor.

The interaction behavior of the eels can be defined using equation 6.7 given below [125].

_[(xi(@®) +Cx (f(t) — xk(t)) where p; > 0.5 ] ]
e+ 1) = {xi (t)+Cx (xr(t) — xk(t)) wherep; < 0.5 fit(x(0) < fit(x(6)
B X, (t) + C % (f(t) — xi(t)) where p, > 0.5 ] ]
e+ = {xk (©) +C x (1,(8) = x:(8)) where p, <05 it(xi(8) = fit ()
(6.7)
T() = 3 ey (D) (6.8)
X, = low + 1 X (up — low) (6.9)
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In equation (6.7), p; and p, are the random numbers generated between (0,1), fit (x;) defines
fitness of that particular candidate position of k" eel, and x; is the eel position which is picked
stochastically from the population that exists at that time. Equations 6.8 and 6.9 show the mean
position of eels and any random eel position, respectively. low and up are lower and upper

bound, respectively which are shown in equation 6.9.
6.3.2 Resting

Electric eels in the EEFO should construct a resting area before starting resting activities. The
eel’s position and search space should be standardized to a range of 0-1 to increase efficiency.
The anticipated position is believed to be the center of the eel’s resting region. The solutions
found so far in the interaction phase are refined during this phase. Equation 6.10 defines the
resting area whereas equations 6.11, 6.12, and 6.13 describes the scaling factor, centre of the

resting region, and normalized number, respectively [125].

{X1X —Z(®) < ao X |Z() = Xprey (D]} (6.10)
(o = 2+ (e — emariterations) 6.11)
Z(t) = low + z(t) X (up — low) (6.12)

rand{d} {t— l Owrand{d}}

_ xrand{n}
Z(t) - uprand{d}_joyrand{d}

(6.13)

Here, Xprey is the position vector of the best solution obtained till that time, a; is the initial
scale of the resting region, the expression @y X |Z(t) — Xpy, (t)| defines the resting area’s

range.

Thus, the resting position within the resting area of a particular eel can be defined as in equation

6.14. It is performed prior to resting behavior.
R(t+1) =Z(t) + a X |Z(t) — Xprey ()] (6.14)
a = ay X sin (2nr3) (6.15)

In equation 6.15, a denotes resting region’s scale. The eel’s resting behavior is determined by

the equation 6.16 given below.
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v(t+1) =Rp(t+ 1) +n, X (R (t +1) —round(rand) X x;(t)) (6.16)
6.3.3 Hunting

Eels cooperatively swim in a large circle to hunt prey, communicating and cooperating with
their peers by using low electric discharges. As interaction increases, the electrified circle
shrinks, and eels bring fish from deeper to shallow regions, creating a hunting area where prey

moves. The hunting area is defined in below given equation 6.17 [125].

{XIX = Xprey (] < o X 1E(E) = Xprey (D)1} (6.17)

t

'80 =2- (e — emaxiterations) (618)

In equation 6.18, S, is the initial scale of the hunting area whereas in equation 6.17, the term
Bo X |%(t) — Xprey (t)| defines the hunting range of the eel. Thus, newly found prey’s position

enclosed by the hunting area can be described using equation 6.19.

hprey(t +1) = Xprey (£) + B X |X(E) = Xprey ()] (6.19)
B = Po X sin (2nry) (6.20)
In equation 6.20, S is the scale of the hunting area.

An eel starts behaving like prey in that particular hunting area once it has been discovered. The
eel swiftly locates its prey, coils its head and tail, and entangles it with the prey, emitting a high-

voltage current. The curling behavior is described by the equation 6.21.

V(t+ 1) = hprey(t+1) + 1 X (Mprey(t + 1) — round(rand) X x;(t) (6.21)

r5:(1-t)
1) = emaxiterations + COS (27Ts) (6.22)

The factor n in equation 6.22 is the curling factor.
6.3.4 Migration
Migration in EEFO entails recurring exploration of various places in the search space. Similar

to electric eels migrating to new hunting regions, this mechanism maintains an equilibrium
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between exploitation and exploration. The following equations 6.23 and 6.24 are used to

quantitatively model the eel’s migration behavior [125].
Ve (t+ 1) = -1 XR(t+ 1)+ rn Xh(t+1) = Lx(h-(t+ 1) — x,(t) (6.23)
h(t+1) = Xprey(t) + B x |x(t) — Xprey(t)l (6.24)

Here, h, is any position within hunting area. r4 and r, are the random numbers within the range
(0,1). L is the Levy Flight function and the factor (h,-(t + 1) — x;(t))shows the movement of

eels towards the hunting area.
6.4 Multi-objective Electric Eel Foraging Optimization

The proposed MO-EEFO has made a few transitions in the single-objective algorithm to make
it multi-objective. One is the creation of non-dominant solutions that have been found so far.
Non-dominated sorting and the crowding distance are used to obtain those non-dominated

solutions, which enhance diversity and facilitate better exploitation and exploration.

