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ABSTRACT 

Agriculture forms the cornerstone of human existence and serves as the fundamental basis for 

all production. It is the foundation upon which every nation’s economy is built. As populations 

expand, the demand for food production rises correspondingly. This growth, however, is 

accompanied by climate change and a scarcity of natural resources necessary for agricultural 

activities. The agricultural sector is undergoing a transformation through the incorporation of 

Information and Communications Technology (ICT), ushering in a new agricultural era. This 

shift enhances crop yields, refines decision-making related to crop management, minimizes the 

environmental impact of farming practices by lowering chemical consumption, and cuts costs 

related to water, electricity, and fuel consumption. Smart agriculture technologies enable 

farmers to cultivate crops more systematically and accurately predict outcomes. Nearly every 

aspect of farming, from planting to harvesting, benefits from technological advancements. 

Consequently, farmers gain a comprehensive understanding of their land, leading to a more 

logical production process with fewer arbitrary elements. The term “agriculture field” 

encompasses a wide range of services. Meeting the needs of an expanding population using a 

single service is increasingly challenging due to growing complexity. Therefore, it is crucial to 

select services based on user requirements and quality of service (QoS) with similar 

functionality, rather than solely on the functionality of the services. The potential for substantial 

QoS with non-linear impacts on the service composition goal function makes this an NP-hard 

problem, which cannot be resolved using conventional optimization methods. For such intricate 

issues, meta-heuristics approaches offer the best substitute. These can be categorized as bio-

inspired, physical, evolutionary, and swarm intelligence-based approaches. These methods 

provide solutions for both single and multi-objective optimization problems. 

The primary aim of this thesis is to develop an optimized agricultural planning system tailored 

to meet farmer’s needs, offering significant advantages such as remote farm management, 

efficient resource utilization, and streamlined processes, ultimately enhancing farmer’s income. 

The study addresses the optimization of several integrated services in smart agriculture, with 

time and cost as dual objectives that must be minimized. In the first phase of the thesis, multi-

objective service composition optimization is conducted using a straightforward approach that 

assumes a linear relationship between the cost and time objectives. This phase employs a set of 

optimization algorithms—namely, the multi-objective genetic algorithm (MOGA), non-
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dominated sorting genetic algorithm (NSGA-II), and multi-objective gaining-sharing 

knowledge-based algorithm (MOGSK). However, real-world applications often involve 

significant non-linearities that cannot be adequately represented by a linear model. Therefore, 

in the second phase, the same service composition problem is reconsidered, this time 

incorporating a non-linear relationship between the competing objectives. Lagrange’s 

interpolation-based algorithm is used to address these non-linearities, and optimization is 

performed using the MOGA, NSGA-II, and MOGSK algorithms. Agricultural data often 

contains uncertain factors that must be considered, as they can significantly impact outcomes—

a primary challenge for modern farmers. To address this, in the third phase, a fuzzy inference 

system (FIS) is used to assess the impact of these uncertain factors on smart agriculture. In the 

final phase, a novel nature-inspired algorithm—the multi-objective electric eel foraging 

optimization (MO-EEFO) algorithm—is proposed to tackle real-world optimization challenges 

in smart agriculture, as well as in other applications. This thesis aims to provide a customizable 

agricultural plan for farmers, allowing them to prioritize either time or cost optimization based 

on their specific requirements. 
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CHAPTER-1 

INTRODUCTION 

1.1 Chapter Overview 

The QoS-based service composition optimization problem and its application in smart 

agriculture are thoroughly explained in this chapter. Depending on whether the problem is 

single-objective or multi-objective, it focuses on solving these challenges through optimization 

using different evolutionary algorithms that are influenced by nature and biology. The chapter 

also describes the two categories into which multi-objective problems fall: preference-based 

and ideal multi-objective. Scalarization techniques are employed for preference-based 

approaches and Pareto-based techniques are used for ideal solutions to solve these difficulties. 

1.2 Motivation 

By 2100, it is predicted that there will be 11.2 billion people on Earth. Large amounts of food 

are necessary for this group to survive. However, because of the high costs, labor requirements, 

and time required for food production, traditional agriculture will not be able to meet this level 

of demand for food in the future. Also, the wastage of resources is significantly increasing due 

to the lack of knowledge about efficiently utilizing the available resources. Thus, the concept 

of smart agriculture is introduced [1].  

Over the last twenty years, smart agriculture has been continuously studied. Modern IoT 

technology has improved farming practices [2]. Researchers have focused on several 

applications in smart agriculture, such as tracking the food supply chain [3], employing image 

sensors for crop monitoring [4], greenhouse agriculture [5], and open-field agriculture [6]. A 

few control objectives, such as the use of fertilizers and pesticides, have also been put into 

practice [7]. Apart from that, other technologies such as Information and Communication 

Technologies (ICT), unmanned aerial vehicles (UAVs), machine learning (ML), cloud 

computing, and artificial intelligence (AI) techniques have also played a crucial role in 

providing solutions to these critical issues of inadequate chemical application, poor irrigation 

systems, and yield prediction [8]. 
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One way to describe agriculture would be as a set of services used to get the intended result. It 

is now difficult for a single service to satisfy the degree of expectations made by users. This 

leads to service composition (SC) which can be characterized as a collection of basic services. 

New composite services are obtained by combining various atomic services. These services 

could have similar functionality but differ in terms of Quality of service (QoS) attributes [9]. 

Many times, several candidate services make it difficult to 2abell QoS constraints. Thus, the 

task is to identify the most suitable service to ensure the composite service satisfies the user’s 

functional and non-functional requirements [10].  

Solving these complex composite services is difficult as they are non-deterministic polynomial-

time hard (NP-hard) and cannot be resolved in the polynomial time domain. Thus, one solution 

is to apply nature-inspired meta-heuristics algorithms. They are showing immense potential as 

an effective substitute for traditional methods based on mathematical and dynamic 

programming. In reality, conventional approaches (which promise to discover the best solution) 

are frequently only practical for small-scale instances of the problems and may involve a 

significant amount of computational effort due to the great complexity and difficulty of 

optimization problems. On the other hand, metaheuristic-based algorithms may typically find 

better and even optimal solutions in less time when applied to real-life applications [11]-[12]. 

Since various services are combined, one objective cannot purely satisfy the user’s 

requirements, thus, multiple conflicting objectives are formulated as a multi-objective 

optimization problem.  

The research work provides the optimization of various services involved in the field of smart 

agriculture by considering time and cost as multiple conflicting objectives that need to be 

minimized. The novelty of the work lies in the fact that no work in the literature has been 

focussed on service composition optimization (SCO) in smart agriculture. Also, there are 

potential benefits of this research work in the lives of farmers such as remote farm management, 

optimized resource utilization, increased yield production with professional management, and 

optimized processes thereby increasing their income along with a contribution to food security. 

It would be more beneficial to the farmers/landowners who are unavailable on-site due to 

various job commitments. 
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1.3 Introduction 

Among the most important sectors of the global economy is agriculture. It contributes 

significantly to developing economies like India, where it makes up 15% of the country’s GDP. 

According to the figures of World Bank, the global employment share of the agriculture sector 

exceeds 25%. The prominence of the agriculture industry in context of employment is higher 

in emerging economies like India, where over two-thirds of the population depends on 

agriculture as a monetary resource, either directly or indirectly. It is responsible for over 40% 

of employment creation [13]. According to Food and Agriculture Organization (FAO) 

predictions, the world’s population is expected to reach 9.73 billion in 2050, indicating a surge 

in food demand [14].  

 

Figure 1.1: General representation of smart agriculture 
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However, using this structure for smart agriculture is fraught with difficulties. The various 

primary barriers to integrating technology in smart agriculture are shown in Figure 1.2. To 

successfully integrate the new IoT technology and realize the notion of smart agriculture, all 

these obstacles must be minimized. 

 

Figure 1.2: Obstacles in implementing smart agriculture 

Agricultural logistics have been improved by the introduction of other technologies also such 

as Radio Frequency Identification (RFID), Wireless Sensor Networks (WSNs), Arduino UNO, 

Raspberry Pi (all involved in the physical layer of IoT), fog computing, big data, cloud 

computing, and artificial intelligence (all services in the service layer provided for application 

layer) [16]. Figure 1.3 illustrates a few of the applications of IoT in smart agriculture. 

1.3.1 Service Composition 

An IoT service is a decentralized structural unit that can be either atomic or composite. It 

functions as the digital representation of an object’s actions. An atomic service is a self-
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contained, well-defined behavioral unit that cannot be further subdivided into other services 

[17].  

 

Figure 1.3: Applications of IoT in smart agriculture 

On the other hand, a composite service is an advanced entity that combines numerous (atomic 

or composite) services to provide functionality and value. Can therefore readily handle the 

complex requirements of the user. For instance, an air conditioning composite can incorporate 

both a temperature and a humidity sensing service. All concrete/candidate services are 

interchangeable and functionally equivalent to each other [18]. These services can be combined 

and this process is called compositionality which is realized by a composition mechanism. 

Therefore, a things infrastructure, a concept of what a service is, and a choice of composing 

methods are required by an IoT system [19]. By taking into account two functional 

dimensions—control flow and data flow—the service composition method establishes a 
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purposeful connection between services. Data flow describes how data is transferred between 

services whereas control flow describes the sequence in which communications take place [20].  

A workflow, which can be hybrid, control-driven, or data-driven, is a set of distinct processes 

used to realize a computational activity. Tasks, actors, transitions, procedures, thorns, activities, 

and units are other names for phases in a control-driven workflow [18]. These steps can be 

carried out in branching, looping, sequencing, or parallelizing. When data becomes available, 

a data-driven workflow takes action without specifically defining any control flow components. 

Certain steps in a hybrid workflow are data-driven, and others are control-driven [21]. A generic 

workflow is shown in Figure 1.4 [18], which starts with task 1, decides whether to perform task 

2 or task 3 based on branch conditioning, and then starts tasks 4 and 5 concurrently using 

parallel mode.  

 

Figure 1.4: Generic workflow [18] 

Workflows are crucial in systems because they blend services into intricate tasks that automate 

a particular context. For instance, in a smart home, a workflow that regulates a room’s 

temperature in reaction to environmental changes can be automated. In the area of smart 

agriculture, a workflow can be set up concurrently to forecast diseases, assess data from harvest 

sensors, and take necessary action. In smart agriculture, this circumstance leads to the formation 

of the service composition problem. 

In the context of smart agriculture, as a result of increased freedom and knowledge, farmers can 

now have some degree of control over their operations, including selecting crops that will 

produce the highest yields under the existing and anticipated climatic circumstances. The 

population’s expectations have grown as a result of these breakthroughs in the use of artificial 
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intelligence, leading to complex user demands in daily life. Meeting user’s requirements can 

therefore frequently be challenging.  

To satisfy user’s those complex requirements, services are combined which is known as service 

composition. In other words, service composition can be defined as an aggregation of basic 

services. Service composition cannot be defined in a predetermined way. However, a range of 

non-functional attributes, sometimes known as QoS attributes, such as time, cost, availability, 

scalability, and dependability, are used to characterize those services. For instance, one might 

choose the fastest, least-priced service, or even the option that falls somewhere in the middle 

[22]. The QoS attributes are guaranteed by a contract between service providers and users, as 

indicated by the Service Level Agreement (SLA). To ascertain if a composite service can meet 

the SLA, consideration must be given to the 7abelled7es of the user’s requests in atomic 

services [23].  

Four steps are usually involved in creating QoS-based IoT services: plan composition, service 

discovery, QoS-based service selection, and service composition execution. An IoT application 

is generally composed of two stages. First, several action flows are used to combine the current 

classes, each of which contains a collection of atomic services, into a new service class. Second, 

the IoT application’s components are selected from among the top candidate services from these 

classes. Both the data flow rules between candidate services and their order of invocation are 

shown in the composition plan. Following that, the service discovery phase chooses tasks from 

a group of services’with comparable functionality while taking QoS into account. The service 

selection step follows, during which the user selects the required services based on their needs. 

Services are finally composited by considering techniques that use global optimization or local 

selection. Figure 1.5 illustrates an instance of service discovery and service selection while 

considering time and cost as QoS factors [24]. Two services and the three candidate services 

that accompany them have been taken in this specific instance. The goal functions are assumed 

to be time and cost minimization. To achieve service composition, the candidate service with 

the lowest time and cost for both services concurrently was selected during the service selection 

step. 

Any service composition problem’s process can be defined using one of four possible 

architectural patterns: conditional, parallel, loop, and sequence. For every architectural pattern, 

a unique QoS composition rule is established as shown in Table 1.1. For example, the highest 
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response time indicates the response time of a parallel composition consisting of more than one 

service. The total time it takes for all services to respond when they are called sequentially is 

known as the global response time. Each service is called with a probability 𝑝𝑖 in the case of a 

conditional pattern, and the response time is an average depending on these probabilities.  

 

Figure 1.5: An instance of service discovery and service selection [24] 

The response time will be multiplied by the number of loop cycles in a loop structure. A few of 

the QoS attributes have corresponding rules, tabulated in Table 1.1 [25] where 𝑡𝑖 defines the 

response time, 𝑟𝑖 is the reliability, 𝑎𝑖 specifies the availability and 𝑐𝑖 denotes the cost of 𝑖𝑡ℎ 
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service. The other factor 𝑘 defines the number of loop cycles and 𝑝𝑖 is the probability with 

which each service is called.  

Table 1.1: QoS composition operators [25] 

QoS 

attribute 

Sequence (𝒎 

serial 

services) 

Parallel (𝒏 

parallel 

services) 

Loop Condition 

Response 

time 

∑ 𝑡𝑖
𝑚

𝑖=1
 

𝑚𝑎𝑥  {𝑡𝑖} 𝑘. 𝑡 
∑ 𝑝𝑖

𝑚

𝑖=1
. 𝑡𝑖  

Reliability 
∏ 𝑟𝑖

𝑚

𝑖=1
 ∏ 𝑟𝑖

𝑛

𝑖=1
 

𝑟𝑘 
∑ 𝑝𝑖

𝑛

𝑖=1
. 𝑟𝑖 

Availability 
∏ 𝑎𝑖

𝑚

𝑖=1
 ∏ 𝑎𝑖

𝑛

𝑖=1
 

𝑎𝑘 
∑ 𝑝𝑖

𝑛

𝑖=1
. 𝑎𝑖  

Cost 
∑ 𝑐𝑖

𝑚

𝑖=1
 ∑ 𝑐𝑖

𝑛

𝑖=1
 

𝑘. 𝑐 
∑ 𝑝𝑖

𝑛

𝑖=1
. 𝑐𝑖  

It is imperative to distinguish between an atomic service and a candidate service. It is 

hypothesized that for every atomic service, multiple candidate services exist. For example, 

separate reservation services might be utilized for the same flight. Different QoS attributes are 

used to characterize each atomic service. Thus, it’s critical to understand which candidate 

service is chosen to apply an atomic service. This optimization problem is thus, a combinatorial 

multi-objective optimization problem. Locating the optimal service composition is an NP-hard 

problem. This indicates that, except for the really basic situations (a small number of atomic 

and candidate services), an exhaustive search method is not feasible. Hence, evolutionary 

computational (EC) approaches or meta-heuristic algorithms are used to provide optimal or 

near-optimal solutions. 

1.3.2 Multi-objective Optimization Problem 

The service composition problem integrates several services acknowledging the user’s 

preferences and different QoS criteria. A single objective is unable to satisfy the needs of 

several users at once due to the numerous services involved and the number of requests they 

have. Thus, it is possible to characterize this problem as a multi-objective optimization 



10 
 

problem. This type of problem aims to find a set of optimal solutions that further provide a 

trade-off among multiple objectives. A multi-objective problem can be either a maximization 

or minimization problem, depending upon the user’s requirement. 

Commonly, a multi-objective problem consists of many objectives and several constraints that 

can be formulated as in equation 1.1 which is as follows:  

 𝑓(𝑥) = ((𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥) )
𝑇                                                                                        (1.1)                                                                               

where 𝑚 = 1, 2, 3, … ,𝑀  

 subject to 

ℎ𝑙(𝑥) ≤ 0,            𝑙 = 1, 2, 3, 𝑑𝑒𝑣𝑒𝑙𝑜𝑝, L                                                                                               (1.2)                                                                                           

𝑔𝑘(𝑥) = 0,          𝑘 = 1, 2, 3, 𝑑𝑒𝑣𝑒𝑙𝑜𝑝, 𝐾                                                                                            (1.3)                                                                                          

Equations 1.2 and 1.3 define the inequality and equality constraints, respectively. 

Here, 𝑓𝑚(𝑥) is the 𝑚𝑡ℎ objective function 

𝑥  is the decision variable representing the solution 

𝑘 are the equality constraints 

𝑙 are the inequality constraints  

There are two categories of multi-objective problems: Preference-based and Ideal. While 

Pareto-based approaches are frequently utilized to solve ideal problems, scalarization-based 

approaches are typically used to solve preference-based problems. Figures 1.6 and 1.7 show the 

preference-based and ideal multi-objectives, respectively [106]. 

1.3.2.1 Scalarization-based Approach 

A technique known as scalarization can be used to reduce a multi-objective problem to a single-

objective problem. The global evaluation function, often known as the “fitness”, “utility”, or 

“objective function”, is a crucial component of this method. This function assigns a score to 

every solution, enabling the determination of which solution is superior to the others. Fitness 

functions can be organized into two categories: Weighted sum-based and fraction-based [25]. 
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Figure 1.6: Preference-based multi-objective [106] 

 

Figure 1.7: Ideal multi-objective [106] 
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For instance, in fraction-based, the fitness function can be outlined as in equation 1.4 given 

below 

𝑓(𝑥) =  
𝑤1∗𝐶𝑜𝑠𝑡 (𝑥)

𝑤2∗ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥)+ 𝑤3∗𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥)
                                                                            (1.4)                                                             

In weighted sum, the fitness function can be outlined as given in equation 1.5 

𝑓(𝑥) =  𝑤1 ∗ 𝐶𝑜𝑠𝑡 (𝑥) + 𝑤2 ∗ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥) + 𝑤3 ∗  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥)                                 (1.5)         

In both equations 1.4 and 1.5,  𝑤𝑖 defines weights associated with each attribute and  𝑖 = {1, 2, 3}. 

Scalarization techniques establish a relation between possible solutions, calculating the convex 

fusion of objective functions. Scalarization-based approaches have a drawback in the form of 

the aggregation function, as weighted sums do not guarantee user priorities and there is no 

standard way for calculating weights. Additionally, it lacks a criterion to verify non-dominance 

in the final solution produced by the single-objective algorithm. The weighted sum approach 

has several drawbacks, including subjectivity, Pareto Front convexity [26], differences between 

objective function shapes, and the number of solutions. Weighted sum aggregation is only 

appropriate for convex problems, while Pareto-based approaches can approximate the Pareto 

Front for both non-convex and convex problems. Additionally, weighted sum aggregation is 

inappropriate for functions with different shapes, and scalarization approaches returns only one 

solution per run. Ultimately, the diversity of solutions is lost when using a scalarization-based 

method.  

1.3.2.2 Pareto-based Approach 

Multiple objective functions are simultaneously optimized in the majority of real-world issues. 

These roles typically include competing and in conflict goals. When there are conflicting 

objective functions in multi-objective optimization, there exist several optimal solutions rather 

than just one. In this case, no approach can be deemed superior to any other in terms of 

achieving every goal. Pareto-optimal solutions are those that are the best available. Let us 

suppose a multi-objective optimization problem has two solutions, 𝑥1and, 𝑥2which can either 

dominate or not. In minimization problem, a solution 𝑥1 dominates 𝑥2 if certain conditions are 

met. Non-dominated solutions within the search space are called Pareto-optimal and form the 
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Pareto-optimal set or Pareto front. These solutions cannot be improved without worsening 

another objective. Thus, the set of viable non-dominated solutions is known as the Pareto-

optimal set [27].  

 

Figure 1.8: An instance of the Pareto front obtained in a multi-objective optimization problem [28] 

As an illustration, Figure 1.8 displays candidates in a two-dimensional objective space while 

taking time and cost into account as QoS attributes [28]. The possibilities A, B, and C that are 

clustered together in the set stand for the non-dominated, or Pareto front, trade-off solutions 

[28]. 

1.4 Optimization using Meta-heuristic Algorithms 

The modern age of information technology is causing numerous optimization problems in fields 

like bioinformatics, computer vision, big data analytics, and IoT. However, most problems are 

NP-hard and cannot be handled in a polynomial time domain. Therefore, precise mathematical 

methods can only be used in small-scale instances. Instead of losing up, the researchers 

considered using potential approximation techniques that could identify a workable solution in 

the allotted amount of time. Based on the randomization method, these algorithms can be 
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classified into heuristics and meta-heuristics. Heuristic algorithms and meta-heuristics differ 

significantly in that the former is more dependent on the specific task at hand. These algorithms 

are limited to solving certain particular problems. By contrast, meta-heuristic algorithms apply 

to nearly all optimization problems since they employ the so-called “black box” optimizer [29]. 

A meta-heuristic is a process for locating, creating, or choosing an imperfect search algorithm 

to offer a sufficiently excellent solution to an optimization problem, especially when the 

knowledge is insufficient. These algorithms ensure optimal results since they explore the whole 

search space through successive generations of advancement. They offer intriguing benefits 

over standard methods, such as locating good solutions with less computing work and 

progressing swiftly toward extremely good solutions. As a result, they provide an incredibly 

effective means of handling complex, large-scale problems [30]. On the whole, meta-heuristics 

can be viewed as a category of cognitive self-learning algorithms that imitate intelligent 

processes and behaviors found in thinking, sociology, nature, and other fields to find close to 

optimal solutions to challenging optimization problems. These nature-inspired meta-heuristic 

algorithms can be classified into various groups naming evolutionary-based algorithms, bio-

inspired algorithms, swarm intelligence-based algorithms, physics-based algorithms human-

inspired algorithms, and miscellaneous algorithms, and are illustrated in Figure 1.9 [31]. 

a) Evolutionary Algorithms – The ideas of Darwin’s theory of natural selection, which is 

predicated on the survival of the fittest in a particular environment, serve as the basis 

for evolution-based algorithms. These algorithms begin with an initial collection of 

populations, and as a result, a search process is carried out across a number of iterations 

until the finest practical answer is found. Examples are genetic algorithm (GA) [32], 

granular agent algorithm [33], bio-geography-based algorithm [34] etc. 

b) Bio-inspired Algorithms – These algorithms are focused on distributed, decentralized, 

self-organizing, and flexible intelligence observed in biological systems. Examples are 

bacteria foraging optimization [35], artificial immune system optimization [36], 

artificial humming bird [37] etc. 

c) Swarm intelligence-based Algorithms –Social insect or animal behavior are the sources 

of inspiration for swarm intelligence approaches. In it, each person possesses  

its behavior and intelligence, but the combination of  

individuals are given greater authority to tackle challenging issues. Examples are fish 
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swarm optimization [38], artificial bee colony optimization [39], dragonfly optimization 

[40] etc. 

d) Physics-based Algorithms – These algorithms are based on physics and motivated by 

the laws regulating a natural phenomenon such as the law of gravity, thermodynamics, 

electromagnetism etc. Examples are simulated annealing [41], sine cosine algorithm 

[42], water cycle algorithm [43] etc. 

e) Human-inspired Algorithms – These algorithms take inspiration from humans. Every 

person engages in non-physical activities like mind activities and physical activities that 

impact his performance which forms the basis of these algorithms. Examples are 

teaching-learning optimization [44], brain storm optimization [45], league 

championship optimization [46] etc. 

f) Miscellaneous Algorithms – Those algorithms which cannot be classified in a particular 

group are put together in miscellaneous algorithms. For example, queuing search 

optimization [47], chemical reaction-inspired optimization [48] etc. 

