JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT ## **TEST-3 EXAMINATION-2025** ## B.Tech-VI Semester (IT/MIT) COURSE CODE (CREDITS): 18B11CI613 (3) MAX. MARKS: 35 COURSE NAME: Data Mining COURSE INSTRUCTORS: Ekta Gandotra MAX. TIME: 2 Hrs. Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems (c) Use of calculator is allowed. | Q. | Question | | CO | Marks | |--------------|---|------------|------|-------| | No. Q1. | | terms of | 1, 2 | 3 | | Q1. | design complexity and their efficiency in supporting analytic | | | | | | processing. b. Given the following dataset, determine the five-number summary a a boxplot to visually represent the distribution. | | | 2 | | | 12, 14, 18, 19, 21, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 42, 45, 47, 50, 55. | 3, 40, 41, | | | | | c. Describe any two techniques for detecting outliers in a dataset. | | | 2 | | Q2. | a. Evaluate the usefulness of the lift metric in association rule mini effective is it in measuring the strength and relevance of di | | 5 | 3 | | | patterns between itemsets? b. Apply the Apriori algorithm on the following transaction datases the frequent patterns and generate the association rules. Use a r | | 4 | | | | support of 3 and a minimum confidence of 60%. | | | | | | TID Itemsets | | | | | | T1 A, C, D | | | | | | T2 B, C, E | | | | | | T3 A, B, C, E | | | | | | T4 B, E | | | | | | T5 A, B, C, E | | | | | | T6 A, B, C, D | | | | | | T7 A, C | | | | | | T8 B, C, E | | | | | Acta Edinary | T9 A, B, E | | | | | Q3. | 3. a. Given a feedforward neural network with an input layer of 3 neu hidden layer with 4 neurons using ReLU activation, and an out with 2 neurons using softmax activation, how many weights and I there in total? | put layer | 4 | 3 | | | | | the follow | | | | | - | | | | | 4 | | |-------------|--|---------|--------------------------|------------------------|-----------|----------|---------|---------|---|--|----------|-----------------|---|--------| | | 1 | | a course (
ether they | | | | | | Transfer of the Parket | | | | | | | | and whether they studied (Yes/No), apply the C4.5 algorithm to determine the root node of the decision tree. | | | | | | | | | | ACITITIC | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | | | | | CGPA | L | L | M | M | Н | Н | | | | | | | | | | Studied | No | Yes | No | Yes | No | Ye | S. | | | | | | | | | Passed | No | Yes | No | Yes | Yes | Ye | S | | | | | | Q4. | a. Apply the DBSCAN algorithm to the following dataset and label each data point as Core, Border, or Noise. A(3, 7), B(4, 6), C(5, 5), D(6, 4), E(7, 3), F(6, 2), G(7, 2), H(8, 4). Use the | | | | | | | | | | 6 | 3 | | | | | | | ters Epsil | e matri | x. | | | | | | and the | | | | | | | | A | В | C | D | E | F | G | H | | | | | | | | A | 0 | 1.41 | 2.83 | 4.24 | 5.66 | 5.83 | 6.40 | 5,83 | · · · | | | | | | | В | | 0 | 1.41 | 2.83 | 4.24 | 4.47 | 5.00 | 4.47 | | | | | | | | C | | | 0 | 1.41 | 2.83 | 3.16 | 3.61 | 3.16 | | | | | | =fanktion | HECEO-IVI WA | D | na socialization | DEWICKS CO. | | 0 | 1.41 | 2.00 | 2.24 | 2.00 | | spincherman, in | | OH OHE | | | THE RESIDENCE | E | | | | | 0./\ | 1.41 | 1.00 | 1.41 | | | | | | tellen i je | | F | | | para 4 | | | 0 | 1.00 | 2.83 | | | | 1 | | | | G | | | | | | 411 | 0 | 2.24 | | | | | | | | H | | | | | | | | 0 | b. Using the distance matrix given in the above question, perform | | | | | | | | | | | | 4 | | | | agglomerative hierarchical clustering using the single linkage method. | | | | | | | | | | | | | | | | Illustrate each step of the clustering process and represent the final result using a dendrogram. Also find the optimal number of clusters. | | | | | | | | | | | | | | | | u | sing a | dendrogra | un. Als | o ma t | ne optii | nai nun | ider of | ciusters | S. | | | | | | Q5. | a C | liven f | he fallowi | no two | chieter | s of 2D | nointe | | | | | 6 | 3 | + | | 25. | a. Given the following two clusters of 2D points:
Cluster 1: (1, 2), (2, 3), (3, 3) | | | | | | | | | | 0 | 3 | | | | | Cluster 2: (6, 7), (7, 8), (8, 8) | | | | | | | | | | | | | | | | Using Manhattan distance, compute the Dunn Index for these two clusters. | | | | | | | | | lusters | | | | | | | | | nalyze the | | | | | | | | | | | | | | | | btained. | quant. | , 01 1111 | 0100001 | mg ous | ou on t | no vara | or un | о Вини | | | | | | 11 11 | 8 | nary clas | sification | on task | with | 3 innut | featur | es. a I | Baggino | z-based | | 4 | | | | 500 | | le is confi | | | | | | | and the state of t | | | | | | | | | odel has a | | | | | | | | | | | | | | | | ority votin | | | | | | | | | | | | | | | What | t is the mitions? | SECTION AND ADDRESS OF | n accui | racy the | ensem | ble car | achie | ve unde | er ideal | | | | | | ii. | What | t is the r | ninimu | m accı | iracy th | ne ense | mble n | night a | chieve | in the | | | | | | | | t-case sce | | | | | | | | 200 | | | | | | | | | | | | | | | | | , | | |