MO-EEFO starts by setting up several parameters, such as the maximum iterations and the
electric eel’s population size. In the meantime, a uniform distribution of a set of eels is created
at random to make a population of eels known as eel chromosomes. To create a solution set that
is more refined than others, the concept of non-dominated sorting is applied to organize them

based on their rank and crowding distance.

It creates the global best solutions. An energy factor E is then defined for calculating the energy
of each eel chromosome at each iteration depending on which one of the four foraging behaviors
of the eel chromosome will be chosen to explore and exploit the search space properly. For each
iteration, if (Ef > 1), then each eel chromosome uses interactive behavior to execute
exploration of the search space. Each eel chromosome engages in exploitation when the energy
factor (Ey < 1), employing the resting, migrating, or hunting behaviors with an equal chance.
All eel chromosomes are subjected to each situation in order to generate new offspring eels,
which are then compared with their parent eel chromosomes. After that, an intermediate
population is created which is the combination of parent eel chromosomes and newly formed
offspring eels. Again, non-dominated sorting is applied to find the best solutions from the

intermediate population. The concept of non-dominated sorting arranges the population based
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on rank and crowding distance. With the increase in the number of iterations, the value of Ef
falls which forces eels to shift from exploration to exploitation. This process is carried out
interactively up until the convergence criterion is met. The pseudocode for the MO-EEFO

algorithm is given in Figure 6.2 whereas the flow chart for the same is illustrated in Figure 6.3.

Algorithm: MO-EEFO Algorithm

Set parameters population size (n) and maximum number of iterations.
Initialize the eel population at random X, where k = 1,2,3,...,n and

Assess therr fitness Fitness,
Sort population (n) using non-dominated sorting and compute crowding
distance.
while the stopping requirement is not met do
for each eel X}, do
Calculate E; utilizing Eq. 6.1
if Ef > 1 then

Carry out the interacting behavior utilizing Eq. 6.17
Assess the fitness Fitness,,
else

if rand < % then

Discover the resting region utilizing Eq. 6.14
Carry out the resting behavior utilizing Eq. 6.16
Assess the fitness Fitness,,

else if rand > § then

Carry out the migrating behavior utilizing Eq. 6.23
else
Discover the hunting region utilizing Eq. 6.19
Carry out the hunting behavior utilizing Eq. 6.21
end if
end if
end for
Update the best solutions as offspring.
Form an intermediate population by combining the parent eel population
and offspring eel population.
Perform non-dominated sorting on the intermediate population.
X = Non-dominated sorting of intermediate population on the basis of
rank and crowding distance.
end while
Return best Pareto optimal solutions.

Figure 6.2: Pseudocode of proposed MO-EEFO algorithm
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Figure 6.3: Flow chart illustration of the proposed MO-EEFO algorithm

6.5 Simulation Setup and Result Analysis

This section covers the experimental analysis of the proposed MO-EEFO algorithm’s efficiency
on Zitzler-Deb-Thiele (ZDT) benchmark problems, and comparison of proposed algorithm with

other algorithms present in literature to verify its efficiency.
6.5.1 Benchmark Problems and Comparison with Algorithms

To evaluate the performance of proposed MO-EEFO algorithm, it is tested on ZDT benchmark
problems and a comparative analysis is provided. These ZDT benchmark problem's distinctive
characteristics and the broad range of challenges they pose make them popular for multi-
objective optimization method evaluation. ZDT1’s convex Pareto front makes it an excellent
foundation for assessing the convergence and diversity capacities of optimization algorithms.
ZDT2, on the other hand, displays a concave Pareto front, which makes it appropriate for
evaluating how well algorithms manage non-convexity while preserving variety within the
solution set. The comparative results are shown in Figures 6.4 and 6.5 for ZDT1 and ZDT2,

respectively.
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Figure 6.4: Pareto front obtained by MO-EEFO of ZDT1 function
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Figure 6.5: Pareto front obtained by MO-EEFO of ZDT2 function
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It demonstrates that the proposed algorithm is capable of effectively navigating the solution
space and consistently obtaining a distribution of solutions resembling these well-known
benchmark problems. The overlap suggests that MO-EEFO, like ZDT1 and ZDT2, continues
to discover the efficient trade-offs between conflicting objectives with a high degree of

accuracy.

