JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION-2025

M.Tech-2nd Semester (ECE)

COURSE CODE (CREDITS): 21M1WEC243 (3)

MAX. MARKS: 35

COURSE NAME: Antenna Theory and Techniques

COURSE INSTRUCTORS: Dr. Naveen Jaglan

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q.No	Questions	CO	Marks
Q1	Determine the angular positions of radiation nulls and generate the E-plane radiation patterns for center-fed dipole antennas with electrical lengths of $\lambda/2$, λ , $3\lambda/2$, and 2λ .	2	3
Q2	Derive the analytical expressions for the electric and magnetic field components of a Hertzian dipole in both the near-field and far-field regions. Subsequently, compute the radiation resistance and evaluate the total radiated power of the antenna.	1	3
Q3	What is the fundamental objective of employing antenna arrays? Discuss how inter-element spacing, relative excitation amplitude, and phase shift affect the resultant radiation pattern in a Hertzian dipole array.	3	3
Q4	Calculate BWFN, HPBW, direction of pattern minima, direction of nulls and phase difference b/w sources for a 4-element broadside antenna array with equal amplitude and spacing.	3	3
Q5	What is the maximum power received at a distance of 0.5 km over a free space 1 GHz circuit consisting of a transmitting antenna with a 25 dB gain and a receiving antenna with a 20 dB gain? The gain is with respect to lossless isotropic source. The transmitting antenna input is 150W.	2	3

Q6	Determine Dolph-Tchebyscheff current distribution for the maximum		
	beam width of a linear in phase broadside array of eight isotropic	3	5
	sources. The spacing b/w the elements are $\frac{3\lambda}{4}$ and the side lobe level		
	is 40 dB down. What is the half power beam width?		
Q7	A low frequency transmitting antenna has a radiation resistance of	2	2
	0.312 and a total loss resistance of 2.5 Ω . Calculate the radiated power		2
	power input and antenna efficiency if the current fed in antenna is 100A.		
Q8	Explain the concept of Binomial antenna array. What are the	ļ	
	advantages of Dolph-Tchebyscheff antenna array over Binomial	4	3
	antenna array? A small dipole of length 0.1 λ is excited with a peak		
	current of 5 Amperes. How much power will be radiated by the	ļ [
	antenna?	ļ	
Q9	A parabolic dish antenna has a diameter of 1.2 meters and operates	4	5
	at a frequency of 10 GHz. The aperture efficiency is 60%.	•	
	Calculate the following:		
	a) The operating wavelength		
	b) The gain of the antenna in dBi		
	c) The half-power beamwidth (HPBW) of the antenna		
	d) The effective aperture area of the antenna		
Q10	Explain the working principle of a log-periodic antenna, and discuss	4	5
	why it is categorized as a frequency-independent antenna. Compare	4) 3
	it with a conventional narrowband resonant antenna like a dipole.		
	Then, calculate the range of frequencies over which a log-periodic		
	antenna operates if it has: Scale factor (tau) = 0.9, Apex angle = 60		
	degrees, longest element length = 1.5 meters and shortest element length = 0.3 meters.	i	
			