 

Figure 1.9: Classification of nature-inspired meta-heuristic algorithms [31] 
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1.5  Research Gaps 

The following research gaps have been found after a careful examination of the literature. 

a) Lack of research on service composition optimization in smart agriculture, despite 

its application in other fields. 

b) The concept of ideal multi-objective optimization is barely used for service 

composition optimization problems in distinct applications. 

 

1.6  Proposed IoT-based Framework 

To enforce the service composition optimization in smart agriculture, Figure 1.10 illustrates the 

proposed IoT-based framework for the same. The sensor, network, cloud, service composition, 

and application (user interface) layers are its five layers.  

 

Figure 1.10: Proposed IoT-based framework for service composition optimization  

a) Sensor Layer: This layer is in charge of gathering information from a variety of IoT sensors, 

including cameras, motion sensors, temperature sensors, and moisture sensors in the soil. 
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b) Network Layer: This layer establishes a communication channel between the servers and the 

data gathered from sensors. For instance, Wi-Fi (Wireless Fidelity), Bluetooth, Zigbee, LoRa 

(Long Range), and LoW-PAN (Low-power Wireless Personal Area Network). 

c) Cloud Layer: This layer provides a range of sub-services across several private, public, or 

hybrid clouds and acts as virtual storage. There are three options: Platform as a Service (PaaS), 

Infrastructure as a Service (IaaS), and Software as a Service (SaaS). In our study, a sequential 

workflow for fourteen services relevant to apple orchard establishment is considered which can 

be taken from the cloud layer as it stores the data. 

d) Service Composition Layer: The fourth and most crucial layer of the framework is the service 

composition layer. To satisfy the user’s complex requirements, it is divided into multiple sub-

services. First, cloud services are identified, next the necessary services are chosen among the 

available cloud options, and lastly, services are composed. To optimize the composite services 

according to user demands, this layer is linked with optimization algorithms in our work.  

e) Application Layer: The application layer is necessary to provide end users with access To the 

services that were developed in the preceding step.  

Thus, the research work in this thesis explores the service composition layer in smart 

agriculture, by first analyzing data, then combining relevant services, and optimizing them 

using EC techniques to get the optimal composition plan for its users. 

1.7 Objectives of Research Work 

Optimization of service composition has been the subject of extensive investigation. However, 

its application in smart agriculture remains unexplored. Therefore, this work employs distinct 

meta-heuristic approaches to achieve optimization in this domain. Motivated by this gap, the 

following objectives have been framed for this research. 

a) Linear multi-objective service composition optimization in smart agriculture using EC 

techniques such as  

➢     Multi-objective Genetic algorithm (MOGA) 

➢     Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
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➢     Multi-objective Gaining Sharing Knowledge based algorithm (MOGSK) 

b) Non-linear multi-objective service composition optimization in smart agriculture using 

EC techniques such as  

➢     Multi-objective Genetic algorithm (MOGA) 

➢     Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

➢     Multi-objective Gaining Sharing Knowledge based algorithm (MOGSK) 

c) Impact of uncertainties on both linear and non-linear service composition optimization 

in smart agriculture using fuzzy inference system (FIS). 

d) To develop a novel Multi-objective Electric Eel Foraging Optimization (MO-EEFO) 

algorithm for real-world optimization problems. 

1.8 Organization of Thesis 

The thesis is classified into seven chapters. The detailed description is given below. 

Chapter 1 describes the service composition problem and how it can be solved using various 

meta-heuristic algorithms. 

Chapter 2 covers insights into the work done in the field of smart agriculture. It also includes 

various single and multi-objective optimizations done in smart agriculture using distinct meta-

heuristic algorithms. 

Chapter 3 discusses the first objective of the thesis i.e. multi-objective optimization of 

composited services by establishing a linear relationship between the two objectives by using 

MOGA, NSGA-II, and MOGSK algorithms. 

Chapter 4 addresses the second objective i.e. multi-objective optimization of composited 

services by establishing a non-linear relationship between the two objectives by using MOGA, 

NSGA-II, and MOGSK algorithms. 

Chapter 5 deals with analyzing the impact of uncertainties on both linear and non-linear multi-

objective service composition optimization by using a FIS. 
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Chapter 6 proposed a novel nature-inspired MO-EEFO algorithm for solving real-world 

applications. 

Chapter 7 concludes the thesis along with the clarification of future work.  

1.9 Summary 

This chapter provides an extensive understanding of the service composition problem and how 

it relates to real-world smart agricultural challenges. It illustrates the successful implementation 

of several well-established EC approaches that are available to address these challenges. 

Various methods for tackling multi-objective optimization problems, such as Pareto and 

scalarization-based methods, are discussed as the problem can be formulated as one. 

Furthermore, a detailed discussion of the identified research gaps and proposed IoT-based 

framework along with the dataset as well as the study’s objectives is provided to conclude the 

chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Chapter Overview 

QoS-based service composition optimization plays a crucial role in satisfying the user’s 

complex needs when multiple services with comparable capabilities exist but have distinct QoS 

metrics. Given that the problem is NP-hard, meta-heuristics are frequently helpful in identifying 

the optimal solution while adhering to the imposed global constraints, which satisfies the 

complicated needs of the user. Various researchers have focussed on this idea in a variety of 

domains using IoT, artificial neural networks (ANNs), cloud computing, and ML. Applications 

covered in the literature include traveling salesman problems, smart healthcare, supply chain 

management, and many more. 

This chapter initially covers all the reviews and surveys done in the field of smart agriculture, 

followed by diversified optimization methods used for handling various agricultural-related 

issues. Eventually, a literature table is provided that compares existing literature on service 

composition with the research gap found for the study of this thesis. 

2.2 Review Papers on QoS-based Optimization in Smart Agriculture  

P.P. Ray et al. [49] have provided a review of the various IoT-based agricultural applications 

that offer guidance for further agricultural research in agriculture. They have given a thorough 

overview of the various communication technologies used in agriculture, including Bluetooth, 

LoRa, Arduino modules, WiMax (Worldwide Interoperability for Microwave Access), and 

802.11 (Wi-fi). The kinds of cloud services offered by a few IoT-based cloud platforms, as well 

as their costs, times, data visualization capabilities, and real-time data collection, were also 

compared. In addition, the sensors, cloud support, and application types of the most popular 

IoT sensory systems were compared. The authors came to several important conclusions about 

topics for further study, including fish farming, data analytics cost optimization, and smart 

irrigation systems. However, the comprehensive literature review of IoT in advanced 

agriculture was not the main focus of this paper. 
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After conducting a thorough literature study, A. Khanna et al. [50] have characterized IoT as an 

actual paradigm shift in precision agriculture. It has described every communication technology 

that might be utilized with the IoT as well as the different IoT applications that were especially 

related to precision farming. The barriers in this area are described as data privacy, 

interoperability, scalability, virtualization, reliability, mobility, and availability. They have also 

thought that the main concerns for further study should be the right deployment of sensors, 

service composition, cost, and discovery. 

Another comprehensive evaluation of IoT applications in smart agriculture can be found in Wen 

Tao et al. [51]. The challenges encountered along with the usage of IoT sensors and other 

communication methods in agriculture are analyzed in-depth. The authors have summarized 

that three main issues that need to be addressed are cost, data reliability, and IoT device 

standardization. 

A review, by A. Srivastava et al. [52], has explored how DevelopoT technology develops 

helping farmers overcome many of their challenges in the agricultural sector. However, it also 

explains that to effectively apply technology to improve agriculture, problems like equipment 

cost, data security, IoT node power savings, fault tolerance, and data privacy must be resolved. 

V.P. Kour et al. [53] have given a summary on the expansion of the growth of IoT in smart 

agriculture and conclude that building solutions that are both power – and cost – optimized 

presents substantial problems that need to be overcome. 

An overview of the application and effects of IoT based on cloud in climate-smart agriculture 

is provided by E.G. Symeonaki et al. [54]. A few applications are described in detail, such as 

cloud agro-systems and cloud services based on the PDCA (plando-check-act) cycle of 

agriculture. The authors discovered that although these technologies have many benefits, there 

is still a lack of integration in the experimental phase. The main issues that need to be resolved 

include farmer training centers, inexpensive network coverage, user-friendliness, and 

appropriate standardization for IoT devices. 

B. Sinha et al. [55] have provided a review on how to work with IoT to elevate productivity and 

optimization of costs in smart agriculture. Precision farming, livestock monitoring, crop 

management, irrigation management, etc. are the important aspects of IoT in smart agriculture. 

They have also provided a comprehensive description of sensors like temperature sensors, soil 
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moisture sensors, potential of hydrogen (pH) sensors, ultraviolet (UV) sensors, etc. The authors 

concluded their work by considering security, scalability, dependability, and resource 

optimization as the biggest issues that need to be tackled in the future. 

In their review, Saiz-Rubio et al. [56] have discussed how data-driven management, sometimes 

known as “Agriculture 5.0,” might be applied to sustainable agriculture to save costs while 

protecting the environment. The authors have talked about the idea of “Agriculture 5.0,” which 

is essentially the application of robotics and artificial intelligence combined with unmanned 

machinery and autonomous decision-making systems. 

A thorough analysis of bio-inspired algorithms for agriculture has been given by C. Maraveas 

et al. [57], who divided them into four categories: multi-objective, evolutionary, ecology, and 

swarm intelligence-based techniques. The finest algorithms for agricultural yield, land 

planning, pest management, and fertilizer optimization, according to their description, are GA, 

ant colony optimization (ACO), firefly, and cuckoo algorithms. Particle swarm optimization 

(PSO) is the most appropriate algorithm for predicting irrigation, though. It has also been noted 

that compared to single-objective approaches, multi-objective approaches yield a greater 

number of nearly optimum solutions. The paper concludes that while hybrid strategies have 

received limited attention, bio-inspired artificial neural networks outperform other algorithms 

in the field. No algorithm can perform every type of function.  

Using meta-heuristics, Masdari et al. [58] have presented a thorough review of the literature on 

QoS-based service composition. To tackle the web service creation challenge, they categorized 

the literature into seventeen different meta-heuristics and compared each one with certain meta-

heuristic qualities. The authors conclude that, after PSO, GA is the most frequently utilized 

technique for solving service composition problems. The majority of the evaluation was 

covered by fitness value parameters, then time-related parameters. Numerous articles use the 

QWS dataset, followed by random datasets for web service composition.  

As an application of AI in agriculture, M. Pathan et al. [59] have covered precision agriculture, 

crop phenotyping, and disease identification utilizing deep learning, ML, ANNs, WSNs, IoT, 

fuzzy logic, and GA. They concluded that it can produce high productivity at low labor and cost 

costs and lower environmental risk. 
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S. Qazi et al. have contributed to an overview of the use of AI and IoT technology in smart 

agriculture, accompanied by a few predictions for subsequent generations [60]. They give 

instances of a few smart irrigation methods based on IoT, such as the usage of neural networks, 

fuzzy logic (FL), UAVs, and soil-based methods like drip irrigation and aeroponics. The authors 

also discuss pest-weed identification, phenotyping, and plant disease prognosis using deep 

learning. The authors conclude by listing a few challenges that still need to be met, such as the 

international consortium for the development of coherent wireless sensing systems, 

cyberattacks, and the ever-increasing cost of technology. 

A. De et al. [61] have emphasized in their study of fuzzy implementations in the agri-supply 

chain how important it is to focus on the entire agri-supply chain as opposed to just enhancing 

agri-production. The eight primary challenges that are recognized include land appropriateness, 

irrigation, production practices, transportation, insufficient cold storage, drought management, 

waste management, environmental concerns, and sustainability. It is mentioned that the 

problems that have not yet gotten enough attention are waste management, transportation, 

inadequate cold storage, and drought management. Furthermore, real-time applications require 

the study of geographic information systems (GIS) and big data. 

F. Valdez et al. [62] have given a survey on the use of FL with nature-inspired approaches to 

solving difficult optimization issues. This article covers the three most crucial methods: 

gravitational search algorithm (GSA), PSO, and ACO. According to the authors, using 

optimization techniques in conjunction with FL yielded better results than using optimization 

algorithms alone. 

Smart farm management applications of ML are demonstrated by A. Sharma et al. [63]. They 

have clarified that while regression techniques are better for predicting the weather, crop 

production, and soil qualities, deep learning algorithms including decision trees, random 

forests, convolutional neural networks, and support vector machines are good for identifying 

plant diseases. Drones, robotics, intelligent harvesting, and irrigation systems are all essential 

for reducing the need for human labor. To make this industry more sustainable, they have 

mentioned chatbots based on natural language processing (NLP) and hybrid algorithms in their 

paper analysis conclusion. 

The power and promise of computer technologies employed in agriculture, namely ML and IoT 

data interpretation, have been shown by R. Akhter et al. [64]. A prognostic model for the Scab 
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apple disease has also been suggested for apple farms in the valley of Kashmir region. They 

asked farmers about the newest agricultural technologies and how they affected yield output to 

further elucidate the survey. 

A survey of big data applications in smart farming is given by S. Wolfert et al. [65]. They 

claimed that its reach is impacting every link in the food supply chain and offering farming 

predictions. On top of that, the significant growth in IoT gadgets is producing a large amount 

of diverse data that can be captured, examined, and utilized in decision-making processes 

through the implementation of big data. The authors draw a continuum between two extreme 

scenarios for the future of smart farming: closed proprietary systems and open collaborative 

systems. Some other topics, like security, openness of platforms, privacy of data, and intelligent 

analytics, have also been covered. 

2.3 QoS-based Optimization in Smart Agriculture 

Ocampo et al. [66] have provided a study that uses GA to reduce the energy cost of two motor 

pumps in a smart farm, with the requirement that there be enough energy available for both 

pumps. Moreover, restrictions were implemented. Each solution is viewed as a set of weights 

that need to be multiplied by the sensor readings that correspond to it. Three mutation operators 

(Uniform, adaptive feasibility, gaussian), six crossover operators (Scattered, single point, two-

point, intermediate, heuristic, and arithmetic), tournament selection, crossover probability = 

50%, and population size variation between 50 and 500 with a spacing of ten are all included. 

After testing several settings, the authors conclude that several simulations are needed to find 

the optimal solution. The paper’s conclusion is ambiguous because neither trade-off points nor 

a specific optimal solution have been taken into account. 

Hakli et al. [67] have presented a novel GA-based method for autonomous land partitioning. 

The goal function is defined as the product of three competing parameters: the location of 

cadastral parcels, the degree of cadastral parcels, and the fixed facilities multiplied by two. The 

block’s unique number is utilized to start the random population. The simulation operators in 

the suggested model—population size = 20, number of generations = 50, roulette wheel 

selection method, single point crossover, swapping mutation, mutation probability = 0.1, and 

crossover probability = 0.8—are applied to a completed project of Alanozu by the authors. A 

comparison is made with another study in which the model took 4.8 hours to optimize a 3-
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hectare block with six parcels, whereas the suggested technique takes just eight hours to 

optimize a 109-hectare block with eighteen blocks and thirty-three parcels. The authors 

demonstrate their accomplishment by contrasting the target function results with the identical 

land portioning carried out by the designer. They discovered that the suggested Automated land 

portioning genetic algorithm (ALP-GA) is significantly better. 

Roy et al. [68] have presented a design for terrace gardening and outdoor spaces that uses GA 

to forecast rainfall based on actual data from Kolkata, West Bengal, India. If rainfall is not 

expected, a system based on sensors in terrace gardening determines whether soil moisture is 

below a predetermined point. If so, an Arduino UNO relay module and global system for mobile 

communications (GSM) module receive the signal, which activates the water pump until the 

soil sensor’s threshold value is reached. In outdoor regions, the moisture sensor’s signal is 

transmitted to a mobile device via an ESP8266 Wi-Fi module, which directs the UAV to 

disperse water where it is desired. Although the roulette wheel is selected, no information 

regarding crossover and mutation is given. 

A GA-based UAV path planning method is proposed by Shivgan et al.  [69] to minimize energy 

consumption by limiting the number of turns while covering a region. They run the experiment 

with waypoints = 10, 25, 50, and 100. The parameters are swapping mutation, two-point 

crossover, and tournament selection. The authors compare the optimal solutions with a greedy 

technique to assess the outcomes. According to the authors, the suggested GA uses two to five 

times less energy than the greedy method. 

Through the optimization of the path coverage of 40 sensor nodes connected to greenhouses 

using the hop-to-hop delivery technique, Gaofeng [70] have illustrated the use of evolutionary 

algorithms for cost optimization. Thirty iterations in all were conducted, with the twentieth 

iteration yielding the best value of 3838 for the optimal path determination. 

Use of meta-heuristics along with artificial intelligence like machine learning, deep learning is 

also taking smart agriculture to the next level. 

Acharjya et al. [71] have presented a model for crop identification based on regression, the K-

nearest neighbor (KNN) method, real coded genetic algorithm (RCGA), and hybridization of 

fuzzy rough sets. Using a fuzzy real set, redundant attributes are eliminated in the first step, 

after which the data is split into training, testing, and validation sections. Regression, KNN, and 
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RCGA are used in the analysis of training data. Six combinations are possible for this: 

Tournament with Laplace (TSLX), Roulette with Laplace (RWLX), Tournament with Simple 

(TSSX), Roulette with Simple (RWSX), Roulette with flat (RWFX), and Tournament with flat 

(TSFX). These combinations can be made using simple crossover, flat crossover, Laplace 

crossover, roulette wheel selection, and tournament selection. Using data from Tamil Nadu’s 

Tiruvannamalai district’s Krishi Vigyan Kendra, all of these combinations are compared for 

success rate, accuracy, and execution time with the goal function being the lowest mean squared 

error. The optimal combination among them is found to be fuzzy rough set roulette wheel 

selection with Laplace crossover which can be abbreviated as FRRWLX. For a variety of crops 

grown in the Tiruvannamalai district, the authors also compare their findings with five other 

methodologies and a rough set real coded based genetic algorithm with roulette wheel selection 

and Laplace crossover (RSRWLC). The conclusion of the paper states that the FRRWLX 

technique is the best of all of the others. 

R.I. Mukhamediev et. al [72] have developnvestigated the use of flight planning for 

heterogeneous UAVs in monitoring and agrotechnical measure implementation to address 

coverage challenges. For multi-heterogeneous UAV coverage path planning, an approach based 

on GA called multi-heterogeneous UAVs coverage path planning with moving ground platform 

(mhCPPmp) is suggested. It offers flyby calculations, optimal UAVs subset selection, and a 

10% cost savings over algorithms that do not take into account heterogeneous UAVs. 

Farzad Kiani et. al [73] have suggested two evolutionary computational algorithms: Expanded 

Gray Wolf Optimization (Ex-GWO) and Incremental Gray Wolf Optimization (I-GWO) for 3D 

robot path planning. With a 55.56% success rate utilizing the Ex-GWO algorithm, the suggested 

methods effectively locate collision-free pathways for robots in large-scale farmlands while 

minimizing resource consumption and process costs. 

For IoT-based smart agriculture applications, S. P. Singh et al. [74] have suggested a novel 

fitness function termed service cost that takes into account localization rate, lifetime, coverage 

rate, energy consumption, and delays utilizing IoT-based wireless sensor networks. When the 

results of the proposed extended differential evolution (DE) algorithm are compared to those of 

the whale optimization algorithm (WOA), PSO, GA, and firefly algorithm (FFA), it is 

discovered that the proposed algorithm produces better results. 



27 
 

H. Babazadeh et. al [75] have focused on maximizing agriculture output and water productivity 

in arid and semi-arid regions. They employ a simulated annealing method (SA) and MOGA 

based on experimental data from two conductive agricultural seasons in 2010 and 2011. The 

results demonstrate that MOGA is more capable of optimizing grain yield and water 

productivity at the same time. 

To optimize the benefit-cost ratio and output energy for watermelon growing in Iran while 

limiting greenhouse gas emissions, S. Shamshirband et al. [76] employed MOGA. The findings 

indicate a simultaneous average drop of 33% in greenhouse gas emissions and 28% in energy 

intake. 

Using data for the Tamil Nadu region of Coimbatore, N. Sivakumar et al. [77] have presented 

a model for minimizing the use and cost of fertilizers by utilizing the FFA. To ensure that crops 

meet the NPK (nitrogen, phosphorus, and potassium) requirement, they have applied two 

different types of fertilizers—Complex (STD-10 and STD-3) and Simple (Urea and SSP)—to 

eleven distinct regional crops. 

In the Coimbatore, Tamil Nadu, area, N. Thilagavathi et al. [78] have worked on the optimized 

use of agricultural land utilizing social spider algorithm (SSA), ACO, and LINGO global server. 

They have taken into account that the goal function is to cultivate the right crops and crop 

combinations to minimize the need for water and optimize overall returns, or profit. Four 

situations are chosen. Every major crop (sugarcane, maize, cholam, three varieties of gingelly, 

paddy, cotton, and groundnut) in Scenarios 1 and 2 has a small – to medium-sized land area 

(twenty thousand to forty thousand sq. m) and a medium-sized land area (forty thousand to one 

lakh sq. m). 

Bahram Saeidian et al. [79] have proposed an imperialist competitive algorithm (ICA) to 

maximize overall income for all lands by optimizing water allocation at the farm level utilizing 

temporal agriculture data. Compared to other algorithms such as PSO, bees algorithm (BA), 

and GA, the proposed algorithm was found to provide superior income. 

Another smart agriculture system based on IoT, created by G. Sushanth et al. [80], makes 

decisions about plant watering based on temperature, moisture, and humidity readings. 

Moreover, a motion detector sensor employs an Arduino board to monitor animal activity in the 
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field. The farmer receives updates via short message service (SMS) via Wi-Fi, third generation 

(3G), and fourth generation (4G). This work lacks the use of any optimization technique. 

A wireless sensor-based system for crop irrigation has been proposed by J. Muangprathub et al. 

[81]. The three main components of this framework are mobile applications, web-based 

applications, and hardware. A hardware module is used to collect data from soil moisture 

sensors. A web-based application is then developed to modify the data obtained using data 

mining, and a mobile app is used to water the field manually or automatically. The actual 

experiment used vegetables grown at home and lime as the crops to be assessed. It was 

conducted in three different villages in the Makhamtia region of Thailand. The study showed 

that 72–81% and 29–32 degrees, respectively, are the ideal temperatures for producing a decent 

crop of homegrown veggies and limes, respectively. However, no concept of optimization 

was used.  

