JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-IV Semester (CE)

COURSE CODE (CREDITS): 23B11CE412 (3)

MAX. MARKS: 35

COURSE NAME: WATER SUPPLY ENGINEERING

COURSE INSTRUCTOR: DR.NIRAJ SINGH PARIHAR

MAX. TIME: 2 Hrs

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

Q	.No	Question	СО	Marks
	Q1	Answer the following in brief:	CO1,2	7x1.5
		a) Enlist three major schemes run by GOI for betterment of water		
		supply facilities in India.		Telicorion constitut
		b) Discuss the major drawback about usage of Jackson's turbidimeter.		
		c) A water sample has 110 mg/l of Ca(HCO3) ₂ . Comment on the		W-8-4
		amount and type of hardness of water in terms of CaCO ₃ .		
		d) How does presence of iron in water affects the water quality?		
		e) Explain the significance of E-coli in determination of biological		
		water quality parameters.		
		f) Discuss the role of activated carbon in purification of water.		
		g) Explain the ill-effects of nitrates in drinking water and their		
		permissible limit in supplies.		
	Q2	Design a river intake for the following data:	CO3,4	7
		R.L. of river bed=100 m		g declara
		R.L. of lowest water level=102 m		
		R.L. of normal water level=115 m		
		R.L. of high flood level=120 m		
		Population of town=50000		
900		Per capita water demand= 200 l/d	(CONTROL SOLID	SHE MECHANIS
		Assume and mention other data suitably when required for design.		
	Q3	Determine the quantity of alum required in order to treat 13 MLD	CO3	7
		water requiring 12 ppm of alum dose. Also determine the amount of		
		CO ₂ released and the volume of sludge deposited per day for 2%	The Print	
		sludge content (Gs=2).		
	- 4			

Q.No	Question	CO Marks
------	----------	----------

Q4	Determine the dimensions of a settling tank for 0.5 m ³ /s flow rate, overflow rate as 32.5 m ³ /d/m ² and detention time of 95 min.	CO5	03
Q5	A rapid sand filter is provided in a water treatment plan for a	CO5	7.5
	population of 2,75,000 having water demand of 200 l/c/d. The rate of filtration is 15 m ³ /m ² /hr. Allowing 5% of the filtered water for backwash and 30 as backwashing period, find the no of filter beds		
	required and design the filtration unit. Also calculate the head loss for expanding the bed to 0.66 m. Assume suitable data wherever required.	ALLA CO	