Furthermore, a comprehensive comparison of proposed MO-EEFO with a few of the well-
known optimizers present in the literature including Multi-objective particle swarm
optimization (MOPSO) [127], MOGSK [111], MOGA [128], Non-dominated sorting whale
optimization algorithm (NSWOA) [129], and NSGA-II [105] is conducted. Parameters for all
these compared algorithms are adjusted according to the data available in the literature whereas

for MO-EEFO, only the population size and maximum number of iterations are set.

The analysis is regulated using a number of key performance metrics, including convergence
performance, and diversity of the Pareto solutions obtained. Basic statistical measures such as
range, minimum, maximum, standard deviation, mean and median are also analyzed to show
the effectiveness of our proposed algorithm. Figures 6.6 and 6.7 show the comparison results

of distinct optimization algorithms of ZDT1 and ZDT2 with MO-EEFO, respectively.

As it can be seen in Figures 6.6 and 6.7, the proposed MO-EEFO algorithm continuously
performs equivalent to other algorithms in terms of convergence to the true Pareto front.
Additionally, it maintains diversity throughout the optimization process by yielding a set of

solutions that are evenly dispersed across the Pareto front.

To get a clear picture of the Pareto solutions obtained through various meta-heuristic

algorithms, statistical analysis is tabulated in Table 6.1.

The proposed algorithm shows a consistent superiority over the other algorithms concerning
the average objective values. Its reduced standard deviation suggested increased resilience and
stability in a variety of problem scenarios. This shows that when compared to the other well-
established algorithms, the proposed algorithm produces better average solutions as well as

more reliable results.

129
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Figure 6.6: Comparison of various optimization algorithms of ZDT1 with MO-EEFO

Comparison of Various Meta-heuristics for ZDT2 Benchmark Problem
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Figure 6.7: Comparison of various optimization algorithms of ZDT2 with MO-EEFO
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Table 6.1: Statistical analysis of various algorithms for ZDT problems

Benchmark | Algorithm | Objectives | Maximum | Minimum | Standard | Mean | Median Mode Range
Problem Deviation
ZDT1 MOPSO 1 1 0 0.3086 | 0.4239 | 0.3934 0 1
objective
2nd 1 0 0.2793 | 0.4154 | 0.3763 0 1
objective
MOGSK I 0.9998 6.03e-05 0.3014 | 0.3885| 0.3541 | 6.03e-05 | 0.9998
objective
2nd 1.286 0.0001079 0.295 0.4495 | 0.405 | 0.0001079 | 1.286
objective
MOGA 1 1 0 0.293 0.5 0.5 0 1
objective
2nd 1 0 0.2421 ]0.3352 | 0.2929 0 1
objective
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NSWOA 1% 1 0 0.3161 | 0.4056 | 0.3464 0 1
objective

2nd 1 0 0.2895 |0.4344 | 0.4179 0 1
objective

NSGA-II I 1 0 0.3132 | 0.4073 | 0.3556 0 1
objective

2nd 1.001 0.0004385 | 0.2859 | 0.4293 | 0.4044 | 0.0004385 1
objective

MO-EEFO 1 1 1.183e-09 | 0.3097 | 0.4156 | 0.3869 | 1.183e-09 1
objective

2nd 1 0.0003485 | 0.2845 | 0.4214 | 0.3785 | 0.0003485 | 0.9996
objective

ZDT2 MOPSO 1% 1 0 0.2735 ] 0.6001 | 0.6372 0 1
objective

2nd 1 0 0.3074 | 0.5703 | 0.5997 0 1
objective
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MOGSK 1% 0.9915 2.373e-30 | 0.2903 | 0.5454 | 0.5726 | 2.373e-30 | 0.9915
objective
2nd 1 0.02222 0.3072 | 0.6197 | 0.6721 | 0.02222 | 0.9778
objective