A SmartFarmNet platform that is based on the IoT has been presented by Jayaraman et al. [82] 

for automated data collection from gadgets such as mobile phones, cameras, weather stations, 

and WSNs. This data is then correlated to verify crop performance and forecasts for any farm. 

The data has been stored in the cloud for later processing and outputs. 

A hybrid model of machine learning incorporating a Butterfly optimization algorithm (BOA) 

with IoT has been presented by A. Gupta et al. [83] for crop yield optimization. The study has 

been broken down into three stages by the authors: pre-processing, feature selection (using the 

Variance Inflation Factor algorithm and correlation-based feature selection), and classification. 

A dual-layer model for classification is demonstrated: an extreme learning machine (ELM) 

method for crop yield prediction, and an adaptive K-nearest centroid neighbor classifier 

(aKNCN) model for estimating soil quality and subsequently classifying them into various 

classes. Metrics such as Mean Absolute Percent Error (MAPE), Mean Squared Logarithmic 

Error (MSLE), Accuracy, Mean Squared Error (MSE), Median Absolute Error (MedAE), EVS 

(Explained Variance Score), Root Mean Square Error (RMSE), Model Evaluation metric 

(MAE), and their contrast analysis with aKNC-GB (adaptive K-nearest centroid neighbor 

classifier – Gradient boost), aKNCN-ELM-BOA, aKNC-ANN, aKNC-RF (adaptive K-nearest 

centroid neighbor classifier – Random forest), aKNCN-ELM, and aKNC-SVM (adaptive K-

nearest centroid neighbor classifier – Support vector machine) are taken into account when 

evaluating performance. The suggested approach, according to the authors, outperforms the 



29 
 

others in every comparison of metrics. Nevertheless, its complexity, requirement for constant 

internet access, and vast training data set are its drawbacks. 

2.4 Dealing Uncertainties in Smart Agriculture  

Fuzzy bee colony optimization (FBCO), as developed by O. Castillo [84], is a widespread type-

II fuzzy logic technique for adapting dynamic parameters of the Bee colony optimization (BCO) 

method for the optimum performance of water tank controller and mathematical functions. Nine 

fuzzy inference rules for FBCO have been taken into consideration for the Mamdani fuzzy 

system with a trapezoidal membership function. The two input variables are 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, and 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, and the two output variables are 𝑎𝑙𝑝ℎ𝑎 (𝛼) and 𝑏𝑒𝑡𝑎  (𝛽), which have respective 

ranges of 0–1 and 2–5. Level (ℎ𝑖𝑔ℎ, 𝑜𝑘𝑎𝑦, 𝑙𝑜𝑤) and rate (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) are the 

input variables for the water tank controller in case of the primary benchmark problem, while 

the output variable is a valve with five membership functions of the triangle type 

(𝑜𝑝𝑒𝑛𝑓𝑎𝑠𝑡, 𝑜𝑝𝑒𝑛𝑠𝑙𝑜𝑤, 𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒, 𝑐𝑙𝑜𝑠𝑒𝑠𝑙𝑜𝑤, 𝑐𝑙𝑜𝑠𝑒𝑓𝑎𝑠𝑡). Then, fifteen experiments have 

been conducted for each of the ten mathematical functions. The Type-I fuzzy logic controller 

(T1FLC), original BCO, and an Interval Type-II fuzzy logic controller (IT2FLC) were 

compared with FBCO. The findings highlighted that FBCO executes better than the others in 

relation to convergence rate, and stability. 

Drawing from the plant’s innate defense mechanism, C. Caraveo et al. [85] have created a 

modified predatory pray optimization approach that uses Type-II fuzzy logic to preserve 

balance. By dynamically altering the variables, the autonomous robot’s travel path has been 

modified to reduce errors. The Mamdani kind of fuzzy controller has been used when the input 

variables are angular velocity and linear velocity, and the output variables are left and right 

torques. Together with nine fuzzy inference rules, two different membership function types are 

used: trapezoidal for positive and negative terms and triangular for zero terms. By contrasting 

it with FBCO, its viability has been examined. Based on statistical analyses, the author’s 

optimization approach and fuzzy logic system (FLS) have significantly improved performance 

and stability. 

M. Guerrero et al. [86] created a ”uzzy’control system that would continuously change the 

parameters—the probability of discovering host bird (𝑃𝑎) and scale factor (𝛽) to improve the 

convergence rate. This system is known as the fuzzy cuckoo search algorithm (FCS). Five 
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benchmark functions with various dimensions ranging from eight to one hundred and ttwenty-

eight—Griewank, Rastringin, Ackley, Spherical, Rosenbrock—have been used to test the 

suggested technique. The Mamdani fuzzy system type, comprising three fuzzy rules and 

triangular membership functions 30abelled as ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑙𝑜𝑤, has been applied to a 

single input (iterations) and output (𝑃𝑎 or 𝛽). The research concludes with a comparison 

between FCS (𝑃𝑎) and FCS (𝛽), and cuckoo search, showing that FCS (𝛽) exceeds the 

performance when compared with other two algorithms for four out of five functions when the 

number of dimensions increases. 

A unique method for dynamically modifying parameters (𝛼 𝑎𝑛𝑑 𝑘𝑏𝑒𝑠𝑡) in Fuzzy gravitational 

search algorithm (FGSA), which is based on interval Type-II fuzzy logic, has been presented 

by F. Olivas et al. [87]. To test it, they first optimized fifteen key mathematical benchmark 

functions, and then they worked on a fuzzy controller that regulates the temperature of hot and 

cold water. In the process of optimizing mathematical functions, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, which range from 

0 to 1, and 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑙𝑜𝑤) are input variables. 𝛼, which spans from 0 to 

100, and 𝑘𝑏𝑒𝑠𝑡, which spans from 0 to 1, are taken into account as output variables. There are 

nine fuzzy inference rules for a fuzzy controller; its inputs are 𝑓𝑙𝑜𝑤 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, and 

its outputs are ℎ𝑜𝑡 𝑎𝑛𝑑 𝑐𝑜𝑙𝑑. Nine fuzzy inference rules make up the fuzzy controller’s inputs 

(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑓𝑙𝑜𝑤) and outputs (ℎ𝑜𝑡 𝑎𝑛𝑑 𝑐𝑜𝑙𝑑). Its efficacy is further confirmed by 

comparison with the Type-I Fuzzy GSA for altered parameters (T1FGSA) and the original GSA. 

The suggested algorithm, according to the authors, performs better for local or global searches 

than the other two nearby algorithms. 

To ensure that farms only utilize the appropriate number of fertilizers, G. Lavanya et al. [88] 

have developed a revolutionary NPK sensor that is outfitted with an LED (light emitting diode) 

and an LDR (light dependent resistor). This sensor allows for thorough monitoring of the 

nutrients present in the soil. IoT is utilized to transmit data to Google Cloud for speedy 

information retrieval, while fuzzy system is used to apply the Mamdani inference model to 

identify vitamin deficiencies in sensed data. When defining IF – THEN rules, output levels are 

categorized as 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ, ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤 𝑎𝑛𝑑 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤by using ranges of 0.8-1, 0.5-0.8, 

0.3-0.5, 0.1-0.3, and 0-0.1, respectively. Its efficacy is evaluated with a software and hardware 

model. Three test samples of red, mountain, and desert soil were collected for the hardware 

testing. Data is sent from NPK sensors to the cloud servers for software simulations while taking 

metrics like jitter, throughput, and end-to-end delay into account. The authors stated in 
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conclusion that their approach, when used with a smart, low-cost, and accurate IoT system, 

produces high crop production. 

In order to maximize water resources, Cruz et al. [89] have suggested using a fuzzy logic-based 

decision assistant tool for the water tank monitoring and control subsystem (WTMCS) in a 

smart farm automatic irrigation system (SFAIS). The water tank’s state determines how much 

priority the power management system has when it comes to turning on the pump. Priority 

levels have been determined by keeping an eye on the 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 (𝐿) and its 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 (𝐷𝐿). While values of 𝐿 are fuzzified as 

𝑓𝑢𝑙𝑙 (𝐹), 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑁) 𝑎𝑛𝑑 𝑒𝑚𝑝𝑡𝑦, values of (𝐷𝐿) are defined as 

ℎ𝑖𝑔ℎ (𝐻𝑃),𝑚𝑒𝑑𝑖𝑢𝑚 (𝑀𝑃)𝑎𝑛𝑑 𝑙𝑜𝑤 (𝐿𝑃). The three priority levels are defuzzed. With the 

defuzzification method of center of gravity, they have defined nine fuzzy IF – THEN rules for 

making decisions in order to establish the relationship between input and output variables. The 

authors conclude that WTMCS is more likely to supply the farm with the best possible 

distribution of power and water resources. 

A method based on fuzzy logic has been developd by R.P. Sharma et al. [90] to prevent pests in 

a millet and rice field by persistently monitoring the expansion of pests. Temperature, humidity, 

and rainfall data samples were collected in real-time by the suggested system using an 

IoT monitoring mechanism, which produced a data collection. GA has utilized this data as 

training to refine the fuzzy-based prediction system’s rules. GA has found a correlation between 

meteorological variables and insect breeding requirements using conditioned data from the 

cloud. The linguistic parameters of the Cauchy fuzzy membership function (CMF), which 

include 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ (𝑉𝐻), ℎ𝑖𝑔ℎ (𝐻𝐼),𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 (𝑀𝑂𝐷), 𝑙𝑜𝑤 (𝐿𝑂) 𝑎𝑛𝑑 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤 (𝑉𝐿), have 

been derived from this correlation. The suggested approach has been tested in the Madhya 

Pradesh region of Gwalior, where the right environment is present for pests to flourish in rice 

and millets. The authors have determined that there are high and high incidences of pests, and 

this technique will assist farmers in taking preventive action in advance. 

A fuzzy-based zoning smart irrigation system has been presented by H. Benyezza et al. [91] 

with the aim of optimizing greenhouse water and energy use. To do this, they have separated 

the greenhouse into various zones, used a node equipped with a soil moisture sensor in each 

zone, transferred data to a fuzzy system for best decision-taking, and utilized the cloud layer to 

store data for remote access. A real six-square-meter field has been divided into two zones and 



32 
 

irrigated with tomato water for eight days to test its efficacy. After doing a comparative analysis 

with three other approaches suggested in the literature, it was discovered that the suggested 

algorithm outperformed other state-of-the-art for the identical trial area regarding energy 

consumption and water usage, by 65.22% and 26.41%, respectively.  

Table 2.1 presents an overview of the current literature on service composition and elucidates 

how the research presented in this thesis differs from other investigations. 

Table 2.1: A literature review on service composition optimization 

Article [Ref.] 

 

Description Parameters Types of 

objectives 

Applications 

N. Kashyap et 

al. [92] 

Minimized time and 

cost & maximized 

reliability using 

a Hyper-heuristic 

approach 

Population size = 

100 

No. of services = 

10 -50 

No. of candidate 

services = 10-

50/service 

Preference-

based 

multi-

objective 

No 

application 

taken 

P. Asghari et al. 

[93] 

Proposed a model for 

predicting disease 

using techniques of 

data mining and 

provided composited 

medical prescriptions. 

Location, cost, and 

time as QoS metrics. 

Not providing 

optimal solutions 

using any EC 

No. of services = 

8 

No. of candidate 

services = 

6/service 

Preference-

based 

multi-

objective 

Smart 

Healthcare 
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technique is a 

limitation 

N. Kashyap et 

al. [94] 

Minimized time and 

cost and maximized 

reliability using GA 

and PSO. GA 

performed better than 

PSO 

Population size = 

100 

No. of services = 

10-50 

No. of candidate 

services = 10-

50/service 

Preference-

based 

multi-

objective 

No 

application 

taken 

N. Kashyap et 

al. [95] 

Minimized time and 

maximized reliability 

using NSGA-II 

algorithm in IoT 

Population size = 

100 

No. of services = 

10 

No. of candidate 

services = 10, 30 

and 50/service 

Ideal multi-

objective 

No 

application 

taken 

M.  Razian et 

al. [96] 

Proposed a new 

Anomaly-aware 

Robust service 

Composition (ARC) 

algorithm to address 

the issue of QoS 

value uncertainty in 

an IoT context that is 

always changing. 

Cost is minimized 

Conducted a 

series of 

experiments. 

Preference-

based 

multi-

objective 

Smart 

healthcare as 

motivation 

scenario 
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S. Sefati et al. 

[97] 

Five QoS parameters 

optimized using 

hidden Markov 

model, and ACO 

(HMM-ACO) 

No. of services = 

63 

No. of candidate 

services = 1000-

10000/service 

Preference-

based 

multi-

objective 

No 

application 

taken 

P. Kumar et al. 

[98] 

Seven QoS 

parameters have been 

optimized using 

a decision tree and 

GA 

No. of services = 

2,4,6,8,10 

No. of candidates 

= 5-200/service 

Preference-

based 

multi-

objective 

No 

application 

taken 

R. Boucetti et 

al. [99] 

Nine QoS parameters 

optimized using 

neural network and 

GA 

Population size = 

20 

No. of services = 

2 

No. of candidate 

services = 

9/service 

Preference-

based 

objective 

No 

application 

taken 

After a comprehensive review of the existing literature on QoS-based optimization in smart 

agriculture, it is evident that service composition optimization in smart agriculture has not yet 

been investigated, and the idea of using ideal multi-objective optimization is still barely 

implemented. Moreover, the literature reveals that real-world smart agriculture systems involve 

numerous uncertainties that are often overlooked. Addressing these uncertainties is crucial for 

developing practical and robust optimization solutions. Overall, there is a significant research 

gap in applying multi-objective service composition optimization and checking the impact of 

uncertain conditions in smart agriculture. 
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2.5 Summary  

This chapter offers a few insights from related work in the literature to understand the research 

gaps in the area of QoS-based service composition optimization. After carefully examining the 

literature, it has been discovered that the service composition problem has not yet been 

investigated in the context of smart agriculture, and the ideal multi-objective is barely used in 

this field. Another finding is that multi-objective optimization is useful in smart agriculture 

because it may resolve conflicting objectives with ease, as only multiple objectives can satisfy 

the user’s complicated requirements instead of a single objective optimization. Furthermore, 

there are a lot of uncertain factors to consider while solving smart agriculture problems in the 

real world. Therefore, the multi-objective QoS-based service composition optimization in smart 

agriculture applications is the overarching focus of this thesis’s study.  
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CHAPTER 3 

LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION 

OPTIMIZATION IN SMART AGRICULTURE USING 

EVOLUTIONARY COMPUTATIONAL TECHNIQUES 

3.1 Chapter Overview 

QoS-based service composition optimization is crucial for fulfilling the user’s complex 

requirements. Local service selection and global composite service optimization are two 

approaches for this. For dispersed systems where centralized management is impractical, local 

selection works well whereas global optimization involves selecting the best candidate service 

for all atomic services in a workflow, aiming to achieve the top-quality composite service within 

the constraints set by the users. Thus, population-based meta-heuristic approaches have been 

widely used to tackle the issue of service composition optimization. 

This chapter examines the idea of service composition in real-world smart agriculture 

applications by focusing on minimizing two important QoS-based metrics—cost and time. 

Additionally, it looks at how these goals are linearly related and discusses how to optimize 

composite services using three different EC techniques. 

3.2 Linear Service Composition Model 

Service composition is a combination of multiple web services, defined by QoS characteristics 

like time, scalability, cost, availability, and throughput. A service pipeline is used to route user 

requests, producing candidate service lists with distinct QoS requirements. The objective of the 

study is to offer the optimal solution for the apple orchard establishment and management in 

the Kullu and Shimla areas of Himachal Pradesh (a state in India) to address the multi-objective 

problem of associated time and cost in the growing surroundings. Let us suppose that there is 

total "𝑠" services that are involved in the cultivation of apple harvests; these services are all 

regarded as atomic services with distinct QoS metrics. Out of which, each service "𝑖" can have 

different candidate services or options based on QoS metrices which are time and cost in this 

case. It is assumed that each service 𝑖 has a minimum completion time denoted by min _𝑡𝑖𝑚𝑒 

and maximum completion time denoted by max _𝑡𝑖𝑚𝑒 along with 𝑐_𝑚𝑖𝑛 and 𝑐_𝑚𝑎𝑥 as the 
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minimum and maximum cost for completion of that particular service. This complete concept 

can be mathematically expressed using equations 3.1 to 3.11 where equation 3.1 shows how 

atomic services (𝐴𝑆𝑖) can be described using candidate services (𝐶𝑆𝑖𝑗) while equation 3.2 

shows how these candidate services 𝐶𝑆𝑖𝑗 are reliant on QoS factors [98]. 

𝐴𝑆𝑖 = {𝐶𝑆𝑖1, 𝐶𝑆𝑖2, 𝐶𝑆𝑖3, … 𝐶𝑆𝑖𝑗 , … , 𝐶𝑆𝑖𝑘}                                                                              (3.1)                                                                          

𝐶𝑆𝑖𝑗 = {𝑄𝑜𝑆(𝐶𝑆𝑖𝑗)}                        𝑤ℎ𝑒𝑟𝑒, 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑘                                               (3.2)                                                                                                    

Equation 3.3 below can be used to define the service composition once the QoS-based 

appropriate candidate service has been chosen. 

𝐶 = {𝐶𝑆1𝑗
∗ , 𝐶𝑆2𝑗

∗ , 𝐶𝑆3𝑗
∗ , … , 𝐶𝑆𝑠𝑗

∗ }                                                                                           (3.3) 

Further, since this work considers minimizing the time and cost associated with the various 

atomic services as the objective function so the related time and cost with each service can be 

described using equations 3.4 and 3.5, respectively.  

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑖 , … , 𝑡𝑠}      (3.4) 

𝐶 = {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑖, … , 𝑐𝑠}                                                                                                      (3.5) 

Where, 𝑡𝑖 and 𝑐𝑖 are the time and cost of 𝑖𝑡ℎ service, respectively. 

The mathematical description of the objective function is given in equation 3.6 whereas "𝑇" 

and "𝐶" defines total time and total cost associated with all services given in equations 3.7 and 

3.8, respectively. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇, 𝐶)                                                                                                                   (3.6) 

𝑇 =  ∑ 𝑡𝑖
𝑠
𝑖=1                                                                                                                              (3.7) 

𝐶 = ∑ 𝑐𝑖
𝑠
𝑖=1                                                                                                                              (3.8) 

For cost objective (𝑐𝑖), it can be defined as the linear function of  𝑡𝑖 by using the slope-intercept 

form shown in equation 3.9. 

𝑐𝑖 = 𝑚𝑖𝑡𝑖 + 𝛼𝑖                                                                                                                       (3.9) 
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Where, 𝑚𝑖 = 
(𝑚𝑎𝑥 _𝑐𝑜𝑠𝑡)𝑖 − (𝑚𝑖𝑛 _𝑐𝑜𝑠𝑡)𝑖

(𝑚𝑖𝑛_𝑡𝑖𝑚𝑒)𝑖− (𝑚𝑎𝑥 _𝑡𝑖𝑚𝑒)𝑖
                                                                                                    (3.10) 

and 𝛼𝑖 = (𝑚𝑎𝑥 _𝑐𝑜𝑠𝑡)𝑖  − (𝑚𝑖𝑛 _𝑐𝑜𝑠𝑡)𝑖                                                                                  (3.11) 

Here, 𝑚𝑖 is the slope of 𝑖𝑡ℎ service, indicating the rate of change in cost with respect to time 

and 𝛼𝑖 is y-intercept. 

The concept of the linear relationship between time and cost used in this work is illustrated in 

Figure 3.1 [119]. 

Figure 3.1: Linear time-cost trade-off of services using slope-intercept form [119] 

Figure 3.2 offers a general view of the QoS-based service composition strategy for better 

understanding. In Figure 3.2, a service composition plan is portrayed, comprising three atomic 

services. A variety of cloud-based services must be chosen from a pool of candidate services in 

order to carry out this approach. For every atomic service, let’s say there are four candidate 

services. So, the key question is: which candidate service ought to be picked? This choice is 

made in the service selection phase when the relevant candidate services are picked in 
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accordance with the defined QoS metrics. The service composition plan is then finally carried 

out after the best candidate services have been chosen. 

 

Figure 3.2: Understanding of QoS-based service composition  

3.3 Case Study 

Most researchers have focused on reducing fertilizer usage, improving irrigation management 

systems, and increasing crop productivity and profitability; however, the integration of these 

diverse services and their optimization to achieve multiple objectives simultaneously has not 

yet been investigated. This optimization of integrated services can help provide customized 

optimal plans to the farmers and users. To understand this concept, an illustrative scenario of 

service composition in smart agriculture is explained. Consider a scenario where “Company A” 

creates an agricultural plan for its customers/users, offering the following atomic services 

related to apple tree cultivation and management. 

• Soil Testing and Analysis 

• Apple Variety Selection 

• Orchard Establishment 

• Tree Planting 
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• Fertilizer Application 

• Irrigation System Installation 

• Pest and Disease Control 

• Pruning and Training 

• Crop Monitoring and Management 

• Harvesting 

• Packaging and Labelling 

• Sorting and Grading 

• Storage and Cold Chain Management 

• Marketing and Distribution 

The complete service composition process is illustrated in Figure 3.3 using a unified modelling 

language (UML) diagram [96]. In this scenario, customers will approach the company with 

specific service requests. The company will then create a tailored plan that incorporates only 

the services desired by the customers. This customized plan will be based solely on the services 

explicitly requested by the users. 

 

Figure 3.3: Sequence diagram showing the flow of service composition [96] 
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3.3.1 Proposed Dataset 

To enforce the service composition optimization in agriculture, a survey on establishing and 

managing apple orchards has been conducted on the fifty-three farmers of the Shimla and Kullu 

regions of Himachal Pradesh (a state in India). Based on their responses, a dataset has been 

created that includes the basic fourteen services starting from soil testing to marketing and 

distribution, required to establish and manage the apple orchard within one acre of an area. 

The criteria for including and excluding the responses are as follows: 

a) Inclusion criteria 

• People who respond to the minimum 70% of questions. 

b) Exclusion criteria 

• People with no experience of apple orchards. 

• People who are unwilling to respond to less than 70% of questions. 

Those fourteen services along with corresponding cost and time metrices are cataloged in Table 

3.1.  

Table 3.1: Dataset showcasing atomic services in smart agriculture 

Service 

Number 

Atomic Services Cost (in rupees) Time (in 

days) 

1 Soil Testing and Analysis 10000 7 

5000 14 

2 Apple Variety Selection 4000 1 

2000 3 

3 Orchard Establishment 200000 30 

50000 90 

4 Tree Planting 10000 2 

7000 6 
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5 Irrigation System Installation 150000 7 

50000 14 

6 Fertilizer Application 100000 14 

50000 28 

7 Pruning and Training 30000 7 

15000 21 

8 Pest and Disease Control 100000 14 

70000 28 

9 Crop Monitoring and 

Management 

50000 60 

20000 120 

10 Harvesting 70000 14 

35000 28 

11 Sorting and Grading 30000 7 

15000 14 

12 Packaging and Labelling 90000 14 

60000 28 

13 Storage and Cold Chain 

Management 

50000 60 

25000 120 

14 Marketing and Distribution 80000 90 

40000 180 
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The two primary QoS metrics in this study that must be simultaneously minimized to give the 

user an optimal plan are cost and time. Take the service of soil analysis and testing, for instance. 

