JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATIONS-MAY 2025

M.Sc-II Semester (BT)

COURSE CODE (CREDITS): 20MS1BT214 (2)

MAX. MARKS: 35

COURSE NAME: GENOMICS & PROTEOMICS COURSE INSTRUCTOR: DR. JATA SHANKAR

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No.	Question	Marks
Q1	Demonstrate the principle and methodology of protein-protein interaction analysis	5
	on a chip-based platform? Explain how this technique is used to detect and	
	quantify interactions between specific proteins, including its advantages,	
	limitations, and applications in biomedical research.	
Q2	Provide a comprehensive explanation of how protein protein interactions can be	5
	studied using the yeast two-hybrid (Y2H) system. Describe the molecular	CONTRACT COM
	principles underlying this technique, including the roles of the DNA-binding	
	domain and activation domain of a transcription factor in the reconstitution of	
	transcriptional activity. Discuss how bait and prey constructs are designed and	
	introduced into yeast cells, and how the interaction between proteins is detected	
	and measured.	
Q3	Describe the DNA microarray or DNA chip and its major characteristics. Provide	5
	the workflow of DNA Microarray to differentiate lung cancer and non-cancer	
	transcriptome	
Q4	Describe in detail how differentially expressed proteins in lung cancer cells can be	5
	identified in comparison to normal lung cells using a proteomics-based approach.	
	Outline the key steps involved in sample preparation, protein extraction, digestion	
	(e.g., trypsinisation), and peptide separation. Explain the role of mass spectrometry	
	in protein identification and quantification, with specific emphasis on time-of-	
	flight (TOF) mass spectrometry.	Sprending
Q5	Give insight into the human genome project with an emphasis on the estimated	5
	number of genes, genome size and gene density and compare with a prokaryotic	
	organism such as E. coli	
Q6 🖔	Draw the difference between Sanger's sequencing and the mechanism used by	5
	next-generation sequencing, such as pyrosequencing, and their major applications	
	where Sanger sequencing finds limitations	
Q7	Explain the efficacy of drugs such as Gefitinib depends on the genotype of the	5
	EGFR gene of individuals/Cancer patients. Describe the criteria that a medical	
	practitioner prescribes the drug who are likely to benefit	