MOGA I 1 0 0.293 0.5 0.5 0 1
objective
2nd 1 0 0.3028 0.665 0.75 0 1
objective

NSWOA 1 1 0 0.2822 0.588 | 0.6233 0 0.2822
objective
2nd 1 0 0.3097 |0.5765 | 0.6147 0 0.3097
objective

NSGA-II 1% 1 0 0.2952 ] 0.5803 | 0.6184 0 1
objective
2nd 1.003 0.006427 0.3244 | 0.5821 | 0.6229 | 0.006427 | 0.9968
objective
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MO-EEFO 1 0.9991 2.727¢-08 | 0.2818 | 0.5748 | 0.6063 | 2.727¢-08 | 0.9991
objective
2nd 1.509 0.01824 0.3149 | 0.6024 | 0.6391 | 0.01824 | 1.491
objective
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6.6 Comparison of proposed MO-EEFO with other meta-heuristics

To ensure the effectiveness of the proposed algorithm in real-world scenarios, service
composition optimization in smart agriculture is considered. The dataset defined in Table 3.1
which contains a set of services required for apple plant production in Shimla and Kullu regions

is used to validate the proposed MO-EEFO algorithm.

These composited services are optimized using four distinct meta-heuristic optimizers named

MO-EEFO, NSGA-II, MOGSK, and MOGA. Comparison results are illustrated in Figure 6.8.

¥ 10° Comparison of Various Algorithms for Case Study on Smart Agriculture
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8 O MO-EEFO
o  MOGSK
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9 — —
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Figure 6.8: Comparative analysis of various algorithms for service composition in smart agriculture

It is evident from examining Figure 6.8 that the proposed MO-EEFO provides the best

solutions for this real-world application of smart agriculture. The closeness to the origin

suggests that the multi-objective optimization of minimizing both time and cost for service

composition optimization in smart agriculture is completed with exceptional performance.

Additionally, a greater number of Pareto points obtained from MO-EEFO facilitates a broader
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set of potential solutions, thereby, offering more options for users. In summary, the results imply
that MO-EEFO, excels in providing a more reliable and efficient method for managing the

trade-offs present in this complex optimization problem in comparison to other algorithms by

providing more solution diversity. Statistical analysis for the same is provided in Table 6.2 to

get a clearer understanding of the algorithms.

Table 6.2: Statistical analysis of various compared algorithms

Algorithm
Objectives
Maximum
Minimum
Standard
Deviation
Mean
Median
Mode
Range

MO- Time 693.6 328.8 109.7 478.2 | 450.9 693.6 364.8
EEFO

Cost 9.716e+ | 4.447e+ | 1.424e+05 | 6.244 | 5.841 | 4.447e+0 | 5.269
05 05 et05 | et+05 5 et+05

MOGS Time 693.8 335.2 103 535.8 | 5523 335.2 358.6

Cost 8.716e+ | 4.445¢e+ | 1.117e+05 | 5.509 | 5.055 | 4.445e+0 | 4.271
05 05 et05 | et+05 5 e+05

NSGA- | Time 691.6 335.8 105.1 480.8 | 455.5 335.8 335.8
II

Cost 8.817e+ | 4.459¢+ | 1.326e+05 | 6.147 | 5.731 | 4.459e+0 | 4.358
05 05 e+05 e+05 5 e+05

MOGA | Time 561.2 366 55.43 448.4 | 4414 366 195.2

Cost | 8.208e+ | 5.236e+ | 9.088e+04 | 6.535 | 6.427 | 5.236e+0 | 2.972
05 05 et05 | et+05 5 e+05

Two evaluation methodologies have been used to show the superiority of the proposed MO-

EEFO method: statistical analysis and Pareto front analysis.

The Pareto front produced by the proposed MO-EEFO method, as shown in Figure 6.8, is more
diverse than that of compared algorithms, indicating that it can investigate a wider range of
solutions. This increased diversity guarantees a more thorough depiction of trade-offs between
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competing objectives, which is a critical feature of multi-objective optimization. Furthermore,
Table 6.2 displays the outcomes of the statistical analysis for several compared algorithms. It is
evident that MO-EEFO produces solutions with a higher standard deviation than other
algorithms, demonstrating its superior ability to produce diversified solutions. In this case, a
higher standard deviation emphasizes the algorithm’s capacity to investigate and preserve a
wider range of solutions, proving its efficiency in striking a balance between time and cost
minimization goals. When taken as a whole, these analyses present compelling proof that MO-
EEFO performs better in terms of solution diversity and quality, which makes it a reliable option
for resolving multi-objective optimization issues in the composition of smart agriculture

