JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-IV Semester (BT/BI)

COURSE CODE (CREDITS): 18B11BT412 (3)

MAX. MARKS: 35

COURSE NAME: Molecular Biology

COURSE INSTRUCTORS: Dr. Jitendraa Vashistt

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric

assumptions wherever required for solving problems.

Q.N	Question	CO	Marks
0		MA A J	(P
Q1	If you want to check that a DNA segment has an interaction with a	(CO IV)	5
	protein for a specific mRNA transcription. Which of the molecular,		
	biology technique will be utilized to check the interaction? Explain		
	the principle for the proof of interactions.		
Q2	If you need to check the integrity of isolated DNA, how do you	(CO-I)	5
	proceed for it? You also need to calculate the concentration of this		
	isolated DNA (in microgram/ml), then what will be the method for		
	calculations?	(
Q3	Define the following in brief.	(CO-III)	5
	a) semi conservative mode of replication		
	b) Polymerase chain reaction principle	(CC YY)	P.
Q4	E. coli has different types of DNA polymerases; however nucleotide	(CO-IV)	5
	extension/polymerization gets done with the help of specific		
	polymerase.		
	a) Define the different types of DNA polymerases of E. coli and their		
	biological activities of polymerizing and proofreading.	/=	
	b) What is the reason of using a specific polymerase for nucleotide		
	extension in E. coli replication?		
Q5	Define the biological significance of promoter, pribnow box, and	(CO-III)	5.
	transcription start site in prokaryotic transcription process. Define		the same
	each of these sites and decipher the general sequence of these sites.		
Q6	Primary eukaryotic transcripts usually undergo several modifications	(COIV)	5
	to form a mature mRNA. Why post transcription modifications of		
	RNA are essential? Explain the molecular events of 5' modification	Series Linear	
	and splicing of RNA.		
Q7.	A group of bacterial structural genes that are transcribed together	(COV)	5
	(along with their promoter and additional sequences that control		
	transcription) makes an assembly. Name this whole cassette of		
	transcription regulatory machinery. Explain how this regulatory		
	machinery in bacterial cells controls transcription as negative		
	Inducible & negative repressible? Justify your answer with principle	;	
	of each component.		