For this service, there are two options: one that costs 10,000 rupees and takes seven days, and 

another that costs 5,000 rupees and takes fourteen days. There is a possibility of having other 

options that fall between these cost and time frames, offering a wide variety of choices. 

An ideal solution based on the user’s specific preferences is needed to identify the best option. 

For example, a user may select the second option if he/she is more concerned about the cost as 

this option increases the time taken but is cheaper. However, if the priority of the user is time 

over cost, he/she may opt for faster service. Whether the user wants to save time, cut costs, or 

strike a compromise between the two, the objective is to choose the service option that best 

suits his/her priorities.  However, if the user values time over cost, they may opt for the faster 

service, even if it costs more. Similarly for the second service which is apple variety selection, 

speaking with specialists or researching several apple varieties that are appropriate for the soil 

and climate in the area is a must. So, it can take either one day with a cost of 4,000 rupees or 

three days with a cost of 2,000 rupees or in between. The same will happen for other services. 

Thus, this work provides an optimal service composition plan for the farmers/users for an entire 

agricultural process, ensuring that farmers achieve the best possible outcomes for their field. 

3.4 Methodology for Linear Service Composition Optimization 

To get the optimal responses for service composition, various distinct meta-heuristics can be 

used. There are two basic stages to these meta-heuristics that are included in each algorithm 

used in this work.  

3.4.1 Population Initialization 

Initializing the population is a foremost and crucial stage in any meta-heuristic algorithm. It 

involves representing a possible solution in a manner that the algorithm can understand. The 

population initially consists of “𝑁” solutions equivalent to population size, each solution is 

represented with a string  [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑖 , … , 𝑡𝑡] where min _𝑡𝑖𝑚𝑒 ≤  𝑡𝑖  ≤ max _𝑡𝑖𝑚𝑒. The 

size of the string equals the aggregate number of services considered, with indices denoting the 

corresponding number and contents indicating the specific candidate for each service. Figure 

3.4 illustrates the solution representation process, using time as the objective measure [119]. 
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This work in this thesis consists of fourteen atomic services involved in apple orchard 

establishment and management. 

 

Figure 3.4: Solution representation for atomic services by taking time as an objective function [119] 

3.4.2 Evaluation of Objectives 

After initializing the population using time as an input variable, the next step includes 

evaluating cost using slope intercept form as both have a linear relationship between them and 

already shown in equations 3.9 to 3.11. The pictorial representation of solution after calculating 

both objectives for fourteen atomic services is portrayed in Figure 3.5. 

 

Figure 3.5: Solution representation for atomic services including time and cost objective functions 

Thus, this step generates a potential population of solutions by using linear slope intercept form 

to estimate the cost for composite services corresponding to the service time. 

After these two steps, the further mechanism for generating Pareto optimal solutions for multi-

objective problem is followed as per the pseudocode of specified meta-heuristic algorithm. 

3.5 Linear Service Composition Optimization using MOGA 

This section describes how the composited services with a linear relationship between time and 

cost objectives are optimized using MOGA. 

3.5.1 Optimization Algorithm: MOGA 

A population-based optimization method inspired by nature that imitates the behavior of genetic 

processes is called a genetic algorithm. John Holland initially suggested this automated and 

computerized search method in 1990 [32]. Unlike traditional searching algorithms, the GA 
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begins the search from an arbitrarily created primary collection called the population. A single 

chromosome comprises every member of the population. A chromosome is a binary code-like 

sequence of characters for a binary-coded genetic algorithm. In every generation, the fitness 

function is computed to determine how effectively the current set of chromosomes is working. 

It’s a quality that, whether it’s maximization or minimization, must always be at its peak. The 

next step in GA is parent selection, which is important since the fitness of the next generation 

directly affects how optimizations turn out. After that, the chosen parents experience crossover 

procedure, and mutation procedure to produce the offspring, which are new chromosomes. Only 

the fittest chromosomes will survive in the newly generated population since the chromosomes 

are picked as per their fitness function, eliminating any unwanted chromosomes. Pareto 

optimum solutions are the chromosomes on which the population converges after several 

repeats [100].  

The procedures listed below must be completed in order to use GA to achieve a globally 

optimized Pareto optimal solution for multi-objective problems. 

a) Initialization of the Population and Encoding 

The population is the total number of possible ways to solve a particular problem. A gene is an 

element’s index, whereas a chromosome refers to a single solution. Therefore, a chromosome 

is made up of genes, and a population is made up of several chromosomes. This work depicts 

the chromosome by using a string with gene number equal to the number of atomic services 

taken as mentioned in subsection 3.4.1. 

b) Fitness Function 

To determine the fitness value for each chromosome, the fitness function must be defined after 

the population has been initialized. It takes the value of the chromosome that fits the best out 

of all those compared at each iteration. The fitness function can be set to maximize or minimize 

based on the needs of the user. The fitness functions that this work has adopted are cost and 

time minimization.  

c) Selection Mechanism 

The population’s average quality is greatly increased via selection, which transfers the better-

quality chromosomes to the following generation. Every iteration generates a “𝑁” number of 
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new individual offspring from “𝑁” number of pre-existing individual parents. Parents and 

children have to compete with each other to make it into the next iteration. This study makes 

use of a tournament selection approach in which a tournament is created by selecting "𝑝" 

random chromosomes from the population. The chromosome with the best fitness among them 

is selected as the tournament winner and advances to the following round. It continues until the 

number of parents becomes equal to the population size [101]. 

d) Crossover Mechanism 

The first genetic change introduced to a mating pool’s chromosomes is called a crossover. 

Establishing a communication channel between two chromosomes is the goal of crossover. By 

exploring new offspring, the algorithm aims to identify superior offspring based on the 

discovered fitness value. This work employs simulated binary crossover (SBX) with a 

probability equal to 𝜎 in our work. There are two different coefficients (𝛽) for the SBX operator 

to assess based on the values of the 𝑟𝑎𝑛𝑑 function, which has random values between 0 and 1. 

Equation 3.12 is defined in the following two cases: 

𝛽 = {
(2 ∗ 𝑟𝑎𝑛𝑑)

1
3 ⁄                          𝑖𝑓 𝑟𝑎𝑛𝑑 <  𝜎

1

(2∗(1−𝑟𝑎𝑛𝑑))1 3⁄
                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                (3.12) 

Furthermore, SBX generates two offspring from a pair of randomly selected parental solutions 

drawn from the existing population. Ultimately, one of the children is retained based on equal 

likelihood [102]. The primary contribution of SBX to the whole algorithm is its ability to 

expedite the Pareto Front blending process by recombining different solutions. 

e) Mutation Mechanism 

A mutation operation is performed on the new offspring chromosome to change one or more 

genes in order to establish the new chromosome. This mechanism uses a polynomial 

distribution index parameter 𝜂𝑚 that determines how much the solution can be disrupted by 

controlling the magnitude of variations. A random number 𝑢 between 0 and 1 is chosen by the 

operator. Based on this random number, the mutated parent 𝑝′ is created for a given parent "𝑝" 

shown in equation 3.13 given below. 
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𝑝′ = {
𝑝 +  𝛿𝐿̅̅ ̅ (𝑝 − 𝑥𝑖

(𝐿)
)                    𝑖𝑓 𝑢 ≤  0.5

𝑝 + 𝛿𝑅̅̅ ̅ (𝑥𝑖
(𝑈)

− 𝑝)                   𝑖𝑓 𝑢 > 0.5
                                                                       (3.13)  

Next, the following formulas in equations 3.14 and 3.15 are used to determine one of the two 

parameters 𝛿𝐿̅̅ ̅ and  𝛿𝑅̅̅ ̅ . 

𝛿𝐿̅̅ ̅ =  (2𝑢)
1

(1+ 𝜂𝑚) − 1                             𝑖𝑓 𝑢 ≤ 0.5                                                                  (3.14) 

𝛿𝑅̅̅ ̅ =  1 − (2(1 − 𝑢))
1

(1+ 𝜂𝑚)               𝑖𝑓 𝑢 ≤ 0.5                                                                  (3.15) 

Here, 𝑥𝑖
(𝐿)

 and 𝑥𝑖
(𝑅)

 defines the lower and upper bounds of the 𝑖𝑡ℎ variable of the solution. 𝛿𝐿̅̅ ̅ 

and 𝛿𝑅̅̅ ̅ regulates the extent to which the mutation pushes the solution in the direction of the 

lower and upper bounds, respectively. Thus, early convergence and population diversity are 

preserved by the mutation [103]. The polynomial mutation is utilized in this work to replace 

genes.  

Below is presented the pseudocode for MOGA in Figure 3.6. 

 

Figure 3.6: Pseudocode of MOGA 
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To elucidate the concept of MOGA, a flow chart is presented in Figure 3.7 below. 

 

Figure 3.7: Illustration of MOGA using flow chart 

3.5.2 Proposed Framework 

This framework operates across various tiers of IoT infrastructures. IoT sensor data is stored in 

cloud-based services. Numerous services provide comparable functionalities but with differing 

QoS characteristics. Initially, services with similar functions are identified during the discovery 

phase. Subsequently, services are chosen from the available options to meet user requirements, 

based on QoS criteria. Complex user requests typically require multiple services, necessitating 

a service composition phase. The composited services are then optimized using MOGA to 

provide a series of Pareto solutions. The whole framework is portrayed in Figure 3.8. 

3.5.3 Simulation Setup 

The proposed approach is run on a desktop computer equipped with 16 GB RAM, and 

MATLAB R2013a software. The various parameters required to be set while executing MOGA 

are structured in Table 3.2. When trade-off points hold steady for three subsequent iterations—

achieved in 1000 iterations—the search for optimal solutions is terminated. 
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Figure 3.8: Proposed framework for service composition optimization 

Table 3.2: Genetic operators for MOGA 

Parameters Values 

Population Size  200 

Selection Mechanism Tournament 

Selection 

Crossover Operator SBX 

Mutation Operator Polynomial 

Mutation 

Crossover Probability 0.9 

Mutation Probability 0.07 

No. of iterations 1000 



50 
 

3.5.4 Results and Discussions 

Figure 3.9 displays the simulation results for the service composition optimization problems, 

wherein after a predetermined number of iterations, the Pareto optimal solutions are found. The 

results show that MOGA generates trade-off points between time and cost parameters in the 

realm of smart agriculture by offering diverse Pareto optimal solutions for multi-objective 

optimization problems. The solutions offered show the range of choices farmers can make in 

response to their complicated and varied needs. 

Table 3.3 provides a statistical analysis of the simulation outputs for a more in-depth look at 

the data. 

 

Figure 3.9: Pareto optimal solutions obtained using MOGA 
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Table 3.3: Statistical analysis 
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3.6 Linear Service Composition Optimization using NSGA-II 

This chapter section explains how NSGA-II is used as an optimization algorithm to serve 

service composition optimization in smart agriculture.  

3.6.1 Optimization Algorithm: NSGA-II 

NSGA-II is an enhanced version of the NSGA algorithm, which was introduced by N. Srinivas 

and K. Deb in 1995 [104]. Among the many shortcomings of the original method were its 

excessive computing complexity, lack of a distribution parameter, and inadequacy of elitism. 

To address these issues, Deb proposed a multi-objective evolutionary algorithm called NSGA-

II in 2002 [105]. This improved algorithm employs non-dominated sorting and crowding 

distance techniques to discover a well-distributed set of solutions and enhance diversity for 

various multi-objective problems. 

The basic foundation of the NSGA-II algorithm is defined below. 

a) Non-dominated Sorting  

This method involves ranking population members based on Pareto dominance. The process of 

non-dominated sorting commences by assigning the highest rank to non-dominated individuals 

in the initial population. These top-ranked members are then moved to the first front and 

excluded from the original population. Subsequently, the remaining population undergoes non-

dominated sorting. The non-dominated individuals from this subset are given the second rank 

and placed in the second front. This ranking and sorting continue until every member of the 
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population is dispersed over different fronts in accordance with their designated ranks, as 

illustrated in Figure 3.10 [106]. 

b) Elitism-preserving operator 

The elitism-preserving strategy is a method that maintains the best solutions within a population 

by directly moving them to the subsequent generation. This approach ensures that the most 

effective, non-dominated solutions discovered in each generation continue to exist in future 

generations until they are surpassed by superior solutions. 

 

 

Figure 3.10: Concept of non-dominated sorting [106] 

c) Crowding Distance Concept 

The concentration distribution of solutions enclosing a particular solution is estimated using 

crowding distance. This measure is calculated by taking the average distance between two 
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solutions on either side of the solution for each objective. The solution with the greater 

crowding distance is seen as being in a less crowded region when two solutions with distinct 

crowding distances are compared. As illustrated in Figure 3.11 [106], the crowding distance of 

the 𝑖𝑡ℎ solution is represented by the average side length of the cuboid. Let 𝑓𝑘
𝑖 denote the 𝑘𝑡ℎ 

value of any objective function for the 𝑖𝑡ℎ individual, and 𝑓𝑘
𝑚𝑎𝑥  and 𝑓𝑘

𝑚𝑖𝑛 represent the 

maximum and minimum values of the 𝑘𝑡ℎ objective function across all individuals, 

respectively. The crowding distance of the 𝑖𝑡ℎ individual is then outlined as the average distance 

between the two closest solutions on either side, as expressed in equation 3.16. 

𝐶𝐷(𝑖) =  ∑
𝑓𝑘
𝑖+1−𝑓𝑘

𝑖−1

𝑓𝑘
𝑚𝑎𝑥−𝑓𝑘

𝑚𝑖𝑛

𝑗
𝑖=1                                                                                                      (3.16) 

 

Figure 3.11: Concept of crowding distance [106] 

d) Selection Mechanism  

The selection of individuals for the subsequent generation employs a crowded tournament 

selection mechanism, which considers both the ranking and crowding distances of population 
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members. The process for choosing between two individuals for the next generation follows 

these rules: 

• When the two individuals have distinct ranks, the individual with the superior rank is 

chosen to advance to the following generation. 

• In cases where both individuals share an identical rank, the one with the larger crowding 

distance is selected for the following generation [106]. 

e) Genetic Operators 

Crossover and mutation operators are essential genetic operators that produce offspring 

populations from the parent population, guarantee diversity, and efficiently explore the search 

space. The process of combining two parent solutions to create one or more offspring is called 

crossover. The SBX [107] is utilized as a crossover operator in NSGA-II. Although it operates 

on real-coded individuals, it resembles the single-point crossover behavior of binary-coded 

genetic algorithms. To create offspring that are identical to their parents but introduce 

variability, the SBX operator exchanges components of two parent solutions to produce fresh 

individuals. The crossover operator creates the offspring, while the mutation operator adds tiny, 

random alterations to it. Preventing premature convergence to local optima and preserving 

genetic variety in the population depends on this. The Polynomial Mutation [108] is frequently 

applied to real-coded individuals in NSGA-II. This operator introduces variances into its 

offspring by slightly altering the choice variables according to a probability distribution. 

3.6.2 Procedure of NSGA-II 

The algorithm’s process starts by creating an initial population 𝑃𝑡 of "𝑁" members. A new 

population 𝑄𝑡  is then formed through crossover and mutation of 𝑃𝑡 . These two populations are 

combined to create 𝑅𝑡 which is then evaluated via non-dominated sorting. The members of 

𝑅𝑡 are then categorized into several distinct fronts based on their degree of non-domination. 

The subsequent step involves selecting  "𝑁" members from 𝑅𝑡 to form the subsequent 

population 𝑃𝑡+1. If the first front contains “𝑁" or more members, "𝑁" individuals are chosen 

from its least crowded areas to create 𝑃𝑡+1. However, if the first front has fewer than 

"𝑁" members, all of them are progressed directly to the subsequent generation. The unused slots 

are filled with members from the smallest crowded areas of the second front. This process 

continues with subsequent fronts until 𝑃𝑡+1 reaches "𝑁" members. The same method is used to 
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generate future populations (𝑃𝑡+2, 𝑃𝑡+3, etc.) until the stopping criteria are met [105]. Figure 

3.12 illustrates the procedure of NSGA-II [105]. Figure 3.13 presents a simplified and easily 

comprehensible outline of the steps involved in the NSGA-II with the help of pseudocode. 

Further, the flow chart for the same is displayed in Figure 3.14. 

 

Figure 3.12: Procedure for NSGA-II [105] 

 

Figure 3.13: Pseudocode for NSGA-II algorithm 
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Figure 3.14: Flow chart illustration of NSGA-II 

3.6.3 Proposed Framework 

This framework functions on different IoT infrastructure layers. Cloud-based services are used 

to store data from IoT sensors. Many services offer similar features, yet they have different QoS 

attributes. During the discovery phase, services with comparable functions are first found. 
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Based on QoS criteria, services are then selected among the available possibilities to satisfy 

user requirements. A service composition step is required because complex user queries usually 

ask for many services. After that, NSGA-II is used to optimize the composited services, yielding 

a collection of Pareto optimal solutions. Figure 3.15 illustrates the entire framework. 

 

 

Figure 3.15: Proposed framework for service composition optimization using NSGA-II 

3.6.4 Simulation Setup 

The main parameters utilized to validate the algorithmic performance are listed in Table 3.4. 

Time and cost minimization are the main goals of the optimization process, and the fitness 

function is made to balance these goals. When the trade-off between the two goals is maintained 

for three consecutive iterations—usually within 1000 generations—the search process comes 

to an end. 

3.6.5 Results and Discussions 

Following the simulation, the Pareto optimum solutions show a distinct movement toward the 

coordinate axes, as seen in Figure 3.16.  
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Table 3.4: Simulation operators of NSGA-II 

Parameters Values 

No. of iterations 1000 

Population Size 200 

Mutation Probability (𝑃𝑚) 0.07 

Crossover Probability (𝑃𝑐) 0.9 

 

 

Figure 3.16: Pareto optimal solutions obtained using NSGA-II 

This movement demonstrates the effectiveness of the NSGA-II algorithm by effectively 

minimizing both cost and time. The graph shows a successful balance between the competing 
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goals with an equitably dispersed set of trade-off points along the Pareto front. The algorithm’s 

supremacy in resolving multi-objective optimization problems is confirmed by the solution’s 

closeness to the origin, which shows that it consistently finds optimal configurations. 

A thorough statistical analysis is included in Table 3.5 to support this graphical representation 

and provide additional insight into the algorithm’s robustness and performance. 

Table 3.5: Statistical analysis 
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3.7 Linear Service Composition Optimization using MOGSK 

This part covers a human-inspired evolutionary computational algorithm known as the Gaining 

sharing knowledge-based algorithm (GSK) for optimizing the composed services of smart 

agriculture applications. 

3.7.1 Optimization Algorithm: MOGSK 

GSK is a revolutionary optimization approach inspired by human strategies, has been created 

recently. It adheres to the concept of acquiring and disseminating information globally to a 

human being. GSK mostly depends on two crucial phases: Junior-gaining-sharing knowledge 

(JGSK) phase and Senior-gaining-sharing knowledge (SGSK) phase. Everyone acquires 

knowledge and then imparts it to others along with their own opinions. Early on in life, humans 

learn from their small social networks of friends, neighbors, and family. Out of a natural 

curiosity to learn more about other people in the population, they try to share what they have 

learned and their opinions with others who may not be from their social networks. However, 

they may lack the knowledge or expertise to categorize the citizens of their area. In line with 

the same idea, people in their middle or subsequent years attempt to learn more by interacting 

with a larger network, including social media acquaintances, coworkers, and friends, and seek 
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out ways to share their thoughts and opinions with those who can use it the best. Those beings 

possess the requisite expertise to categorize and swiftly rate individuals as being either good or 

wicked [109]. The earlier mentioned process can be explained mathematically step-wise as 

follows- 

Step 1: Initially, population size is defined (Here, assumed to be 𝑁𝑃) and it is randomly 

initialized. Let 𝑥𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = {1, 2, 3, …… ,𝑁𝑃} be the population’s individuals. Each individual 

𝑥𝑖  can be defined as 𝑥𝑖𝑗 = {𝑥𝑖1,  𝑥𝑖2,  𝑥𝑖3,  𝑥𝑖,4, ……, , 𝑥𝑖𝐷}, where D is the domain of knowledge 

that an individual is provided with, defining its dimensions. Furthermore, the corresponding 

fitness values of individuals are defined by 𝑓𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1, 2, 3, …… ,𝑁𝑃}. All concepts of 

junior gaining sharing (JGS) and senior gaining sharing (SGS) are illustrated in Figure 3.17 (a) 

and (b), respectively using a vector 𝑥𝑖𝑗 [111]. 

 

(a) 

 

(b) 

Figure 3.17: (a) Vector 𝑥𝑖𝑗  𝑓𝑜𝑟 𝑖 = 1 during JGSK phase (b) Vector 𝑥𝑖𝑗  𝑓𝑜𝑟 𝑖 = 1 during SGSK phase [111] 

Two important conclusions have been drawn from Figure 3.17. First, the number of updated 

dimensions utilizing the JGS strategy throughout the JGSK phase is larger than the number of 

updated dimensions utilizing the SGS strategy. Second, the number of updated dimensions for 

each vector during the senior phase using the SGS strategy is larger than the number of updated 

dimensions using the JGS strategy. Additionally, the magnitude of the knowledge rate (𝑘), 

which must also be considered when calculating the necessary number of dimensions that will 

be substituted using both phases, will control the amount of knowledge that will be passed down 

through generations using JGS and SGS strategies. Another parameter is the knowledge factor 

(𝑘𝑓) (any real number > 0) that controls the entire acquired and shared knowledge to be 

incorporated to the current generation of individuals over the course of generations and 
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knowledge ratio (𝑘𝑟) (any number between 0 and 1 including them) that controls the entire 

gained shared knowledge to be passed down over generations [110]. 

Step 2: Then, the dimensions of each phase are calculated using the formula in Equations 3.17 

and 3.18 given below- 

𝐷𝑗𝑢𝑛𝑖𝑜𝑟 = (𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠𝑖𝑧𝑒) ∗  (
𝐺𝑒𝑛−𝐺

𝐺𝑒𝑛
)
𝑘

                                                                               (3.17) 

𝐷𝑠𝑒𝑛𝑖𝑜𝑟 = (𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠𝑖𝑧𝑒) − 𝐷𝑗𝑢𝑛𝑖𝑜𝑟                                                                                 (3.18) 

Here, 𝐺 is the ongoing generation. 

𝐺𝑒𝑛 is describing the total number of generations. 

𝐷𝑠𝑒𝑛𝑖𝑜𝑟 and 𝐷𝑗𝑢𝑛𝑖𝑜𝑟 are the dimensions of the senior and junior phases, respectively. 

Step 3: JGSK Phase 

Because of curiosity and a desire to learn about others, each person tries to learn from the closest 

and most reliable individuals who are part of small groups while also attempting to provide 

knowledge to someone who does not belong to or is not a member of any group.  

