JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VIII Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS):18B1WCE831 (3)

MAX. MARKS: 35

COURSE NAME: Advanced Reinforced Concrete Design

COURSE INSTRUCTORS: Dr. KAUSHAL KUMAR

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) IS456:2000 is allowed.

Q.Ne	Question	T 600	75.
in an	A simply supported rectangular reinforced concrete beam has a clear span	СО	Marks
	of 5 m and carries a uniformly distributed live load of 12 kN/m in	1	
	addition to its self-weight. The beam has a width of 250 mm and an		
	effective depth of 500 mm. Use M20 grade concrete and Fe415 steel.		
	Using the Working Stress Method, determine:	740.07	
Q1	1. The moment of resistance of the beam section.		
	2. Whether the given beam section is safe under the applied loads.	1	7
	Assume the following:		
	• Modular ratio, m=13.33		
	• Permissible stress in steel, $\sigma st = 230 \text{ N/mm}^2$		
	• Permissible stress in concrete in bending compression =7 N/mm ²		
	Determine the permissible service load for a rectangular slab of size 4 m ×		
Q2	6 m and depth as 150 mm which is simply supported on all sides and is		
	reinforced with 10 mm bars @ 150 mm c/c in shorter direction and 10	2	7
	mm bars @ 200 mm c/c in longer direction. Take effective cover as 25		
	mm and use M20 concrete and Fe 415 steel.		
	Design a rectangular underground water tank of dimension 10m x 4m x		
Q3	4m with following data:		
	Density of Soil = $16kN/m^3$		
	• Angle of repose = 30°		
	Live load on top slab = 3 kN/m^2 Use M25 concrete and Fe 415 steel.	3	7
	There is no chance of water rise.		
	and active earth	eleteronolie e	annerski -
	Pressure is acting.		
Q4	Check the stability of a cantilever retaining wall to retain horizontal		
	earthen embankment of height 4 m above the ground level. The earthen		
	backfill is having a density of 18 kN/m³ and angle of internal friction as	4	7
	30°. The safe bearing capacity of the soil is 180 kN/m². The coefficient of	4	/
	friction between soil and concrete is assumed to be 0.45. Use M20	neuronen m	menacen k
	Concrete and Fe 415 steel.		
Q5	Design a combined footing for two columns, C_1 and C_2 , 400 mm × 400		
	mm and 500 mm × 500 mm in size and carrying 500 kN and 800 kN of		
	load respectively. The smaller column is 0.4 m away from the property	5	7
	line. The columns are 4 m apart. The bearing capacity of the soil is 140		
	kN/m². Use M20 concrete and Fe 415 steel.	NAME OF THE OWNER, WHEN	arana i