JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION-2025

B.Tech-VIII Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE(CREDITS): 21B1WMA831 (3)

MAX. MARKS: 35

COURSE NAME: Soft Computing & Optimization Algorithms

COURSE INSTRUCTORS: Dr. B. K. Pathak

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required

for solving problems

).No.	Question	CO	Marks
2.110.	Let \tilde{A} be a fuzzy set defined on the universe X={1,2,3,4} with membership		
Q1	function given by: $\tilde{A} = \frac{0.7}{1} + \frac{0.5}{2} + \frac{0.1}{3} + \frac{0.6}{4}$	CO-2	5
	Verify the "Idempotency" property for given fuzzy set A. Also find		
	Let \tilde{C} be a fuzzy set defined on the universe $X=\{0,1,2,3,4,5,6\}$ with membership function given by:		
	$\mu_{ar{C}}(x) = egin{cases} 0, & x = 0, 6 \ 0.2, & x = 1, 5 \ 0.5, & x = 2, 4 \ 1.0, & x = 3 \end{cases}$		
Q2	$\mu_{\tilde{C}}(x) = \begin{cases} 0.2, & x = 1, 0 \\ 0.5, & x = 2.4 \end{cases}$	CO-2	5
	$\begin{bmatrix} 0.5, & x = 2, 4 \\ 1.0, & x = 2 \end{bmatrix}$		
	(a) Determine the support, core, and height of the fuzzy set \tilde{C} .		
	(b) Find the α -cut sets of \tilde{C} for $\alpha = 0.1, 0.2, 0.5, \text{ and } 0.8$.		
	The term "Speed" in a traffic control system is described by fuzzy sets:		
	Slow: trapezoidal(0, 0, 20, 40)		
	Moderate: trapezoidal(30, 50, 50, 70)	00.0	-
Q3	Fast: trapezoidal(60, 80, 100, 100) (a) For a vehicle moving at 45 km/h, calculate its degree of	CO-3	5
	membership in each fuzzy set.		
	(b) Explain how these fuzzy values might influence the triggering of	Manual Control	HOLES.
1	a traffic light.		
	An energy-efficient air conditioning system uses fuzzy logic to determine		
	how comfortable the room temperature is. The fuzzy set "Comfortable		
	Temperature" is represented using a trapezoidal membership function,	100 March 1980	
	where:		
Q4	• Temperatures between 20°C and 22°C are partially comfortable.		5
	Temperatures between 22°C and 26°C are considered fully comfortable.		
	• Temperatures between 26°C and 28°C are again partially		

	comfortable.		
	Outside this range, the temperature is not considered		
	comfortable.		
Vin Lewino	(a) Write the mathematical expression for the trapezoidal		
	membership function $\mu(x)$ representing the "Comfortable		
	1 emperature" fuzzy set.		
	(b) Sketch the graph of the membership function. Calculate the	Man with the	1000000
	degree of membership for a temperature of 24°C and for 27°C		
	(c) Briefly explain how the fuzzy membership value can help the	1	
	system decide whether to cool the room or not	A Paris III	
	Consider a population of individuals represented as binary strings of length		
	3. The fitness function is $f(x)$ =Number of 1's in the string. Given the		
	population:	1	
	{10010, 11001, 11011, 00001}		
Q5	(a) Evaluate the fitness of each individual.	COF	P
	(b) Perform rank-based selection and select two parents.	CO-5	5
	(c) Apply single-point crossover on selected parentsal position 3 to		203.00
	generate offspring.		
uster installed	(d) Find the fitness of generated offspring.	30 mm = 100 mm	and the same of
		disconnection	
	Suppose a genetic algorithm uses chromosomes of the form $x = abcdefgh$		
	with a fixed length of eight genes. Each gene can be any digit between 0 and		
	9. Let the fitness of individual x be calculated as: $f(x) = (a + b) - (c + d) + (e + b)$		
	+ f) – $(g + h)$ and let the initial population consist of four individuals with		
	the following chromosomes:		
	$x_1 = 65413532$		
Q6	$x_2 = 8.7126601$		
Qu	$x_3 = 23.921285$	CO-5	5
	$x_4 = 41.852094$		
	(a) Evaluate the fitness of each individual, showing all your		
	workings, and arrange them in order with the fittest first and the		
	least fit last.		
	(b) Perform the crossover between two individuals (x ₂ & x ₃) using		
	one point crossover at the middle point and calculate their		
	fitness.		
	State whether the following statements are True or False:	NAME OF STREET	
	(a) Genetic Algorithms always guarantee finding the global optimum.		
	(b) Mutation helps maintain diversity in the population.		
Q7	(c) The selection process in GAs is entirely random.	CO-4	5
	(d) Crossover in Genetic Algorithms always guarantees better offspring than the parents	204	3
	(e) Elitism in Genetic Algorithms halve	ingeneral ser	
E despressi o	(e) Elitism in Genetic Algorithms helps to preserve the best		
	individuals for the next generation.		