services.
6.7 Summary

This chapter introduces a new nature-inspired algorithm called the multi-objective electric eel
foraging optimization. The algorithm’s effectiveness has been assessed through tests on
standard benchmark problems, specifically ZDT1 and ZDT2. Its performance has been then
compared to several well-established algorithms in the field, including MOPSO, MOGSK,
MOGA, NSWOA, and NSGA-II. To further evaluate the MO-EEFQO’s capabilities, it has been
applied to optimize service composition in smart agriculture, with its results compared against
MOGA, NSGA-II, and MOGSK. The findings reveal that the MO-EEFO algorithm surpasses
these alternative methods, as evidenced by its higher standard deviation. This indicates that the
MO-EEFO offers superior solution diversity and robustness when tackling multi-objective

optimization challenges.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The work in this thesis presents various EC techniques to solve the problem of multi-objective
service composition optimization in the field of smart agriculture. In the context of smart
agriculture, farmers may choose crops that will yield the most under the current and predicted
climatic conditions because they have much more freedom and knowledge. Because of these
advances in artificial intelligence, people’s expectations have increased, resulting in
complicated user demands in day-to-day life. Therefore, meeting user expectations can often
be difficult. The process of combining services to meet user’s complicated needs is called
service composition. Put otherwise, a collection of fundamental services is what is referred to
as service composition. It is an NP-hard problem so cannot be solved in the polynomial time
domain thereby making traditional methods inadequate. Numerous EC approaches have been
investigated in the literature to handle this complexity, providing potential solutions for these
kinds of challenging optimization issues. The high-dimensional and non-linear character of
service composition can be effectively addressed by EC techniques like GA, PSO, and ACO,
which offer adaptive search capabilities. These techniques efficiently traverse the large solution
space by mimicking evolutionary principles, providing near-optimal answers in a reasonable
amount of time. As a result, EC-based methods are becoming more and more popular for

optimizing service composition in intricate computational settings.

In our work, multi-objective service composition optimization in smart agriculture is done by
using various EC techniques. The thesis is organized around four key objectives. Using three
EC techniques - MOGA, NSGA-II, and MOGSK - the first objective focuses on linear multi-
objective service composition optimization for a more straightforward approach. Cost and time
are identified as the optimization problem’s minimizing objective functions with a linear
relationship between them. To choose the best EC technique for the defined problem, Pareto
front analysis and statistical analysis are taken. According to simulation results, NSGA-II
performs better than the other approaches and generates a wider variety of Pareto optimal
solutions, as demonstrated by Pareto front analysis. Furthermore, NSGA-II exhibits a bigger

standard deviation, which also supports its enhanced ability to produce diversified optimal
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solutions, making it possible for farmers to choose from the wider range of solutions available

as per their requirements.

The second objective deals with non-linear multi-objective service composition optimization,
in which cost and time objectives have a non-linear relationship. Lagrange’s interpolation
method is used to capture this non-linearity. This non-linear method is crucial since linear
models are unable to adequately represent the intricacies and intrinsic non-linearities found in
practical smart agriculture systems. To assess optimization performance under these non-linear
conditions, three EC techniques - MOGA, NSGA-II, and MOGSK are adapted and named La-
MOGA, La-NSGA-II, and La-MOGSK, respectively. La-NSGA-II performs better than the
other approaches, according to Pareto front and statistical analysis. It generates a more varied
range of Pareto optimal solutions and has a higher standard deviation, which suggests that it is
better at handling the multi-objective service composition problem’s non-linearities present in

smart agriculture.

