JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAS

TEST-3 EXAMINATION-2025

B.Tech-VI Semester (BI)

COURSE CODE (CREDITS): 18B1WBI632 (3)

MAX. MARKS: 35

COURSE NAME: Data Warehousing and Mining for Bioinformatics

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME: 2 Hrs.

Note: (a) All questions are compulsory.

- (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- (c) Use of calculator is allowed.

-		CO	Marks						
2.	Question								
	11 die gehomes in terms of	$\cdot 1, 2$	3						
10.	a. Compare the star, snowflake, and fact constellation schemas in terms of								
21.	a. Compare the star, snowlake, and lact constend analytical query design complexity and their efficiency in supporting analytical query								
	design complexity tales		2						
7.	b. Given the following dataset, determine the five-number summary and draw		2						
	b. Given the following dataset, determine the five								
	a boxplot to visually represent the distribution.		Per de la company						
	a boxplot to visually represent the distribution. 12, 14, 18, 19, 21, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41,								
	42, 45, 47, 50, 55.		2						
	42, 45, 47, 50, 55.c. Describe any two techniques for detecting outliers in a dataset.								
	c. Describe any two teenings are	-	3						
	a. Evaluate the usefulness of the lift metric in association rule mining. How	5	3						
Q2.	a. Evaluate the usefulness of uncountry and relevance of discovered								
	effective is it in measuring the strength of								
	patterns between itemsets?	1	4						
		1							
	b. Apply the Apriori algorithm on the following transformers. Use a minimum the frequent patterns and generate the association rules. Use a minimum the frequent patterns and generate the association rules.	1							
	support of 3 and a minimum confidence of 60%.								
	support of 3 and a minimum confidence		A constant						
1	TID Itemsets								
1	A C D								
7	D.C.E.								
	A D C E								
	T3 A, B, C, E		Mary India						
	T4 B, E								
	T5 A, B, C, E		124						
	T6 A, B, C, D								
	T7 A, C	- N							
	T8 B, C, E								
	T9 A, B, E								
		na	4 3						
	23. a. Given a feedforward neural network with an input layer of 3 neurons, or	ne	7						
(Q3. a. Given a feedforward neural network ReLU activation, and an output la								
	23. a. Given a feedforward neural network with an input rayer of hidden layer with 4 neurons using ReLU activation, and an output layer with 2 neurons using softmax activation, how many weights and biases	are							
	with 2 neurons using softmax activation, now many								
	there in total?								
	Mor o M								

	and whether they studied (Yes/No), apply the C4.5 algorithm to determine the root node of the decision tree.									4.5			
										PART OF			
										unionistico.			
			CGPA	L	L	M	M	Н	Н				H.
			Studied	No	Yes	No	Yes	No	Ye	S			
			Passed	No	Yes	No	Yes	Yes	Ye	S			
Q4.										6	3		
			A	В	C	D	E	F	G	H			
		A		1.41	2.83	4.24	5.66	5.83	6.40	5.83	1		
		E		0	1.41	2.83	4.24	4.47	5.00	4.47			
					0	1.41	2.83	3,16	W. 60°	3.16			
						0	1.41	2.00	2.24	2.00			
		E					0	1.41	1.00	1.41		IESCHOOL IN	
	inoje s	F						0	1.00	2.83			
		G		accordences.		-		# ·	0	2.24	Declare entropy		
		H								0			
	Ъ.	agglon Illustra	the dist nerative h te each st dendrogr	ierarchi ep of th	cal clu re clust	stering ering p	using rocess a	the sin	gle lin resent t	kage n	nethod.		4
Q5.	a.	Cluster	the follow 1: (1, 2), 2: (6, 7), Manhatta	(2, 3), ((7, 8), ((3, 3) (8, 8)				or thes	e two c	lusters.	6	3
•	b	Index of In a been semily base m	malyze the obtained. inary classed is considered has	ssificati figured a 70%	on task with m	with ax_feato	3 input	featur	es, a I estima	Bagging tors = 3	g-based 3. Each		4
		i. Wha	jority voti at is the r litions?	naximu			e ensem						