JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

M.Tech-II Semester (SE)

COURSE CODE (CREDITS): 11M1WCE214 (3)

MAX. MARKS: 35

COURSE NAME: THEORY OF PLATES AND SHELLS

COURSE INSTRUCTORS: DR. SAURAV-

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	A thin rectangular plate of dimensions 1 m \times 1.5 m and thickness 10	9	
	mm is simply supported on all four edges and subjected to a uniform	1	5
	transverse load of 500 N/m². Calculate the maximum deflection at the		
	center of the plate using classical plate theory. Assume $E=2.1\times10^{11}\mathrm{Pa}$ and $\nu=0.3$		
Q2.	Derive an equation to compute bending Moments M _x and M _y for a		
	simply supported square plate subjected to sinusoidal loading.	1	5
	Determine the bending moments M _x and M _y for a square isotropic		
	plate of side 2 m simply supported, thickness 12 mm, subjected to a		
	sinusoidal load $q(x,y) = q_0 \sin(\pi x/a) \sin(\pi y/a)$ where $q_0 = 1000 \text{N/m}^2$. Use		
	E=200GPa and v=0.25		
Q3.	A circular plate of radius R=0.5m and thickness h=0.015m is clamped		
	at the edge and subjected to a uniform pressure q=1000N/m2. The	4	5
	plate material has E=210GPa and v=0.3.		
	Calculate the maximum deflection at the center of the plate using the		
	formula for a clamped circular plate under uniform pressure.		
Q4.	Stating assumption Derive the governing differential equation for the		
	bending behavior of a thin, isotropic, and homogeneous circular plate		
	under axisymmetric loading using classical plate theory.	4	7
	Express the bending moments using polar coordinates.		
	Apply equilibrium conditions in the radial direction for axisymmetric		
	loading.		

	Derive the final form of the differential equation in terms of transverse deflection w(r).		
Q5.	Calculate the increase in volume of a spherical shell 1m in diameter and 1 cm thick when it is subjected to an internal pressure of 1.6 MN/m^2 . Take $E=200~GN/m^2$, and $v=0.3$	4	5
Q6.	Using Mohr's circle representation, determine the following for a plate under pure bending:		
	• The principal curvatures.	1	g) D
	• The orientation of the principal planes.	2	5
	• The angle at which the maximum twist (maximum torsional)	6	
	curvature) occurs.	9	
Q7	The deflection w of an isotropic rectangular plate is given by the expression:		
	$w(x,y) = 4x^3 - 2y^3$	3	3
	The thickness of the plate is 10 mm. Young's modulus is $E=200 \text{kN/mm}^2$, and Poisson's ratio is $v=0.25$. Determine the bending moments Mx, My, and M _{xy} at the point $(x,y)=(1.5,0.5)$.		