At this phase, each person tries to learn from the most reliable and closest people who are part 

of small groups while simultaneously trying to impart knowledge to someone who is not 

connected to or is not a part of any group out of eagerness and a desire to learn about others. 

Accordingly, utilizing the junior strategy, upgrading each individual can be calculated as 

follows: 

a)  Sort each person in descending order by their objective function value: 

𝑥𝑏𝑒𝑠𝑡, ……𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, …… , 𝑥𝑤𝑜𝑟𝑠𝑡 

b) Next, choose two other individuals (the closest individuals) who are better (𝑥𝑖−1) or worse 

(𝑥𝑖+1) than the existing individual to establish the knowledge-gaining source. Additionally, 

choose another person at random (𝑥𝑟) to serve as a knowledge-sharing source [111].  

Step-4: SGSK Phase 
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Utilizing the information that is already available and relevant expertise from the best, better, 

and worst individuals within a given community are the main goals of this phase. Utilization 

refers to the influence and result of others—both good and bad—on an individual. Thus, by 

using the senior strategy updating each individual can be calculated as follows: 

a)  All people are ranked based on objective function in ascending order, and then they are 

separated into categories: best individual, better individual, and worst individual.  

b) Then to form the gaining part, two vectors are randomly chosen from the top and bottom 

200𝑝% individuals of the present population and for sharing part, the third vector is chosen 

from the middle 𝑁𝑃 − (2 ∗ 200𝑝%). This process is repeated for each individual, 𝑥𝑖. The 

pseudocodes for both JGSK and SGSK phases are shown in Figures 3.18 and 3.19, respectively 

[112]. 

 

Figure 3.18: Pseudocode for junior gaining sharing phase 
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Figure 3.19: Pseudocode for senior gaining sharing phase 

In the flowchart illustration of Figure 3.20, the proposed MOGSK’s entire process is depicted. 

3.7.2 Proposed Framework 

In this multi-objective optimization, fast nondominated sorting, crowding distance, and the 

Pareto dominance relation are used to generate those nondominated solutions, which promote 

diversity, enhance exploitation and exploration, help to increase coverage, and hasten 

convergence to the Pareto solutions. The proposed framework is displayed in Figure 3.21. 

Its working involves the initialization of parameters like population size, number of 

generations, knowledge rate, knowledge ratio, and knowledge factor. The entire population is 

then randomly initialized, and the evaluation of each individual’s fitness value follows. On the 

initial population, fast nondominated sorting is employed to obtain the non-dominated plus 

sorted solutions according to distinct fronts and crowding distance. MOGSK then upgrades the 

junior/senior population state just like GSK. Until the final requirement of the maximum 

number of iterations is met, these procedures are carried out repeatedly.  

These steps are continued until the end condition of the maximum number of iterations is 

settled.  
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Figure 3.20: Flow chart illustration for MOGSK algorithm 

3.7.3 Simulation Setup 

The goal of the service composition optimization problem is to minimize the dual objectives of 

cost and time, with the fitness function directing the search. The parameters used to assess the 

algorithm’s efficacy are listed in detail in Table 3.6. When the trade-off considerations persist 

unchanged after three iterations—typically within 1000 iterations—the search process is said 

to be over. 
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Figure 3.21: Proposed framework for optimization using MOGSK 

Table 3.6: Simulation parameters 

Parameters Values 

Population size 200 

No. of iterations 1000 

Knowledge rate 10 

Knowledge factor 0.5 

Knowledge ratio 0.9 

3.7.4 Results and Discussions 

The Pareto optimum solutions found following the simulation are depicted in the graph in 

Figure 3.22. The solutions are shown to be getting closer to the coordinate axes, indicating that 

time and cost have been reduced at the same time. The trade-off between these two goals is 
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highlighted by this convergence toward the origin, where each point denotes a distinct time-

cost balance. The MOGSK algorithm’s efficacy in managing such multi-objective problems is 

further supported by the even distribution of the Pareto front, which indicates that it may 

produce a wide range of optimal solutions. 

 

Figure 3.22: Pareto optimal solutions obtained using MOGSK 

For an accurate view of the results obtained, statistical analysis has been tabulated in Table 3.7. 
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Table 3.7: Statistical analysis 
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3.8 Comparison of EC Algorithms 

This section compares the Pareto optimal solutions derived from the service composition 

optimization problem in smart agriculture using three different EC approaches. Time and cost 

minimization are the main goals of this optimization, and their interaction is governed by a 

linear relationship. The effectiveness of each algorithm in balancing these two competing goals 

is the main focus of this investigation. There are two ways to decide which algorithm is 

performing better for multi-objective optimization problems. One is the Pareto front analysis 

and another is statistical analysis. 

3.8.1 Pareto Front Analysis 

Pareto front analysis involves graphing the solutions generated by each algorithm, with the axes 

representing competing objectives, such as cost and time. The resulting visual representation 

allows for the examination of trade-offs between these objectives. The Pareto front, composed 

of non-dominated solutions, illustrates the optimal compromises attainable. By examining and 

contrasting the configurations and distributions of Pareto fronts produced by different 

algorithms, its capacity to deliver diverse and optimal solutions can be assessed. Generally, a 

superior algorithm generates a Pareto front that is nearer to the graph’s origin, signifying 

reduced costs and time. Figure 3.23 illustrates the comparison graph of Pareto optimal solutions 

obtained utilizing MOGSK, NSGA-II, and MOGA. 

As illustrated in Figure 3.23, NSGA-II generates a diversified set of solutions than MOGSK 

and MOGA. A more extensive and diverse Pareto front which is represented by the line 

connecting the non-dominated solutions indicates superior performance as well as a broader 

range of efficient solutions in NSGA-II. 
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Figure 3.23: Comparison of various evolutionary algorithms for service composition optimization 

3.8.2 Statistical Analysis 

Pareto front analysis is enhanced by statistical analysis, which offers a numerical method to 

evaluate algorithm performance. This approach involves computing various metrics for the 

Pareto optimal solutions, including mean, standard deviation, and range. These measurements 

aid in quantifying the convergence of solutions produced by each algorithm. For example, a 

larger standard deviation in costs or times may suggest diverse solutions across multiple runs. 

Statistical tests can be employed to determine if the observed differences in performance 

metrics between algorithms are statistically significant, enabling the identification of superior 

algorithms in generating optimal solutions. 

Those numerous performance measures that demonstrate NSGA-II’s efficiency and 

dependability in comparison to the other algorithms are shown in the form of statistical analysis 

in Table 3.8. It shows a larger standard deviation across its results which depicts the capability 
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of producing a diversified set of Pareto optimal solutions. This suggests that NSGA-II can 

investigate a broader solution space and offer a wider range of trade-offs that efficiently balance 

time and cost. 

Table 3.8: Statistical analysis of various optimization algorithms 
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3.9 Summary 

This chapter discusses the service composition optimization problem in the context of smart 

agriculture zooming in around two principal objectives of minimizing cost and time. For a more 

straightforward approach, the relationship is established as linear between these objectives. 

Three EC approaches—MOGA, NSGA-II, and MOGSK—are used to address this problem. 

Every algorithm is used to optimize the composition of services while accounting for specific 

requirements and characteristics of agricultural services. Using a variety of performance 

metrics, the chapter offers a thorough comparison of these three approach’s performances to 

assess how well they accomplish the optimization goals. According to the results, NSGA-II 

performs superior to MOGA and MOGSK, showing better outcomes in terms of time and cost 

minimization. This highlights the algorithm’s capacity to more effectively negotiate the trade-
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offs between the competing goals. Thus, the chapter concludes by emphasizing the significance 

of applying EC approaches to improve service composition optimization in smart agriculture 

and proving that NSGA-II is the best approach for this linear multi-objective service 

composition optimization problem. 
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CHAPTER 4 

NON-LINEAR MULTI-OBJECTIVE SERVICE 

COMPOSITION OPTIMIZATION IN SMART AGRICULTURE 

USING EVOLUTIONARY COMPUTATIONAL TECHNIQUES 

4.1 Chapter Overview 

QoS-based service composition is crucial for providing superior and efficient services across 

diverse interconnected systems. This challenge frequently requires balancing multiple 

competing goals, such as minimizing duration and expenses while adhering to particular quality 

criteria for each service element. The intricacy and interrelation of these objectives classify it 

as an NP-hard problem, making conventional mathematical approaches inadequate for finding 

optimal solutions in a reasonable timeframe. Thus, comes population-based meta-heuristics in 

the frame to address this sort of real-world issues. 

This chapter presents the idea of optimizing service composition in smart agriculture 

applications, with a focus on the non-linear relationship between the goals of minimizing cost 

and time. The emphasis on non-linear relationships reflects real-world complexities, where 

factors are often more intricate than simple linear correlations. Additionally, the section delves 

into the optimization of these combined services using three distinct EC techniques, each 

designed to address the unique challenges presented by non-linear dynamics in service 

composition. 

4.2 Non-linear Service Composition Model 

The process of QoS-based service composition entails the selection and combination of 

individual atomic services to form a composite service that satisfies predetermined QoS 

standards. These standards typically encompass metrics namely reliability, time, cost, and 

availability. For every atomic service, multiple candidate services may be available for 

selection. The candidate service that optimally satisfies the QoS criteria, is selected for 

incorporation into the composite service. As this study is based on providing an optimal solution 

for apple orchard establishment and management in distinct regions, suppose there exists a total 

of "𝑠" services with each having various candidate services represented by "𝑘" along with their 
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corresponding minimum time, maximum time, minimum cost and maximum cost QoS metrics. 

The entire mathematical framework for this concept is properly explained in equations 3.1 to 

3.8, which can be found in section 3.2.  Additionally, to characterize the non-linear relationship 

between time and cost objectives to deal with the non-linearities present in services of real-

world scenarios, Lagrange’s interpolation method is employed. This approach is elaborated in 

section 4.2.1. 

4.2.1 Basics of Lagrange’s Interpolation 

Lagrange interpolation is a method for determining a polynomial that precisely matches 

observed values at specific points. It is the method of choice since it is easy for researchers to 

calculate and provides accurate estimation [113, 114]. 

Given "𝑠" distinct services, each of which is associated with a time 𝑡𝑖 (𝑖 = 1, 2, 3, … , 𝑠) and a 

corresponding cost 𝑐𝑖, there exists a total cost "𝐶" for all services. The non-linear relationship 

between 𝑡𝑖 and 𝑐𝑖 is defined using Lagrange’s polynomial which is expressed from equation 4.1 

to 4.2 where equation 4.1 gives the Lagrange’s function to calculate the cost of each 𝑖𝑡ℎservice 

(𝑖 = 1, 2, 3, … , 𝑠) and equation 4.2 provides the total cost "𝐶" of all service for minimizing 

objectives. 

𝐶𝑖(𝑡) = ∑ 𝑐𝑗∏
𝑡−𝑡𝑚

𝑡𝑗−𝑡𝑚

𝑘
𝑚=1
𝑚≠𝑗

𝑘
𝑗=1                                                                                                     (4.1) 

𝐶 = ∑ 𝐶𝑖(𝑡)
𝑠
𝑖=1                                                                                                                         (4.2) 

𝐶 could be represented in the form of Lagrange’s using equation 4.3 given below. 

𝐶 = ∑ 𝑐𝑖. 𝑙𝑖(𝑡)
𝑘
𝑖=1                                                                                                                                           (4.3) 

This concept of the non-linear relationship between time and cost can be illustrated with the 

help of Figure 4.1 [119]. 
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Figure 4.1: Non-linear time-cost trade-off of services [119] 

4.3 Non-Linear Dataset Description 

Agricultural data sometimes shows complex interactions and non-linear patterns instead of 

simple, linear tendencies. Thus, this work intends to provide more efficient non-linear 

optimization, which is more suited to capturing the complex dynamics found in agricultural 

service data, by modeling these non-linearities. Table 4.1 shows this non-linear dataset and 

catalogs fourteen basic services that are essential to the establishment and management of apple 

orchards. Per-acre data is used in this investigation.  

Table 4.1: Non-linear dataset showcasing atomic services in smart agriculture 

Service 

Number 

Atomic Services Cost (in rupees) Time (in days) 

1 Soil Testing and Analysis 10000 7 
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9500 8 

7000 10 

5700 13 

5000 14 

2 Apple Variety Selection 4000 1 

3700 1.5 

3000 2 

2400 2.5 

2000 3 

3 Orchard Establishment 200000 30 

174000 45 

125000 54 

65000 77 

50000 90 

4 Tree Planting 10000 2 

9600 3 

8200 4 

7400 5 

7000 6 

5 Irrigation System Installation 150000 7 
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127000 9 

97000 10 

75000 13 

50000 14 

6 Fertilizer Application 100000 14 

96000 17 

81000 21 

73000 25 

50000 28 

7 Pruning and Training 30000 7 

27000 12 

21000 15 

19000 19 

15000 21 

8 Pest and Disease Control 100000 14 

97000 17 

87000 21 

76000 27 

70000 28 

9 50000 60 
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Crop Monitoring and 

Management 

46000 77 

34000 91 

25000 111 

20000 120 

10 Harvesting 70000 14 

68000 19 

49000 23 

41000 25 

35000 28 

11 Sorting and Grading 30000 7 

28000 8 

26000 11 

19000 13 

15000 14 

12 Packaging and Labelling 90000 14 

88000 17 

76000 22 

69000 26 

60000 28 

13 50000 60 
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Storage and Cold Chain 

Management 

48000 72 

42000 89 

29000 107 

25000 120 

14 Marketing and Distribution 80000 90 

78000 97 

61000 122 

44000 167 

40000 180 

Distinct options are available for the user to select any one of them in terms of cost and time to 

get his/her customized optimal service composition plan. For instance, take service number 5 

which is the irrigation system installation. This service offers several choices according to 

different costs and time duration. The fastest option, which costs 150,000 rupees and takes 7 

days to complete, is perfect for people who value time. Under this, an automatic drip system 

can be installed. There are other less expensive options, including paying 50,000 rupees to have 

the installation finished in 14 days for a pipe-based system. Time and cost can be balanced with 

intermediate alternatives like 9 days for 127,000 rupees where a basic sprinkler system can be 

installed or 13 days for 75,000 rupees where a semi-automated sprinkler system can be installed. 

So, the users can select the best choice based on their urgency and financial limitations. The 

same rule follows for other services too. Thus, a customized plan can be made to satisfy each 

user’s particular demands by choosing the best alternative for each service depending on their 

priorities, including financial limits, and time constraints.  

4.4 Methodology for Non-linear Service Composition Optimization 

In service composition, meta-heuristic algorithms are commonly employed to find optimal 

solutions. These methods typically involve two crucial steps: initializing a set of potential 
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solutions and assessing objectives which are time and cost in our case to steer the optimization 

process. Every algorithm utilized in this work includes both steps. 

4.4.1 Population Initialization 

A critical step in meta-heuristics is population initialization, which generates a varied set of 

potential solutions and guarantees a thorough investigation of the solution space. A properly 

initialized population can greatly increase the algorithm’s efficiency by speeding up the 

convergence rate and the search for optimal solutions. For a population size of “𝑁”, each 

solution can be represented with a string  [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑖, … , 𝑡𝑡] where min _𝑡𝑖𝑚𝑒 ≤  𝑡𝑖  ≤

max _𝑡𝑖𝑚𝑒. A comprehensive description of this is provided in section 3.4.1. 

4.4.2 Evaluation of Objectives 

After the population is initialized, the next step involves evaluating the objectives. This study 

considers time and cost as minimizing objectives. So, the total time (𝑇) is calculated by taking 

a summation of all the times associated with various services where the total cost (𝐶) is 

evaluated using Lagrange’s interpolation method (refer section 4.2.1) as both objectives have 

non-linear relationship between them. For a visual representation, refer to Figure 3.5. Thus, this 

step creates a population of possible solutions by applying Lagrange’s interpolation method to 

calculate the associated costs with composite services.  

The pseudocode of the designated meta-heuristic algorithm is then followed after these two 

steps to generate Pareto optimal solutions for multi-objective problems. 

4.5 Non-Linear Service Composition Optimization using MOGA 

This section describes how the composited services with a non-linear relationship between cost 

and time objectives are optimized using MOGA and named Lagrange’s multi-objective genetic 

algorithm (La-MOGA). 

4.5.1 Optimization Algorithm: MOGA 

MOGA is an optimization method that imitates genetic processes that occur in nature. It 

originates with an arbitrarily generated population, with each member consisting of a single 

chromosome. The fitness function is calculated at every iteration, ensuring optimal 
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performance. Parent selection is crucial, as the fitness of the next generation affects 

optimizations. Only the fittest chromosomes survive, eliminating unwanted ones. Pareto 

optimum solutions are those where the population converges after multiple repetitions. 

4.5.2 Proposed Framework 

The proposed framework is shown in Figure 4.2. This architecture works across multiple IoT 

tiers. Cloud services are used to store IoT sensor data. Although the functionality of many 

services is similar, their QoS features are not. Consequently, during the service discovery phase, 

services with comparable functionality were first found. 

Consequently, services with comparable functionality were initially found during the phase of 

service discovery. Selecting the services that best fit the user’s needs from the list of options is 

the next step. This decision is based on features that are consistent with the time and cost metrics 

used to measure QoS. A single service cannot handle the user’s complicated demands. As a 

result, the following step completes service composition. 

 

Figure 4.2: Proposed framework for La-MOGA 
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The next step involves initializing all genetic operators like the size of the population, maximum 

termination criterion in terms of generations, and probabilities of both crossover and mutation. 

The cost of each service is then calculated using Lagrange’s interpolation during the population 

initialization step, which corresponds to the generation of random time between each service’s 

maximum and minimum times. The procedure is then carried out by computing the crowding 

distance and producing non-dominated solutions. Lastly, the offspring is produced by crossing, 

mutation, and selection processes. The complete process is iterated till the convergence 

requirement is satisfied. The flow chart depicted in Figure 4.3 shows the stages involved. 

 

Figure 4.3: Flow chart illustration of La-MOGA 

4.5.3 Simulation Setup 

The proposed approach is run on a desktop computer with MATLAB R2013a version installed. 

The details of the simulation parameters used are tabulated in Table 4.2. When the trade-off 

points stay the same for three consecutive iterations—achieved in 1000 generations—the search 

is terminated. 
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Table 4.2: Simulation parameters 

Parameters Values 

Population size 200 

Number of generations 1000 

Crossover type SBX crossover 

Crossover probability (𝑃𝑐) 0.9 

Mutation type Polynomial 

mutation 

Mutation probability (𝑃𝑚) 0.07 

4.5.4 Results and Discussions 

Figure 4.4 displays the Pareto optimal solutions obtained for the service composition 

optimization using La-MOGA where the impact of non-linearities on cost has been examined 

which illustrates the real-life scenario of any agriculture problem. According to the analysis, 

the profile is heading in the direction of the coordinate axes, minimizing time and cost while 

obtaining trade-off points. These trade-off points depict the various options a farmer can have 

to choose from as per their requirements. 

4.5.5 Comparative Behavioral Analysis of La-MOGA and Li-MOGA  

The behavior of the proposed algorithm La-MOGA is evaluated with the Li-MOGA algorithm 

(a linear time-cost relationship) and shown in Figure 4.5. It can be concluded from Figure 4.5 

that both La-MOGA and Li-MOGA provide diversified Pareto solutions. The complexities and 

non-linearities inherent in real-world smart agriculture systems deter a linear relationship 

between cost and time objectives. Consequently, the Pareto solutions derived from La-MOGA 

and Li-MOGA algorithms exhibit marginal disparities due to these non-linearities. 
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Figure 4.4: Pareto optimal solutions obtained using La-MOGA 

 

Figure 4.5: Behaviour analysis of La-MOGA and Li-MOGA 
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Statistical analysis is the best method for fully understanding the findings. Thus, both La-

MOGA and Li-MOGA are statistically summarized in Table 4.3.  

Table 4.3: Statistical analysis of both La-MOGA and Li-MOGA 
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4.6 Non-Linear Service Composition Optimization using NSGA-II 

This section elaborates on how the service composition with a non-linear relationship between 

objectives is optimized using NSGA-II and named Lagrange’s multi-objective non-dominated 

sorting genetic algorithm (La-NSGA-II). 

4.6.1 Optimization Algorithm: NSGA-II 

NSGA-II is a popular meta-heuristic evolutionary algorithm, developed in 2002 by K. Deb. It 

uses the concept of non-dominated sorting and crowding distance to find uniformly distributed 

solutions for multi-objective optimizations. The algorithm starts by sorting random individuals, 

and then forming a parent population using binary tournament selection. After the parent 

population undergoes crossover and mutation operators to produce offspring, the combined 

population is used to construct the subsequent population [105]. 

4.6.2 Proposed Framework 

The proposed framework for optimizing service composition involves five layers: sensor, 

network, cloud, service composition, and application layer. Information from the IoT sensors is 
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collected through the sensor layer, the network layer connects data to servers, the cloud layer 

offers various sub-services, and the service composition layer composes services based on user 

demands. The application layer makes these services available to end users, ensuring efficient 

and effective service composition in the apple crop production process. Figure 4.6 illustrates 

the proposed framework for La-NSGA-II. The whole concept of the proposed La-NSGA-II is 

illustrated through a flow chart in Figure 4.7. 

 

Figure 4.6: Proposed framework for La-NSGA-II 

4.6.3 Simulation Setup 

The algorithm’s effectiveness is assessed using a set of simulation parameters outlined in Table 

4.4. The primary goal is to reduce both time and cost across various smart agriculture services. 

The algorithm continues its search until the balance between these objectives remains stable for 

three successive iterations. 
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Figure 4.7: Flow chart illustration of proposed La-NSGA-II 

Table 4.4: Simulation operators of NSGA-II 

Parameters Values 

No. of iterations 1000 

Population Size 200 

Mutation Probability (𝑃𝑚) 0.07 

Crossover Probability (𝑃𝑐) 0.9 

4.6.4 Results and Discussions 

The simulation outcomes of service composition optimization using La-NSGA-II produce a 

range of Pareto-optimal solutions that successfully strike a balance between time and cost 
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factors. A distinct movement toward the coordinate axes is shown in Figure 4.8. This diverse 

set of options along the Pareto front enables farmers to choose the solution that aligns best with 

their particular requirements, finding an ideal compromise between time and cost 

considerations. These findings demonstrate the capability of La-NSGA-II to deliver adaptable 

and efficient solutions for services in the realm of smart agriculture. 

 

Figure 4.8: Pareto optimal solutions obtained using La-NSGA-II 

4.6.5 Comparative Behavioral Analysis of La-NSGA-II and Li-NSGA-II 

The behavior of the proposed algorithm La-NSGA-II is evaluated with the Li-NSGA-II 

algorithm (a linear time-cost relationship) and shown in Figure 4.9. Different solution patterns 

show how adaptable two algorithms—Li-NSGA-II and La-NSGA-II—are to multi-objective 

optimization in smart agriculture, with one method using a linear relationship between 

objectives and the other a non-linear relationship. A smoother, more uniformly distributed 
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Pareto front is produced by the Li-NSGA-II, emphasizing consistent trade-offs between goals. 