Environmental, human-based, and economic uncertainty are all unavoidable in real-world
agricultural scenarios. Thus, to provide reliable and efficient solutions suited to the ever-
changing requirements of smart agriculture environments, the influence of uncertainties on the
optimization process is examined in the third objective. It applies fuzzy logic to both linear and
non-linear multi-objective service composition optimization problems to evaluate the influence
of those uncertainties on the optimization of composited services. NSGA-II is employed as the
optimization algorithm for this objective since it outperformed MOGA and MOGSK in both
the first and second objectives. Fuzzy-Li-NSGA-II for linear optimization problems and Fuzzy-
La-NSGA-II for non-linear optimization problems are the modified versions of NSGA-II used
in this objective for checking the influence of uncertainties using the Mamdani fuzzy inference
system. For Fuzzy-Li-NSGA-II, four case scenarios are assessed: the worst (MS=WC=FS=0.2),
the normal (MS=WC=FS=0.5), the mixed (MS=0.5, WC=0.8, FS=0.2), and the best-case
(MS=WC=FS=0.9). Comparable situations for Fuzzy-La-NSGA-II are also evaluated using
modified values: best-case (MS=WC=FS=0.8), mixed (MS=0.5, WC=0.9, FS=0.3), normal
(MS=WC=FS=0.5), and worst (MS=WC=FS=0.3). According to the behavioral analysis,
Fuzzy-La-NSGA-II more accurately depicts real-world conditions than Fuzzy-Li-NSGA-II.
Furthermore, there are minor differences between the Pareto solutions produced by the two
methods, with Fuzzy-La-NSGA-II better capturing the influence of the uncertainties and non-

linearities present in real-world applications.
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The fourth objective deals with developing a novel nature-inspired multi-objective electric eel
foraging optimization algorithm for solving challenges in real-world applications. The proposed
MO-EEFO reflects on the ingenious collective foraging strategies of electric eels found in
nature and considers them as an inspiration for the optimization process. Its performance is
validated on ZDT benchmark problems. Furthermore, a comprehension comparison of this
proposed MO-EEFO is done with a few well-established algorithms present in the literature
which are MOPSO, MOGSK, MOGA, NSWOA, and NSGA-II. It has been found that
the proposed MO-EEFO algorithm continuously performs equivalent to other algorithms in
terms of convergence to the true Pareto front. Additionally, it maintains diversity throughout
the optimization process by yielding a set of solutions that are evenly dispersed across the
Pareto front. To check its effectiveness in real-world scenarios, it is tested against MOGA,
NSGA-II, and MOGSK for service composition optimization in smart agriculture applications.
The simulation observations show that it provides more diversified Pareto optimal solutions,

with a higher standard deviation as well.

In conclusion, this thesis work explores multi-objective service composition optimization in
smart agriculture applications using various EC techniques along with the evolution of a novel

nature-inspired MO-EEFO algorithm to meet real-world optimization challenges.

7.2 Future Work

This thesis focuses on multi-objective service composition in smart agriculture applications

using distinct EC techniques. Future expansions of this work could include:

a) Integration of emerging EC techniques: Future research could explore the application
of emerging nature-inspired algorithms, such as orcha predation algorithm (OPA),
remora optimization algorithm (ROA), Ivy algorithm (IVYA) etc., which may offer
enhanced performance, unique search dynamics, and improved convergence rates for
the optimization of smart agriculture, along with the complexity analysis.

b) Meta-optimization for algorithm enhancement: Future research could apply meta-
optimization techniques such as Bayesian optimization or reinforcement learning to
adjust the parameters of nature-inspired algorithms dynamically.

c) Exploring hybrid algorithms: Future research may involve developing hybrid

optimization algorithms to enhance diversity and improve solution quality.
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d)

g)

h)

Combining with machine learning: The work could be integrated with different machine
learning models for predictive analysis, allowing for more informed decision-making
by forecasting crop yields, pest infestations, or optimal planting times.

Industry collaboration for real-world validation: Future research could involve
collaboration with smart agriculture companies to validate the optimization approaches
in real-world scenarios. Through this collaboration, real-world challenges such as
operational restrictions, data limitations, and environmental unpredictability can be
identified. Feedback from stakeholders will help improve the models and influence
future studies, with an emphasis on the agricultural system’s scalability, real-time
adaptation, and economic viability.

Incorporating Financial factors: Future research could look into incorporating financial
modelling elements as long-term orchard investment planning, delayed profitability,
and borrowing costs. This would enable smarter financial decision-making for
stakeholders in real-world smart agriculture projects.

Incorporating IoT technology: The optimization framework could be enhanced by
integrating various Internet of Things (IoT) sensors, enabling real-time, data-driven
decisions based on soil conditions, crop growth, and weather patterns.

Integration of socio-economic and policy factors: Future studies might incorporate
socio-economic elements such as labor availability, government regulations, and market
demands into the optimization framework. This would allow for service composition
decisions that not only optimize time and cost but also align with local socio-economic

contexts.
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