The intrinsic complexity and non-linearities of real-world smart agriculture scenarios, such as 

resource interdependencies and changing environmental circumstances, are better captured by 

the non-linear relationship. Because agricultural service optimization is complex and dynamic, 

the non-linear approach produces a wide range of Pareto optimal solutions.  

 

Figure 4.9: Behaviour analysis of La-NSGA-II and Li-NSGA-II 

A thorough statistical analysis is provided in Table 4.5 to support the interpretation of the 

simulation results. This analysis provides a deeper understanding of the algorithm’s 

applicability for real smart agricultural scenarios by highlighting key performance indicators 

that evaluate each algorithm’s behavior and efficacy under linear and non-linear objective 

relationships. 
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Table 4.5: Statistical analysis of La-NSGA-II and Li-NSGA-II 
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4.7 Non-Linear Service Composition Optimization using MOGSK 

The non-linear link between objectives of service composition optimization is addressed in this 

section using the MOGSK algorithm, an optimization technique inspired by human behavior. 

It is named Lagrange’s multi-objective gaining sharing knowledge-based algorithm (La-

MOGSK). 

4.7.1 Optimization Algorithm: MOGSK 

MOGSK is an optimization algorithm that focuses on acquiring and disseminating global 

information just as humans do, thereby making it an algorithm based on human behavior. It 

relies on two phases: JGSK and SGSK. Early on in life, humans learn from small social 

networks, sharing their knowledge with others. In their middle years, they interact with larger 

networks, sharing their knowledge and opinions. This process helps them categorize and rate 

individuals as good or wicked. Knowledge rate, knowledge ratio, and knowledge factor are 

three crucial factors that are used in both the JGSK and SGSK phases. The quantity of 

knowledge that will be passed down across the generations using the JGS and SGS strategy will 

be controlled by the value of the knowledge rate.  Another criterion is knowledge factor (any 

real number > 0) that controls the entire knowledge that has been acquired and disseminated to 

the present generation of individuals over the course of generations and knowledge ratio (any 
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number between 0 and 1 including them) that controls the entire gained shared knowledge to 

be passed down over generations [110]. 

4.7.2 Proposed Framework 

The proposed algorithm of La-MOGSK has used the principle of non-dominated sorting and 

crowding distance to generate non-dominated solutions that promote diversity, enhance 

exploitation and exploration, help to increase coverage and hasten convergence to the Pareto 

optimal solutions. The proposed framework is portrayed in Figure 4.10. 

 

Figure 4.10: The proposed framework for La-MOGSK 

For LA-MOGSK, parameters such as number of generations, population size, knowledge rate, 

knowledge ratio, and knowledge factor are initialized. Following a random initialization of the 

population, the fitness value of each individual is assessed. The cost objective function is 

calculated using Lagrange’s interpolation method. Non-dominated sorting is utilized on the 

original population to provide non-dominated plus sorted solutions based on crowding distance 

and different fronts. Then, La-MOGSK adjusts the junior/senior population status using 

the junior/senior gaining sharing phase. Until the eventual requirement of the maximum 
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generations is met, these procedures are carried out repeatedly. The flow chart illustration for 

La-MOGSK is shown in Figure 4.11. 

 

Figure 4.11: The flow chart illustration of proposed La-MOGSK 

 

 



91 
 

4.7.3 Simulation Setup 

The simulation parameters used for service composition optimization using the proposed 

framework La-MOGSK are tabulated in Table 4.6. It continues to search in the solution space 

until solutions remain unchanged for three successive iterations. 

Table 4.6: Simulation parameters 

Parameters Values 

Population size 200 

No. of iterations 1000 

Knowledge rate 10 

Knowledge factor 0.5 

Knowledge ratio 0.9 

4.7.4 Results and Discussions 

The Pareto optimum solutions obtained using La-MOGSK are illustrated through the graph 

pictured in Figure 4.12. It is evident that it produces solutions closer to the origin, indicating 

the successful minimization of both time and cost objectives. A well-optimized set of trade-offs 

is indicated by the concentration of points nearer the origin, where lower values for both 

objectives are attained. These results demonstrate the algorithm’s capacity to generate superior 

solutions crucial for decision-makers in intricate optimization scenarios, like smart agriculture, 

where effective resource allocation is vital. 

4.7.5 Comparative Behavioral Analysis of La-MOGSK and Li-MOGSK 

The behavior of the proposed La-MOGSK is evaluated with Li-MOGSK (a linear time-cost 

relationship) and is illustrated in Figure 4.13. It can be observed that both La-MOGSK and Li-

MOGSK provide diversified Pareto solutions. The complexities and non-linearities inherent in 

real-world smart agriculture systems deter a linear relationship between time and cost 

objectives. Consequently, the Pareto solutions derived from La-MOGSK and Li-MOGA 

algorithms exhibit marginal disparities due to these non-linearities. 
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Figure 4.12: Pareto optimal solutions obtained using La-MOGSK 

 

Figure 4.13: Behaviour analysis of La-MOGSK and Li-MOGSK 
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For an accurate view of the results obtained, statistical analysis has been tabulated in Table 4.7. 

Table 4.7: Statistical analysis of both La-MOGSK and Li-MOGSK 
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4.8 Comparison of EC Algorithms 

This section of the chapter analyses the Pareto optimal solutions derived from three distinct EC 

techniques by considering cost and time as objective functions with a non-linear relationship 

between them. To ascertain which algorithm performs best, the evaluation uses two techniques: 

Pareto front analysis and statistical analysis. 

4.8.1 Pareto Front Analysis 

In Pareto front analysis, the solutions produced by every algorithm are graphed, with the axes 

signifying conflicting goals like cost and time. It reveals optimal compromises and compares 

different algorithm’s metrics. Plotting the Pareto fronts of various algorithms allows one to 

determine which strategy offers a better trade-off between goals; convergence to the true Pareto 

front and diversity of solutions are significant indicators. Normally, superior algorithms 

produce a Pareto front closer to the graph’s origin, indicating reduced costs and time. Figure 

4.14 illustrates the comparison graph of Pareto solutions obtained using La-MOGSK, La-

NSGA-II, and La-MOGA. 
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It is evident from Figure 4.14 that the La-NSGA-II produces a more diversified set of solutions 

than La-MOGSK and La-MOGA. In contrast to La-MOGSK and La-MOGA, the La-NSGA-II 

algorithms exhibit improved performance by offering diversified solutions along the Pareto 

front, enabling a wider exploration of the solution space. 

 

Figure 4.14: Comparison of various evolutionary algorithms for service composition optimization 

4.8.2 Statistical Analysis  

Statistical analysis is carried out to provide more depth to the algorithm comparison. The mean, 

standard deviation, and range are among the metrics that are obtained for the Pareto optimum 

solutions using this method. For instance, in a multi-objective optimization context, a lower 

mean value typically denotes better performance for time or cost objectives.  

Table 4.8 presents a statistical analysis of the various performance metrics that illustrate the 

effectiveness of La-NSGA-II compared to alternative algorithms. Its results exhibit a higher 

standard deviation, indicating that it is capable of producing a diverse range of Pareto optimal 
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solutions. This implies that La-NSGA-II can efficiently balance time and cost by exploring a 

larger solution space and providing a greater range of trade-offs. 

Table 4.8: Statistical analysis of various optimization algorithms 
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4.9 Summary 

This chapter examines the service composition optimization problem in the context of smart 

agriculture focusing on two major objectives minimizing cost and time. Using the Lagrange 

interpolation method, a non-linear relationship between the objective functions is constructed 

to capture the inherent non-linearities involved with such applications. To solve this 

optimization problem, three evolutionary computation methods are used: La-MOGA, La-

NSGA-II, and La-MOGSK. A thorough analysis of the algorithms using a variety of 

performance criteria shows that La-NSGA-II performs better than La-MOGA and La-MOGSK. 

The capacity of La-NSGA-II to successfully negotiate trade-off points between competing 

objectives is demonstrated by this finding. The importance of using evolutionary computation 

approaches for service composition optimization in smart agriculture is highlighted in the 
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chapter’s conclusion, which also shows that NSGA-II performs superior for non-linear multi-

objective service composition optimization. 
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CHAPTER 5 

IMPACT OF UNCERTAINTIES ON BOTH LINEAR AND NON-

LINEAR MULTI-OBJECTIVE SERVICE COMPOSITION 

OPTIMIZATION USING EVOLUTIONARY 

COMPUTATIONAL TECHNIQUES 

5.1 Chapter Overview 

Technological advancements have optimized conventional farming processes, enabling the 

agriculture sector to meet population growth demands. Selecting the best services out of all the 

services available is crucial to meeting the user’s complex requirements. The composition of 

those selected services is called service composition and evolutionary optimization is emerging 

to achieve it. Real-world smart agriculture applications involve many uncertain factors that 

create obstacles to retrieving critical findings from the data and are a prime concern for modern 

farmers. Thus, fuzzy set theory has been developed to better manage the intricacies of uncertain 

data. 

This chapter assesses the impact of various uncertain factors that occur in real-world agriculture 

scenarios on the optimization of composited services. It illustrates how these uncertainties, 

which range from human to environmental factors, impact the process of proficient service 

compositions through the use of the NSGA-II algorithm. 

5.2 Fuzzy Logic System 

In the year 1965, Lofti Zadeh formally established fuzzy logic (FL), a branch of Boolean logic. 

Contrary to the principles of modal logic, it is a modification of classical set theory.  This has 

the advantage of introducing the idea of confidence to verify an event, enabling it to continue 

to occur in a state that is not either true or false [115]. It is a more successful method for making 

decisions to problems because it can mimic human reasoning flexibility and the ability to handle 

uncertain and non-linear systems. Figure 5.1 illustrates the fuzzy logic architecture [116]. 
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The detailed parts of a typical fuzzy logic system are listed below [116]. 

 

Figure 5.1: Architecture of fuzzy logic [116] 

a) Fuzzifier: This segment transforms quantitative numerical input into qualitative linguistic 

variables by applying a membership function. Although there are many different functions in 

the literature, the Gaussian, triangular, and trapezoidal functions are the most commonly used 

ones. 

b) Knowledge base: A database and a rule base form the basis of this unit. Databases assign 

Fuzzy Sets (FSs) to inputs, which FSs subsequently translate into fuzzy membership values. 

After getting FSs from the database, the rule base builds a set of few rules for rule inference. 

Stated differently, inference rules are collections of numerous rules that link the system’s fuzzy 

inputs and outputs. These rules appear as “IF-THEN” rules: 

IF< Condition-I > OR/ AND < Condition-II > (OR/AND…) Then action on the outputs. 

This indicates that rules have an antecedent and consequent structure. 

c) Inference Engine: The inference block, which is the central component of FLC, uses fuzzy 

contribution and inference rules in FL to mimic human reasoning. The numerical processing of 

these rules can yield the linguistically fuzzy output of the controller. There are two types of FL 

systems: Mamdani type and Sugeno type. Sugeno is more accurate at approximation, while 

Mamdani-type is more-effective in interpretation [117].  

d) Defuzzifier: This part is employed in the defuzzification process.  
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At this point, the inference engine’s multiple commands could be integrated into one cohesive 

output, transforming the qualitative linguistic variable into numerically-based quantitative data. 

Center of gravity (COG) and mean of maximum (MOM) defuzzification methods are the two 

most widely used ones [118]. 

5.2.1 Fuzzy Inference System for Proposed Architecture 

This work employs an inference system of the Mamdani type. The input attributes selected for 

modeling the proposed framework are Management Skills (MS), Weather Conditions (WC), and 

Farmer Skills (FS). Each attribute is partitioned into five variables that are linguistic by utilizing 

the Mamdani inference system. For the various combinations of input attributes, time and cost 

are taken as output. Five fuzzy sets, VeryLess, Less, Average, Good, and Excellent, characterize 

the first input; VeryPoor, Poor, Fair, Good, and VeryGood, describe the second input & 

VeryLow, Low, Medium, High, and VeryHigh, describe the third input. Seven linguistic values 

have been obtained for the outputs: VerySmall, Small, SmallMedium, Medium, LargeMedium, 

Large and VeryLarge for the cost; VerySmall, Small, SmallMedium, Medium, LongMedium, 

Long and VeryLong for the time. These membership functions are defined over the “Universe 

of Discourse (UOD)”. It is presumed that the range of UOD for cost and time is 𝐶 ± 0.2𝐶 and 

𝑇 ± 0.2𝑇, respectively. 

The specifics of the input membership functions are displayed in Figure 5.2. 

 

(a)  
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(b) 

 

(c) 

Figure 5.2: Input membership functions (a) Management skills (b) Weather conditions (c) Farmer skills 

The mathematical formulation of each membership function for input attribute Management 

Skills (MS) is provided in equations 5.1 to 5.5 given below. 

𝜇𝑉𝐿𝑒𝑠𝑠(𝑢) =  {

0 ; 𝑢 < 0
0.25 − 𝑢

0.25
; 0 ≤ 𝑢 ≤ 0.25

      0 ; 𝑢 > 0.25

 

                                                                                                                                            (5.1) 
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𝜇𝐿𝑒𝑠𝑠(𝑢) =  

{
 
 

 
 
               0 ; 𝑢 < 0 𝑜𝑟 𝑢 > 0.5

 
𝑢

0.25
; 0 ≤ 𝑢 < 0.25

0.5 − 𝑢

0.25
; 0.25 ≤ 𝑢 ≤ 0.5

 

                                                                                              (5.2) 

𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  

{
 
 

 
 
                          0 ; 𝑢 < 0.25 𝑜𝑟 𝑢 > 0.75

𝑢 − 0.25

0.25
; 0.25 ≤ 𝑢 < 0.5

  
0.75 − 𝑢

0.25
; 0.5 ≤ 𝑢 ≤ 0.75

 

(5.3) 

𝜇𝐺𝑜𝑜𝑑(𝑢)  =  

{
 
 

 
 
               0 ; 𝑢 < 0.5 𝑜𝑟 𝑢 > 1
𝑢 − 0.5

0.25
; 0.5 ≤ 𝑢 < 0.75

1 − 𝑢

0.25
; 0.75 ≤ 𝑢 ≤ 1

 

(5.4) 

𝜇𝑉𝐺𝑜𝑜𝑑(𝑢) =  {

      0 ; 𝑢 < 0.75
𝑢 − 0.75

0.25
; 0.75 ≤ 𝑢 ≤ 1

0 ; 𝑢 > 1

 

(5.5) 

For each membership function of input attributes Weather Conditions (WC) and Farmer Skills 

(FS), the corresponding equations are defined from equations 5.6 to 5.10 and 5.11 to 5.15, 

respectively. 

𝜇𝑉𝐵𝑎𝑑(𝑢) =  {

0 ; 𝑢 < 0
0.25 − 𝑢

0.25
; 0 ≤ 𝑢 ≤ 0.25

      0 ; 𝑢 > 0.25

 

                                                                                                                                            (5.6) 
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𝜇𝐵𝑎𝑑(𝑢) =  

{
 
 

 
 
               0 ; 𝑢 < 0 𝑜𝑟 𝑢 > 0.5

  
𝑢

0.25
; 0 ≤ 𝑢 < 0.25

0.5 − 𝑢

0.25
; 0.25 ≤ 𝑢 ≤ 0.5

 

                                                                                              (5.7) 

𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  

{
 
 

 
 
                           0 ; 𝑢 < 0.25 𝑜𝑟 𝑢 > 0.75

  
𝑢 − 0.25

0.25
; 0.25 ≤ 𝑢 < 0.5

 
0.75 − 𝑢

0.25
; 0.5 ≤ 𝑢 ≤ 0.75

 

(5.8) 

𝜇𝐺𝑜𝑜𝑑(𝑢)  =  

{
 
 

 
 
               0 ; 𝑢 < 0.5 𝑜𝑟 𝑢 > 1
𝑢 − 0.5

0.25
; 0.5 ≤ 𝑢 < 0.75

1 − 𝑢

0.25
; 0.75 ≤ 𝑢 ≤ 1

 

(5.9) 

𝜇𝑉𝐺𝑜𝑜𝑑(𝑢) =  {

      0 ; 𝑢 < 0.75
𝑢 − 0.75

0.25
; 0.75 ≤ 𝑢 ≤ 1

0 ; 𝑢 > 1

 

(5.10) 

𝜇𝑉𝐿𝑜𝑤(𝑢) =  {

0 ; 𝑢 < 0
0.25 − 𝑢

0.25
; 0 ≤ 𝑢 ≤ 0.25

      0 ; 𝑢 > 0.25

 

                                                                                                                                            (5.11) 

𝜇𝐿𝑜𝑤(𝑢) =  

{
 
 

 
 
               0 ; 𝑢 < 0 𝑜𝑟 𝑢 > 0.5

  
𝑢

0.25
; 0 ≤ 𝑢 < 0.25

0.5 − 𝑢

0.25
; 0.25 ≤ 𝑢 ≤ 0.5
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                                                                                              (5.12) 

𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  

{
 
 

 
 
                           0 ; 𝑢 < 0.25 𝑜𝑟 𝑢 > 0.75

𝑢 − 0.25

0.25
; 0.25 ≤ 𝑢 < 0.5

0.75 − 𝑢

0.25
; 0.5 ≤ 𝑢 ≤ 0.75

 

(5.13) 

𝜇𝐻𝑖𝑔ℎ(𝑢)  =  

{
 
 

 
 
               0 ; 𝑢 < 0.5 𝑜𝑟 𝑢 > 1
𝑢 − 0.5

0.25
; 0.5 ≤ 𝑢 < 0.75

1 − 𝑢

0.25
; 0.75 ≤ 𝑢 ≤ 1

 

(5.14) 

𝜇𝑉𝐻𝑖𝑔ℎ(𝑢) =  {

      0 ; 𝑢 < 0.75
𝑢 − 0.75

0.25
; 0.75 ≤ 𝑢 ≤ 1

0 ; 𝑢 > 1

 

(5.15) 

The specifics of the output membership functions are displayed in Figure 5.3. 

 

(a) 
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(b) 

Figure 5.3: Output membership functions (a) Time (b) Cost 

The mathematical formulation of each membership function of output attributes Time and Cost 

are provided in equations 5.16 to 5.22 and 5.23 to 5.29, respectively.  

𝜇𝑉𝑆𝑚𝑎𝑙𝑙(𝑢) =  {

0 ; 𝑢 < 11.2
12.14 − 𝑢

0.94
; 11.2 ≤ 𝑢 ≤ 12.14

   0 ; 𝑢 > 12.14

 

(5.16) 

𝜇𝑆𝑚𝑎𝑙𝑙(𝑢) =  

{
 
 

 
 
                       0 ; 𝑢 < 11.2 𝑜𝑟 𝑢 > 13.06

𝑢 − 11.2

0.94
; 11.2 ≤ 𝑢 < 12.14

13.06 − 𝑢

0.92
; 12.14 ≤ 𝑢 ≤ 13.06

 

                                   (5.17)   

𝜇𝑆𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  {

             0 ; 𝑢 < 12.14 𝑜𝑟 𝑢 > 14
𝑢−12.14

0.92
; 12.14 ≤ 𝑢 < 13.06

14−𝑢

0.94
; 13.06 ≤ 𝑢 ≤ 14

              

(5.18)  
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𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  {

                         0 ; 𝑢 < 13.06 𝑜𝑟 𝑢 > 14.94
𝑢−13.06

0.94
; 13.06 ≤ 𝑢 < 14

14.94−𝑢

0.94
; 14 ≤ 𝑢 ≤ 14.94

                             

(5.19)   

𝜇𝐿𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  

{
 
 

 
 
                   0 ; 𝑢 < 14 𝑜𝑟 𝑢 > 15.86

𝑢 − 14

0.94
; 14 ≤ 𝑢 < 14.94

15.86 − 𝑢

0.92
; 14.94 ≤ 𝑢 ≤ 15.86

 

(5.20) 

𝜇𝐿𝑜𝑛𝑔(𝑢) =  

{
 
 

 
 
                      0 ; 𝑢 < 14.94 𝑜𝑟 𝑢 > 16.8
𝑢 − 14.94

0.92
; 14.94 ≤ 𝑢 < 15.86

16.8 − 𝑢

0.94
; 15.86 ≤ 𝑢 ≤ 16.8

 

(5.21) 

𝜇𝑉𝐿𝑜𝑛𝑔(𝑢) =  {

  0 ; 𝑢 < 15.86
𝑢 − 15.86

0.94
; 15.86 ≤ 𝑢 ≤ 16.8

0 ; 𝑢 > 16.8

 

                       (5.22) 

𝜇𝑉𝑆𝑚𝑎𝑙𝑙(𝑢) =  {

  0 ; 𝑢 < 4000

   
4333 − 𝑢

333
; 4000 ≤ 𝑢 < 4333

   0 ; 𝑢 > 4333

 

(5.23) 

𝜇𝑆𝑚𝑎𝑙𝑙(𝑢) =  

{
 
 

 
 
                        0 ; 𝑢 < 4000 𝑜𝑟 𝑢 > 4667

𝑢 − 4000

333
; 4000 ≤ 𝑢 < 4333

4667 − 𝑢

334
; 4333 ≤ 𝑢 ≤ 4667

 

                                   (5.24)   
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𝜇𝑆𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  {

                   0 ; 𝑢 < 4333 𝑜𝑟 𝑢 > 5000
𝑢−4333

334
; 4333 ≤ 𝑢 < 4667

5000−𝑢

333
; 4667 ≤ 𝑢 ≤ 5000

              

(5.25)  

𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  {

                   0 ; 𝑢 < 4667 𝑜𝑟 𝑢 > 5333
𝑢−4667

333
; 4667 ≤ 𝑢 < 5000

5333−𝑢

333
; 5000 ≤ 𝑢 ≤ 5333

                             

(5.26)   

𝜇𝐿𝑀𝑒𝑑𝑖𝑢𝑚(𝑢) =  

{
 
 

 
 
                       0 ; 𝑢 < 5000 𝑜𝑟 𝑢 > 5667

𝑢 − 5000

333
; 5000 ≤ 𝑢 < 5333

5667 − 𝑢

334
; 5333 ≤ 𝑢 ≤ 5667

 

(5.27) 

𝜇𝐿𝑜𝑛𝑔(𝑢) =  

{
 
 

 
 
                         0 ; 𝑢 < 5333 𝑜𝑟 𝑢 > 6000

𝑢 − 5333

334
; 5333 ≤ 𝑢 < 5667

6000 − 𝑢

333
; 5667 ≤ 𝑢 ≤ 6000

 

(5.28) 

𝜇𝑉𝐿𝑜𝑛𝑔(𝑢) =  {

0 ; 𝑢 < 5667
𝑢 − 5667

333
; 5667 ≤ 𝑢 ≤ 6000

0 ; 𝑢 > 6000

 

                       (5.29) 

Fuzzy rules govern the controller’s operation. A total of 6125 (5 × 5 × 5 × 7 × 7) rules are 

necessary, with 250 IF-THEN rules defined using Mamdani inference. These fuzzy rules 

integrate prior experience and expert knowledge to establish connections between input and 

output variables [119]. Table 5.1 presents a selection of fuzzy inference rules. These guidelines 

provide logical direction for selecting the optimal set of solutions for the composite services. 
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Table 5.1: Fuzzy rules 

Rule Management 

Skills 

Weather 

Conditions 

Farmer 

Skills 

Time Cost 

1 VeryGood Good VeryHigh Small Small 

2 VeryGood VeryBad VeryHigh Long Large 

3 Good Good VeryLow SmallMedium SmallMedium 

4 Medium VeryBad Medium Long Large 

5 Less Good Low LongMedium LargeMedium 

……… VeryLess Medium VeryLow VeryLong VeryLarge 

These guidelines will determine the smart choices for identifying the best set of solutions for 

the combined services. The optimal choices have been determined through the application of 

expert knowledge and empirical data.  

5.3 Impact of Uncertainties on Linear Service Composition Optimization  

This section covers how various uncertain factors like environmental, human-based, or 

economic influence the optimization process of service composition problem by using a FIS 

considering a linear type of relationship between cost and time objectives.  

5.3.1 Optimization Algorithm: NSGA-II 

The algorithm starts with a randomized population, which is subsequently organized using the 

non-dominated sorting procedure, where all solutions that are not dominated are assigned rank 

1 and have been temporarily eliminated from the initial population, followed by the subsequent 

set of solutions being ranked as 2, and so on until all possible solution sets are ranked. Then, 

the current population is subjected to a binary tournament selection technique, which selects 

one solution based on rank from the current population, and when two solutions are on the same 

front, the crowding distance theory is utilized for the selection mechanism. 

Once parents are selected, offspring are produced by applying crossover and mutation operators  
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to the parent population. The subsequent population is formed by selecting the best solutions 

from the blended pool of offspring and parents. This process repeats until the criteria for 

termination are met, which could be either predetermined generations or when the solutions 

reach a saturation level [105].  

5.3.2 Proposed Fuzzy-based Architecture 

Application-based model’s uncertain, imprecise, and subjective behavior can be solved by using 

either fuzzy logic or fuzzy set theory. Fuzzy logic models have been demonstrated to be capable 

of handling the unpredicted behavior of the environment variables about agricultural datasets 

in many recent tests and studies [120]. 

The primary goal of modeling systems for smart agriculture is to determine the best way to 

optimize the system for the particular kind of dataset being studied. Finding an algorithm that 

can resolve numerous uncertain attributes in agricultural data sets is challenging because these 

properties are extremely variable and dependent on other factors. It performs a comparable role 

to that of human perception. Fuzzy logic can be utilized to create agricultural decisions since it 

can handle uncertainty [121]. The proposed framework for Fuzzy Linear NSGA-II (Fuzzy-Li-

NSGA-II) is portrayed in Figure 5.4. 

 

Figure 5.4: Proposed architecture for Fuzzy-Li-NSGA-II  
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This system functions across several tiers within an IoT ecosystem, where IoT sensor data is 

preserved in cloud-based services. While several providers offer comparable characteristics, 

their QoS attributes differ. The initial step involves a service discovery process to identify 

functionally similar services. Following this, the required services are chosen from the 

discovered options to meet user needs, with selection guided by QoS-based criteria. Since 

individual services cannot fully address complex user requests, a service composition phase is 

implemented. Various uncertain elements can indirectly affect smart agriculture services. To 

evaluate the impact of these uncertainties, a fuzzy logic controller is employed. The process 

concludes with the application of optimization operators to an initialized population, aiming to 

find Pareto optimal solutions that ultimately satisfy user requirements. 

Figure 5.5 illustrates the flowchart for the proposed Fuzzy-Li-NSGA-II algorithm. 

 

Figure 5.5: Flow chart of proposed Fuzzy-Li-NSGA-II approach 

5.3.3 Simulation Setup 

MATLAB R2013a version is used to run the proposed algorithm. An FIS has been used to model 

it to ascertain how uncertainties would affect the specified multiple objectives and NSGA-II is 

used as an optimization algorithm (Optimal algorithm out of MOGA, NSGA-II, and MOGSK). 
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Table 5.2 contains a tabulation of the parameters that were utilized to validate the algorithm’s 

performance. 

Table 5.2: Simulation parameters 

Parameters Values 

Population Size (𝑁𝑃) 200 

Number of Iterations 1,000 

Mutation Probability 0.07 

Crossover Probability 0.9 

5.3.4 Results and Discussions 

Examining how the uncertainties present in real-life smart agriculture applications influence 

the overall composited services is the aim of this study. For this, a Mamdani FIS has been 

designed and after that, the composited services are optimized using the NSGA-II algorithm, 

thereby, producing a set of Pareto optimal solutions. Different input variable values are used to 

assess their influence on the output variables. Figure 5.6 illustrates four possible distinct cases 

of membership functions. 

In the first case, each of the three input membership functions—MS, WC, and FS—is equal to 

0.2 which can be regarded as a worst-case scenario. This indicates that Management Skills (MS) 

are VeryLess, Weather Conditions (WC) are VeryBad, and Farmer Skills (FS) are VeryLow. For 

the second case, all MS, WC, and FS are equal to 0.5 meaning all MS, WC, and FS are at Medium 

level, indicating the normal case scenario. For the third instance, MS = 0.5, WC = 0.8, and FS 

= 0.2 meaning that Management Skills (MS) are Medium, Weather Conditions (WC) are 

VeryGood, and Farmer Skills (FS) are VeryLow. This shows the mixed-case scenario. The last 

case depicts MS, WC, and FS = 0.9 where Management Skills (MS) are VeryGood, Weather 

Conditions (WC) are VeryGood, and Farmer Skills (FS) are VeryHigh. showing the best-case 

scenarios. It can be observed from Pareto front analysis that best-case scenario provides a more 

diversified solution and is also closer to the origin, indicating better solutions than other 

scenarios.   
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Figure 5.6. Distinct possible case scenarios of smart agriculture  

To improve readability and clarity, a statistical analysis of the findings is presented in Table 5.3. 

Table 5.3: Statistical analysis 
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Worst 

Case  

Time 706.7 406.6 81.94 511.3 490 406.6 300.1 

Cost 1039 572 138.3 759.9 734.9 572 467.3 

Normal 

Case  

Time 498.3 352.2 42.89 413.1 409.3 352.2 146.1 

Cost 962.6 583.1 108.2 734.3 722.9 583.1 379.5 
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Mixed 

Case  

Time 570.9 375.6 56.04 457 443.8 375.6 195.3 

Cost 810.8 509.8 91.39 629 607.9 509.8 301 

Best 

Case  

Time 575.9 327.4 76.04 429.1 411.4 327.4 248.5 

Cost 1153 432.6 157.3 590.8 540.2 432.6 720.5 

5.4 Impact of Uncertainties on Non-Linear Service Composition 

Optimization  

This part of the chapter embraces the impact of various environmental and non-environmental 

factors on the optimization process of service composition by using a FIS considering a non-

linear relationship between cost and time objectives to represent the real-world scenarios of 

smart agriculture. The non-linear relationship between the cost and time objectives is defined 

by Lagrange’s interpolation, which will be covered first. An overview of the NSGA-II 

optimization algorithm will come next, and then a description of the proposed architecture 

Fuzzy Lagrange’s NSGA-II (Fuzzy-La-NSGA-II).  

5.4.1 Phase 1: Lagrange’s Interpolation 

A strong mathematical method for estimating unknown values within a certain range of known 

data points is Lagrange interpolation. This method is very helpful for interpolation jobs in a 

variety of applications because it allows values to be calculated at defined intervals by building 

a polynomial that goes through a given collection of points. The non-linear relationship between 

the cost and time objectives in service composition optimization for smart agriculture is 

established in this work using Lagrange interpolation. This method enables better decision-

making and optimization results by providing a more realistic depiction of the difficulties in 

striking a balance between these two crucial goals [122]. 

5.4.2 Phase 2: NSGA-II 

The algorithm begins with a randomized population, organized using non-dominated sorting. It 

then uses a selection method of binary tournament to create a parent population, using crowding 

distance. Offspring are produced using crossover and mutation operators, and the subsequent 
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population is formed by selecting the best solutions from the blended pool. This process repeats 

until a termination criterion is satisfied [105]. 

5.4.3 Proposed Fuzzy-based Architecture 

Fuzzy set theory and fuzzy logic models can resolve ambiguous behavior in application-based 

models, particularly in agricultural data sets. These models can handle uncertain attributes, 

similar to how the brain functions, making smart agricultural decisions easier and more 

adaptable to the specific data set being considered [123]. Thus, the proposed fuzzy-based 

system explores the influence of fuzzy systems on optimization algorithms for smart 

agriculture, illustrating the architecture in Figure 5.7. 

This architecture operates on several IoT structure tiers. IoT sensor data is kept in the cloud as 

a service. While many services have comparable functionality, their QoS features differ. As a 

result, during the service discovery phase, services with comparable functionality were initially 

found. The next step is to choose the services from the pool of available options that best suit 

the user’s needs. This choice is based on characteristics that are in accordance with cost and 

time taken as QoS metrics. Because the requests of user’s are multifaceted, one service couldn’t 

be used to satisfy them. Therefore, service composition is completed in the following stage. 

The relationship between the cost and time metrics is non-linear since the real scenario is used. 

Thus, it is defined using Lagrange’s interpolation method. The services that smart agriculture 

offers are indirectly impacted by numerous unknown factors. Fuzzy logic controllers have thus 

been used to assess the effects of those factors on services. After initializing the population, 

additional optimization operators were applied to obtain Pareto optimal solutions, which 

ultimately satisfied user demands. The flowchart to illustrate the proposed Fuzzy-La-NSGA-II 

approach is shown in Figure 5.8. 

5.4.4 Simulation Setup 

The proposed Fuzzy-La-NSGA-II algorithm is tested using MATLAB R2013a version.  

Mamdani FIS is used to model the various environmental and human-based uncertainties to 

check their impact on the real-world scenario of smart agriculture applications with NSGA-II 

as optimization algorithm (Optimal algorithm out of MOGA, NSGA-II, and MOGSK). 

Simulation parameters for the optimization algorithm are tabulated in Table 5.4. 
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Figure 5.7: Proposed architecture for Fuzzy-La-NSGA-II 

 

Figure 5.8: Flow-chart illustration of Fuzzy-La-NSGA-II 
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Table 5.4: Simulation parameters 

Parameters Values 

Population Size (𝑁𝑃) 200 

Number of Iterations 1,000 

Mutation Probability 0.07 

Crossover Probability 0.9 

5.4.5 Results and Discussions 

Smart agriculture faces uncertainties like environmental and economic factors, requiring robust 

optimization strategies to ensure adaptability and resilience. Technology and data-driven 

approaches help address these uncertainties, but robust optimization strategies are needed for 

optimal results. Thus, this part of the objective has examined the impact of uncertainties on the 

proposed architecture of optimizing time and cost by considering a non-linear relationship 

between them and optimizing them. 

To determine how input variables affect output variables, distinct values are obtained. Four 

scenarios involving fuzzy membership functions are depicted in Figure 5.9. All three of the 

input membership functions (MS, WC, and FS) are equal to 0.3 in the first case, which can be 

considered a worst-case scenario; in the second case, which can be considered a normal-case 

scenario, they are all equal to 0.5. A mixed-case scenario is considered by taking MS = 0.5, WC 

= 0.9, and FS = 0.3 whereas a best-case scenario is taken by considering all MS=WC=FS=0.8. 

As can be seen from Figure 5.9, the best-case scenario offers the most favorable set of Pareto 

optimal solutions while the worst-case scenario displays, when compared, the poorer optimal 

Pareto solutions.  
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Figure 5.9: Distinct possible case scenarios of Fuzzy La-NSGA-II 

Table 5.5 presents a statistical analysis to improve the interpretation of the results. 

Table 5.5: Statistical analysis 
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Worst 

Case  

Time 754.7 360.3 117.8 502.7 471.5 360.3 394.4 

Cost 1.066e+

06 

4.896e+

05 

1.778e+05 7.164

e+05 

6.698

e+05 

4.896e+0

5 

5.76e

+05 

Time 686 327.8 108.5 461 432.4 327.8 358.2 
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Normal 

Case  

Cost 9.736e+

05 

4.717e+

05 

1.558e+05 6.569

e+05 

6.123

e+05 

4.717e+0

5 

5.019

e+05 

Mixed 

Case  

Time 653.5 315.6 102.6 442.8 414.4 315.6 337.9 

Cost 9.357e+

05 

4.443e+

05 

1.484e+05 6.267

e+05 

5.828

e+05 

4.443e+0

5 

4.914

e+05 

Best 

Case  

Time 596.1 301.6 87.78 411.2 386.2 301.6 294.5 

Cost 8.921e+

05 

4.286e+

05 

1.447e+05 6.057

e+05 

5.712

e+05 

4.286e+0

5 

4.635

e+05 

5.5 Behavioral Analysis Comparison of Fuzzy Li-NSGA-II and Fuzzy La-

NSGA-II 

This section provides a behavioral analysis comparison of Fuzzy-Li-NSGA-II and Fuzzy-La-

NSGA-II by using both Pareto front and statistical analysis. Here, Fuzzy-Li-NSGA-II depicts 

a linear relationship between the competing goals of minimizing cost and time whereas Fuzzy-

La-NSGA-II portrays a non-linear relationship for a more realistic experience of real-world 

smart agriculture applications. Figure 5.10 presents a behavioral analysis comparison of both 

approaches when MS=WC=FS=0.5 means a normal-case scenario.  

It has been analyzed that both provide diversified solutions for their particular relationship 

between cost and time objectives. However, the Fuzzy-La-NSGA-II is more reliable in 

representing real-world scenarios in the context of non-linear service composition optimization 

problems. For a better understanding, statistical analysis is provided in Table 5.6. 
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Figure 5.10: Behavioral analysis of Fuzzy La-NSGA-II and Fuzzy-Li-NSGA-II 

Table 5.6: Statistical analysis 
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Fuzzy 

La-

NSGA-

II 

Time 676.9 327.1 105.3 455.8 421.8 327.1 349.8 

Cost 9.739e+

05  

4.595e+

05  

1.589e+05  6.593

e+05  

6.294

e+05  

4.595e+0

5  

5.144

e+05  

Time 694 335.3 104.3 482.1 453.8 335.3 358.7 
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Fuzzy 

Li-

NSGA-

II 

Cost 8.744e+

05  

4.44e+0

5  

1.247e+05  6.076

e+05  

5.743

e+05  

4.44e+05  4.304

e+05  

5.6 Summary 

In the context of smart agriculture, this chapter explores how uncertainties affect composited 

service optimization. A Mamdani fuzzy inference system is used to assess these uncertainties, 

providing a methodical way to quantify and examine their effects. The most successful 

optimization method for resolving our service composition problem is NSGA-II, which builds 

on the results of chapters 3 and 4. As a result, NSGA-II is used as the main optimization 

algorithm in chapter 5. The chapter investigates how uncertainties affect both linear and non-

linear objective functions by taking Fuzzy-Li-NSGA-II and Fuzzy-La-NSGA-II, respectively. 

To understand the difference between both, a behavioral analysis is provided. Because the 

relationship between services in a composition might be either linear or non-linear, the study 

shows that both kinds of objectives can be used depending on user requirements. This 

adaptability enables customized solutions that fit the unique requirements and dynamics of 

scenarios involving smart agriculture. 
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CHAPTER 6 

A NOVEL NATURE-INSPIRED MULTI-OBJECTIVE 

ELECTRIC EEL FORAGING OPTIMIZATION ALGORITHM 

6.1 Chapter Overview 

Solving multi-objective optimization challenges in real-world applications is challenging when 

using mathematical models. As a result, various nature-inspired meta-heuristic approaches are 

employed to address these complex problems. 

This chapter reflects on the ingenious collective foraging strategies of electric eels found in 

nature and considers them as an inspiration for a multi-objective electric eel foraging 

optimization algorithm. To enable both exploitation and exploration throughout the process, the 

algorithm mathematically replicates the four essential foraging behaviors of interaction, 

hunting, migrating, and resting. 

6.2 Description of Electric Eel Foraging Behavior 

Electric eels, native to South America, are known for their high voltage wires, capable of 

releasing 300-800 V to stun prey. With thousands of electrocytes in each of their three separate 

sets of electric organs, their organs store energy like small batteries [124]. Figure 6.1 shows the 

structure of electric eel [125]. 

Eels generate 10 V of electrical signals to locate prey, use this feedback for defense, and 

communicate with each other. They emit more charge when finding prey, making it an effective 

foraging strategy. Eels are swarm-based creatures, using social predation for hunting. They 

form a “prey ball” by grouping together, swimming in circles, and herding fish into it before 

making a high-voltage raid. It is more likely to catch more prey when hunting in groups, 

especially when fish are plentiful [126]. 
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Figure 6.1: Physical structure of electric eel [125] 

6.3 Mathematical Representation of Electric Eel Foraging Optimization 

(EEFO) 

Effectively navigating intricate problem environments is made possible by EEFO’s dynamic 

management of the exploration and exploitation phases. It incorporates effective local and 

global search strategies like hunting and migration, displaying higher performance in 

comparable tests. Because of its scalability and ease of implementation, EEFO is a reliable 

option for solving complex problems and producing high-quality results. The shifting of 

exploration to exploitation is managed by a factor called the energy factor 𝐸𝑓 which is defined 

below in equation 6.1 [125]. 

𝐸𝑓 = 4 × 𝑠𝑖𝑛 (1 −
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
) × 𝑙𝑛 (

1

𝑟1
)                                                                         (6.1) 

Here, 𝑟1 is a random number within (0,1). 

When 𝐸𝑓 ≤ 1, it performs globally whereas for 𝐸𝑓 > 1, it performs local search by using 

resting, hunting, and migrating regions. The flowing subsection in EEFO models foraging 

activities. 
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6.3.1 Interaction 

Every electric eel in EEFO is a candidate solution, and the intended prey is the one that performs 

best after every step. They cooperatively interact with other individuals using position 

information, a behaviour known as the global exploration phase. They can update their position 

by measuring the difference between a randomly chosen eel and the population centre. Eels 

churn, or move randomly in various directions, as a means of communication with one another. 

The equations 6.2 to 6.6 represent this churn and are given below [125]. 

𝐶 =  𝑛1 × [𝐵1, 𝐵2, … , 𝐵𝑠, … , 𝐵𝐷]                                                                                          (6.2) 

𝑛1 ∼ 𝒩(0,1)                                                                                                                         (6.3) 

𝐵(𝑠) =  {
1   𝑖𝑓 𝑠 == 𝑔𝑙
0              𝑒𝑙𝑠𝑒

                                                                                                       (6.4) 

𝑔 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 (𝐷)                                                                                                             (6.5) 

𝑙 =  ⌈
𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠−𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
× 𝑟2 × (𝐷 − 2) + 2⌉                                                                           (6.6) 

In the above equations, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 defines the maximum iterations defined for 

convergence, 𝑡 is the current iteration, 𝐶 is the churning factor. 

The interaction behavior of the eels can be defined using equation 6.7 given below [125]. 

𝑣𝑘(𝑡 + 1) = {
𝑥𝑖(𝑡) + 𝐶 × (𝑥̅(𝑡) −  𝑥𝑘(𝑡))  𝑤ℎ𝑒𝑟𝑒 𝑝1 > 0.5

𝑥𝑖(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑘(𝑡)) 𝑤ℎ𝑒𝑟𝑒 𝑝1 ≤ 0.5
     𝑓𝑖𝑡(𝑥𝑖(𝑡)) < 𝑓𝑖𝑡(𝑥𝑘(𝑡)) 

𝑣𝑖(𝑡 + 1) = {
𝑥𝑘(𝑡) + 𝐶 × (𝑥̅(𝑡) −  𝑥𝑖(𝑡))  𝑤ℎ𝑒𝑟𝑒 𝑝2 > 0.5

𝑥𝑘(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑖(𝑡)) 𝑤ℎ𝑒𝑟𝑒 𝑝2 ≤ 0.5
     𝑓𝑖𝑡(𝑥𝑖(𝑡)) ≥ 𝑓𝑖𝑡(𝑥𝑘(𝑡))          

                                                                                                                                              (6.7)                    

𝑥̅(𝑡) =  
1

𝑛
∑ 𝑥𝑘(𝑡)
𝑛
𝑘=1                                                                                                             (6.8) 

𝑥𝑟 = 𝑙𝑜𝑤 + 𝑟 × (𝑢𝑝 − 𝑙𝑜𝑤)                                                                                                (6.9) 
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In equation (6.7), 𝑝1 and  𝑝2 are the random numbers generated between (0,1), 𝑓𝑖𝑡 (𝑥𝑘) defines 

fitness of that particular candidate position of 𝑘𝑡ℎ eel, and 𝑥𝑖  is the eel position which is picked 

stochastically from the population that exists at that time. Equations 6.8 and 6.9 show the mean 

position of eels and any random eel position, respectively. 𝑙𝑜𝑤 and 𝑢𝑝 are lower and upper 

bound, respectively which are shown in equation 6.9. 

6.3.2 Resting 

Electric eels in the EEFO should construct a resting area before starting resting activities. The 

eel’s position and search space should be standardized to a range of 0-1 to increase efficiency. 

The anticipated position is believed to be the center of the eel’s resting region. The solutions 

found so far in the interaction phase are refined during this phase. Equation 6.10 defines the 

resting area whereas equations 6.11, 6.12, and 6.13 describes the scaling factor, centre of the 

resting region, and normalized number, respectively [125]. 

{𝑋|𝑋 − 𝑍(𝑡) ≤  𝛼0 × |𝑍(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)|}                                                                          (6.10) 

𝛼0 = 2 ∙ (𝑒 − 𝑒
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)                                                                                                (6.11) 

𝑍(𝑡) = 𝑙𝑜𝑤 + 𝑧(𝑡) × (𝑢𝑝 − 𝑙𝑜𝑤)                                                                                      (6.12) 

𝑧(𝑡) =  
𝑥𝑟𝑎𝑛𝑑{𝑛}
𝑟𝑎𝑛𝑑{𝑑}

∙{𝑡−𝑙𝑜𝑤𝑟𝑎𝑛𝑑{𝑑}}

𝑢𝑝𝑟𝑎𝑛𝑑{𝑑}−𝑙𝑜𝑤𝑟𝑎𝑛𝑑{𝑑}
                                                                                               (6.13) 

Here, 𝑋𝑝𝑟𝑒𝑦 is the position vector of the best solution obtained till that time, 𝛼0 is the initial 

scale of the resting region, the expression 𝛼0 × |𝑍(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)| defines the resting area’s 

range.  

Thus, the resting position within the resting area of a particular eel can be defined as in equation 

6.14. It is performed prior to resting behavior. 

𝑅𝑘(𝑡 + 1) = 𝑍(𝑡) + 𝛼 × |𝑍(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)|                                                                      (6.14) 

𝛼 = 𝛼0 × sin (2𝜋𝑟3)                                                                                                          (6.15) 

In equation 6.15, 𝛼 denotes resting region’s scale. The eel’s resting behavior is determined by 

the equation 6.16 given below. 
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𝑣𝑘(𝑡 + 1) = 𝑅𝑘(𝑡 + 1) + 𝑛2 × (𝑅𝑘(𝑡 + 1) − 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑘(𝑡))                            (6.16) 

6.3.3 Hunting 

Eels cooperatively swim in a large circle to hunt prey, communicating and cooperating with 

their peers by using low electric discharges. As interaction increases, the electrified circle 

shrinks, and eels bring fish from deeper to shallow regions, creating a hunting area where prey 

moves. The hunting area is defined in below given equation 6.17 [125]. 

{𝑋|𝑋 − 𝑋𝑝𝑟𝑒𝑦(𝑡)| ≤ 𝛽0 × |𝑥̅(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)|}                                                                       (6.17) 

𝛽0 = 2 ∙ (𝑒 − 𝑒
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)                                                                                                  (6.18) 

In equation 6.18, 𝛽0 is the initial scale of the hunting area whereas in equation 6.17, the term 

𝛽0 × |𝑥̅(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)| defines the hunting range of the eel. Thus, newly found prey’s position 

enclosed by the hunting area can be described using equation 6.19. 

ℎ𝑝𝑟𝑒𝑦(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) + 𝛽 × |𝑥̅(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)|                                                           (6.19) 

𝛽 =  𝛽0 × sin (2𝜋𝑟4)                                                                                                          (6.20) 

In equation 6.20, 𝛽 is the scale of the hunting area. 

An eel starts behaving like prey in that particular hunting area once it has been discovered. The 

eel swiftly locates its prey, coils its head and tail, and entangles it with the prey, emitting a high-

voltage current. The curling behavior is described by the equation 6.21. 

𝑣𝑘(𝑡 + 1) =  ℎ𝑝𝑟𝑒𝑦(𝑡 + 1) +  𝜂 × (ℎ𝑝𝑟𝑒𝑦(𝑡 + 1) − 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑘(𝑡)                       (6.21) 

𝜂 = 𝑒
𝑟5∙(1−𝑡)

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∙ cos (2𝜋𝑟5)                                                                                                         (6.22) 

The factor 𝜂 in equation 6.22 is the curling factor. 

6.3.4 Migration 

Migration in EEFO entails recurring exploration of various places in the search space. Similar 

to electric eels migrating to new hunting regions, this mechanism maintains an equilibrium 
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between exploitation and exploration. The following equations 6.23 and 6.24 are used to 

quantitatively model the eel’s migration behavior [125]. 

𝑣𝑘 (𝑡 + 1) = −𝑟6 × 𝑅𝑘(𝑡 + 1) +  𝑟7 × ℎ𝑟(𝑡 + 1) − 𝐿 × (ℎ𝑟(𝑡 + 1) − 𝑥𝑘(𝑡))                 (6.23) 

ℎ𝑟(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) + 𝛽 × |𝑥̅(𝑡) − 𝑋𝑝𝑟𝑒𝑦(𝑡)|                                                                (6.24) 

Here, ℎ𝑟 is any position within hunting area. 𝑟6 and 𝑟7 are the random numbers within the range 

(0,1). 𝐿 is the Levy Flight function and the factor (ℎ𝑟(𝑡 + 1) − 𝑥𝑘(𝑡))shows the movement of 

eels towards the hunting area.  

6.4 Multi-objective Electric Eel Foraging Optimization 

The proposed MO-EEFO has made a few transitions in the single-objective algorithm to make 

it multi-objective. One is the creation of non-dominant solutions that have been found so far. 

Non-dominated sorting and the crowding distance are used to obtain those non-dominated 

solutions, which enhance diversity and facilitate better exploitation and exploration. 

MO-EEFO starts by setting up several parameters, such as the maximum iterations and the 

electric eel’s population size. In the meantime, a uniform distribution of a set of eels is created 

at random to make a population of eels known as eel chromosomes. To create a solution set that 

is more refined than others, the concept of non-dominated sorting is applied to organize them 

based on their rank and crowding distance. 

It creates the global best solutions. An energy factor 𝐸𝑓 is then defined for calculating the energy 

of each eel chromosome at each iteration depending on which one of the four foraging behaviors 

of the eel chromosome will be chosen to explore and exploit the search space properly. For each 

iteration, if (𝐸𝑓 > 1), then each eel chromosome uses interactive behavior to execute 

exploration of the search space. Each eel chromosome engages in exploitation when the energy 

factor (𝐸𝑓 ≤ 1), employing the resting, migrating, or hunting behaviors with an equal chance. 

All eel chromosomes are subjected to each situation in order to generate new offspring eels, 

which are then compared with their parent eel chromosomes. After that, an intermediate 

population is created which is the combination of parent eel chromosomes and newly formed 

offspring eels. Again, non-dominated sorting is applied to find the best solutions from the 

intermediate population. The concept of non-dominated sorting arranges the population based 
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on rank and crowding distance. With the increase in the number of iterations, the value of 𝐸𝑓 

falls which forces eels to shift from exploration to exploitation. This process is carried out 

interactively up until the convergence criterion is met. The pseudocode for the MO-EEFO 

algorithm is given in Figure 6.2 whereas the flow chart for the same is illustrated in Figure 6.3. 

 

Figure 6.2: Pseudocode of proposed MO-EEFO algorithm 
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Figure 6.3: Flow chart illustration of the proposed MO-EEFO algorithm 

6.5 Simulation Setup and Result Analysis 

This section covers the experimental analysis of the proposed MO-EEFO algorithm’s efficiency 

on Zitzler-Deb-Thiele (ZDT) benchmark problems, and comparison of proposed algorithm with 

other algorithms present in literature to verify its efficiency. 

6.5.1 Benchmark Problems and Comparison with Algorithms 

To evaluate the performance of proposed MO-EEFO algorithm, it is tested on ZDT benchmark 

problems and a comparative analysis is provided. These ZDT benchmark problem's distinctive 

characteristics and the broad range of challenges they pose make them popular for multi-

objective optimization method evaluation. ZDT1’s convex Pareto front makes it an excellent 

foundation for assessing the convergence and diversity capacities of optimization algorithms. 

ZDT2, on the other hand, displays a concave Pareto front, which makes it appropriate for 

evaluating how well algorithms manage non-convexity while preserving variety within the 

solution set. The comparative results are shown in Figures 6.4 and 6.5 for ZDT1 and ZDT2, 

respectively. 
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Figure 6.4: Pareto front obtained by MO-EEFO of ZDT1 function 

 

Figure 6.5: Pareto front obtained by MO-EEFO of ZDT2 function 
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It demonstrates that the proposed algorithm is capable of effectively navigating the solution 

space and consistently obtaining a distribution of solutions resembling these well-known 

benchmark problems. The overlap suggests that MO-EEFO, like ZDT1 and ZDT2, continues 

to discover the efficient trade-offs between conflicting objectives with a high degree of 

accuracy. 

Furthermore, a comprehensive comparison of proposed MO-EEFO with a few of the well-

known optimizers present in the literature including Multi-objective particle swarm 

optimization (MOPSO) [127], MOGSK [111], MOGA [128], Non-dominated sorting whale 

optimization algorithm (NSWOA) [129], and NSGA-II [105] is conducted. Parameters for all 

these compared algorithms are adjusted according to the data available in the literature whereas 

for MO-EEFO, only the population size and maximum number of iterations are set. 

The analysis is regulated using a number of key performance metrics, including convergence 

performance, and diversity of the Pareto solutions obtained. Basic statistical measures such as 

range, minimum, maximum, standard deviation, mean and median are also analyzed to show 

the effectiveness of our proposed algorithm. Figures 6.6 and 6.7 show the comparison results 

of distinct optimization algorithms of ZDT1 and ZDT2 with MO-EEFO, respectively. 

As it can be seen in Figures 6.6 and 6.7, the proposed MO-EEFO algorithm continuously 

performs equivalent to other algorithms in terms of convergence to the true Pareto front. 

Additionally, it maintains diversity throughout the optimization process by yielding a set of 

solutions that are evenly dispersed across the Pareto front.  

To get a clear picture of the Pareto solutions obtained through various meta-heuristic 

algorithms, statistical analysis is tabulated in Table 6.1. 

The proposed algorithm shows a consistent superiority over the other algorithms concerning 

the average objective values. Its reduced standard deviation suggested increased resilience and 

stability in a variety of problem scenarios. This shows that when compared to the other well-

established algorithms, the proposed algorithm produces better average solutions as well as 

more reliable results. 
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Figure 6.6: Comparison of various optimization algorithms of ZDT1 with MO-EEFO 

 

Figure 6.7: Comparison of various optimization algorithms of ZDT2 with MO-EEFO
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Table 6.1: Statistical analysis of various algorithms for ZDT problems 

Benchmark 

Problem 

Algorithm Objectives Maximum Minimum Standard 

Deviation 

Mean  Median  Mode Range 

ZDT1 MOPSO 1st 

objective 

1 0 0.3086 0.4239 0.3934 0 1 

 2nd 

objective 

1 0 0.2793 0.4154 0.3763 0 1 

MOGSK 1st 

objective 

0.9998 6.03e-05 0.3014 0.3885 0.3541 6.03e-05 0.9998 

 2nd 

objective 

1.286 0.0001079 0.295 0.4495 0.405 0.0001079 1.286 

MOGA 1st 

objective 

1 0 0.293 0.5 0.5 0 1 

 2nd 

objective 

1 0 0.2421 0.3352 0.2929 0 1 
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NSWOA 1st 

objective 

1 0 0.3161 0.4056 0.3464 0 1 

 2nd 

objective 

1 0 0.2895 0.4344 0.4179 0 1 

NSGA-II 1st 

objective 

1 0 0.3132 0.4073 0.3556 0 1 

 2nd 

objective 

1.001 0.0004385 0.2859 0.4293 0.4044 0.0004385 1 

MO-EEFO 1st 

objective 

1 1.183e-09 0.3097 0.4156 0.3869 1.183e-09 1 

 2nd 

objective 

1 0.0003485 0.2845 0.4214 0.3785 0.0003485 0.9996 

ZDT2 MOPSO 1st 

objective 

1 0 0.2735 0.6001 0.6372 0 1 

 2nd 

objective 

1 0 0.3074 0.5703 0.5997 0 1 
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MOGSK 1st 

objective 

0.9915 2.373e-30 0.2903 0.5454 0.5726 2.373e-30 0.9915 

 2nd 

objective 

1 0.02222 0.3072 0.6197 0.6721 0.02222 0.9778 

MOGA 1st 

objective 

1 0 0.293 0.5 0.5 0 1 

 2nd 

objective 

1 0 0.3028 0.665 0.75 0 1 

NSWOA 1st 

objective 

1  0 0.2822 0.588 0.6233 0 0.2822 

 2nd 

objective 

1 0 0.3097 0.5765 0.6147 0 0.3097 

NSGA-II 1st 

objective 

1 0 0.2952 0.5803 0.6184 0 1 

 2nd 

objective 

1.003 0.006427 0.3244 0.5821 0.6229 0.006427 0.9968 
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MO-EEFO 1st 

objective 

0.9991 2.727e-08 0.2818 0.5748 0.6063 2.727e-08 0.9991 

 2nd 

objective 

1.509 0.01824 0.3149 0.6024 0.6391 0.01824 1.491 
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6.6 Comparison of proposed MO-EEFO with other meta-heuristics  

To ensure the effectiveness of the proposed algorithm in real-world scenarios, service 

composition optimization in smart agriculture is considered. The dataset defined in Table 3.1 

which contains a set of services required for apple plant production in Shimla and Kullu regions 

is used to validate the proposed MO-EEFO algorithm.  

These composited services are optimized using four distinct meta-heuristic optimizers named 

MO-EEFO, NSGA-II, MOGSK, and MOGA. Comparison results are illustrated in Figure 6.8. 

 

Figure 6.8: Comparative analysis of various algorithms for service composition in smart agriculture 

It is evident from examining Figure 6.8 that the proposed MO-EEFO provides the best 

solutions for this real-world application of smart agriculture. The closeness to the origin 

suggests that the multi-objective optimization of minimizing both time and cost for service 

composition optimization in smart agriculture is completed with exceptional performance. 

Additionally, a greater number of Pareto points obtained from MO-EEFO facilitates a broader 



136 
 

set of potential solutions, thereby, offering more options for users. In summary, the results imply 

that MO-EEFO, excels in providing a more reliable and efficient method for managing the 

trade-offs present in this complex optimization problem in comparison to other algorithms by 

providing more solution diversity. Statistical analysis for the same is provided in Table 6.2 to 

get a clearer understanding of the algorithms. 

Table 6.2: Statistical analysis of various compared algorithms 
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MO-

EEFO  

Time 693.6 328.8 109.7 478.2 450.9 693.6 364.8 

Cost 9.716e+

05  

4.447e+

05  

1.424e+05  6.244

e+05  

5.841

e+05  

4.447e+0

5  

5.269

e+05  

MOGS

K 

Time 693.8 335.2 103 535.8 552.3 335.2 358.6 

Cost 8.716e+

05  

4.445e+

05  

1.117e+05  5.509

e+05  

5.055

e+05  

4.445e+0

5  

4.271

e+05  

NSGA-

II  

Time 691.6 335.8 105.1 480.8 455.5 335.8 335.8 

Cost 8.817e+

05  

4.459e+

05  

1.326e+05  6.147

e+05  

5.731

e+05  

4.459e+0

5  

4.358

e+05  

MOGA  Time 561.2 366 55.43 448.4 441.4 366 195.2 

Cost 8.208e+

05  

5.236e+

05  

9.088e+04  6.535

e+05  

6.427

e+05  

5.236e+0

5  

2.972

e+05  

Two evaluation methodologies have been used to show the superiority of the proposed MO-

EEFO method: statistical analysis and Pareto front analysis. 

The Pareto front produced by the proposed MO-EEFO method, as shown in Figure 6.8, is more 

diverse than that of compared algorithms, indicating that it can investigate a wider range of 

solutions. This increased diversity guarantees a more thorough depiction of trade-offs between 
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competing objectives, which is a critical feature of multi-objective optimization. Furthermore, 

Table 6.2 displays the outcomes of the statistical analysis for several compared algorithms. It is 

evident that MO-EEFO produces solutions with a higher standard deviation than other 

algorithms, demonstrating its superior ability to produce diversified solutions. In this case, a 

higher standard deviation emphasizes the algorithm’s capacity to investigate and preserve a 

wider range of solutions, proving its efficiency in striking a balance between time and cost 

minimization goals. When taken as a whole, these analyses present compelling proof that MO-

EEFO performs better in terms of solution diversity and quality, which makes it a reliable option 

for resolving multi-objective optimization issues in the composition of smart agriculture 

services. 

6.7 Summary 

This chapter introduces a new nature-inspired algorithm called the multi-objective electric eel 

foraging optimization. The algorithm’s effectiveness has been assessed through tests on 

standard benchmark problems, specifically ZDT1 and ZDT2. Its performance has been then 

compared to several well-established algorithms in the field, including MOPSO, MOGSK, 

MOGA, NSWOA, and NSGA-II. To further evaluate the MO-EEFO’s capabilities, it has been 

applied to optimize service composition in smart agriculture, with its results compared against 

MOGA, NSGA-II, and MOGSK. The findings reveal that the MO-EEFO algorithm surpasses 

these alternative methods, as evidenced by its higher standard deviation. This indicates that the 

MO-EEFO offers superior solution diversity and robustness when tackling multi-objective 

optimization challenges.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The work in this thesis presents various EC techniques to solve the problem of multi-objective 

service composition optimization in the field of smart agriculture. In the context of smart 

agriculture, farmers may choose crops that will yield the most under the current and predicted 

climatic conditions because they have much more freedom and knowledge. Because of these 

advances in artificial intelligence, people’s expectations have increased, resulting in 

complicated user demands in day-to-day life. Therefore, meeting user expectations can often 

be difficult. The process of combining services to meet user’s complicated needs is called 

service composition. Put otherwise, a collection of fundamental services is what is referred to 

as service composition. It is an NP-hard problem so cannot be solved in the polynomial time 

domain thereby making traditional methods inadequate. Numerous EC approaches have been 

investigated in the literature to handle this complexity, providing potential solutions for these 

kinds of challenging optimization issues. The high-dimensional and non-linear character of 

service composition can be effectively addressed by EC techniques like GA, PSO, and ACO, 

which offer adaptive search capabilities. These techniques efficiently traverse the large solution 

space by mimicking evolutionary principles, providing near-optimal answers in a reasonable 

amount of time. As a result, EC-based methods are becoming more and more popular for 

optimizing service composition in intricate computational settings. 

In our work, multi-objective service composition optimization in smart agriculture is done by 

using various EC techniques. The thesis is organized around four key objectives. Using three 

EC techniques - MOGA, NSGA-II, and MOGSK - the first objective focuses on linear multi-

objective service composition optimization for a more straightforward approach. Cost and time 

are identified as the optimization problem’s minimizing objective functions with a linear 

relationship between them. To choose the best EC technique for the defined problem, Pareto 

front analysis and statistical analysis are taken. According to simulation results, NSGA-II 

performs better than the other approaches and generates a wider variety of Pareto optimal 

solutions, as demonstrated by Pareto front analysis. Furthermore, NSGA-II exhibits a bigger 

standard deviation, which also supports its enhanced ability to produce diversified optimal 
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solutions, making it possible for farmers to choose from the wider range of solutions available 

as per their requirements. 

The second objective deals with non-linear multi-objective service composition optimization, 

in which cost and time objectives have a non-linear relationship. Lagrange’s interpolation 

method is used to capture this non-linearity. This non-linear method is crucial since linear 

models are unable to adequately represent the intricacies and intrinsic non-linearities found in 

practical smart agriculture systems. To assess optimization performance under these non-linear 

conditions, three EC techniques - MOGA, NSGA-II, and MOGSK are adapted and named La-

MOGA, La-NSGA-II, and La-MOGSK, respectively. La-NSGA-II performs better than the 

other approaches, according to Pareto front and statistical analysis. It generates a more varied 

range of Pareto optimal solutions and has a higher standard deviation, which suggests that it is 

better at handling the multi-objective service composition problem’s non-linearities present in 

smart agriculture.  

Environmental, human-based, and economic uncertainty are all unavoidable in real-world 

agricultural scenarios. Thus, to provide reliable and efficient solutions suited to the ever-

changing requirements of smart agriculture environments, the influence of uncertainties on the 

optimization process is examined in the third objective.  It applies fuzzy logic to both linear and 

non-linear multi-objective service composition optimization problems to evaluate the influence 

of those uncertainties on the optimization of composited services. NSGA-II is employed as the 

optimization algorithm for this objective since it outperformed MOGA and MOGSK in both 

the first and second objectives. Fuzzy-Li-NSGA-II for linear optimization problems and Fuzzy-

La-NSGA-II for non-linear optimization problems are the modified versions of NSGA-II used 

in this objective for checking the influence of uncertainties using the Mamdani fuzzy inference 

system. For Fuzzy-Li-NSGA-II, four case scenarios are assessed: the worst (MS=WC=FS=0.2), 

the normal (MS=WC=FS=0.5), the mixed (MS=0.5, WC=0.8, FS=0.2), and the best-case 

(MS=WC=FS=0.9). Comparable situations for Fuzzy-La-NSGA-II are also evaluated using 

modified values: best-case (MS=WC=FS=0.8), mixed (MS=0.5, WC=0.9, FS=0.3), normal 

(MS=WC=FS=0.5), and worst (MS=WC=FS=0.3). According to the behavioral analysis, 

Fuzzy-La-NSGA-II more accurately depicts real-world conditions than Fuzzy-Li-NSGA-II. 

Furthermore, there are minor differences between the Pareto solutions produced by the two 

methods, with Fuzzy-La-NSGA-II better capturing the influence of the uncertainties and non-

linearities present in real-world applications. 
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The fourth objective deals with developing a novel nature-inspired multi-objective electric eel 

foraging optimization algorithm for solving challenges in real-world applications. The proposed 

MO-EEFO reflects on the ingenious collective foraging strategies of electric eels found in 

nature and considers them as an inspiration for the optimization process. Its performance is 

validated on ZDT benchmark problems. Furthermore, a comprehension comparison of this 

proposed MO-EEFO is done with a few well-established algorithms present in the literature 

which are MOPSO, MOGSK, MOGA, NSWOA, and NSGA-II. It has been found that 

the proposed MO-EEFO algorithm continuously performs equivalent to other algorithms in 

terms of convergence to the true Pareto front. Additionally, it maintains diversity throughout 

the optimization process by yielding a set of solutions that are evenly dispersed across the 

Pareto front. To check its effectiveness in real-world scenarios, it is tested against MOGA, 

NSGA-II, and MOGSK for service composition optimization in smart agriculture applications. 

The simulation observations show that it provides more diversified Pareto optimal solutions, 

with a higher standard deviation as well.  

In conclusion, this thesis work explores multi-objective service composition optimization in 

smart agriculture applications using various EC techniques along with the evolution of a novel 

nature-inspired MO-EEFO algorithm to meet real-world optimization challenges.  

7.2 Future Work 

This thesis focuses on multi-objective service composition in smart agriculture applications 

using distinct EC techniques. Future expansions of this work could include: 

a) Integration of emerging EC techniques: Future research could explore the application 

of emerging nature-inspired algorithms, such as orcha predation algorithm (OPA), 

remora optimization algorithm (ROA), Ivy algorithm (IVYA) etc., which may offer 

enhanced performance, unique search dynamics, and improved convergence rates for 

the optimization of smart agriculture, along with the complexity analysis.  

b) Meta-optimization for algorithm enhancement: Future research could apply meta-

optimization techniques such as Bayesian optimization or reinforcement learning to 

adjust the parameters of nature-inspired algorithms dynamically. 

c) Exploring hybrid algorithms: Future research may involve developing hybrid 

optimization algorithms to enhance diversity and improve solution quality. 
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d) Combining with machine learning: The work could be integrated with different machine 

learning models for predictive analysis, allowing for more informed decision-making 

by forecasting crop yields, pest infestations, or optimal planting times. 

e) Industry collaboration for real-world validation: Future research could involve 

collaboration with smart agriculture companies to validate the optimization approaches 

in real-world scenarios. Through this collaboration, real-world challenges such as 

operational restrictions, data limitations, and environmental unpredictability can be 

identified. Feedback from stakeholders will help improve the models and influence 

future studies, with an emphasis on the agricultural system’s scalability, real-time 

adaptation, and economic viability. 

f) Incorporating Financial factors: Future research could look into incorporating financial 

modelling elements as long-term orchard investment planning, delayed profitability, 

and borrowing costs. This would enable smarter financial decision-making for 

stakeholders in real-world smart agriculture projects. 

g) Incorporating IoT technology: The optimization framework could be enhanced by 

integrating various Internet of Things (IoT) sensors, enabling real-time, data-driven 

decisions based on soil conditions, crop growth, and weather patterns. 

h) Integration of socio-economic and policy factors: Future studies might incorporate 

socio-economic elements such as labor availability, government regulations, and market 

demands into the optimization framework. This would allow for service composition 

decisions that not only optimize time and cost but also align with local socio-economic 

contexts. 
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