JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-II Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 18B11PH211 (3)

MAX. MARKS: 35

COURSE NAME: Engineering Physics-II

COURSE INSTRUCTORS: PBB, SKK, VSA, SKT, HAZ, SBD, HSR

MAX. TIME. 2 Hours

Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	СО	Marks
Q1	(a) Prove that during a thermodynamic process, work done is a path function and internal energy is	3	2
	a state function.		4
	(b) Derive the adiabatic equation of state for an ideal gas in terms of temperature and pressure.	3	3
Q2	(a) How can we explain the entropy of a perfect gas in terms of pressure and volume?	3	3
	(b) You are given the following group of particles (n; represents the number of particles with speed		
	vi). Compute the root mean square and most probable speeds among the entire group.	4	2
	n _i 2 4 8 6 3		
	v _i (m/s) 1 2 3 4 5		
23	(a) Write down the Maxwell's thermodynamic relations and give their physical significance.	4	2
	(b) A beam of electrons with kinetic energy 5 eV is incident on a region where the electron potential	1	2
	energy suddenly increases from 0 to 2.5 M. Calculate the transmission and reflection	5	
	coefficients at this 'step'. Sketch the electron density as a function of position.	3	3
24	(a) The initial temperature of a gas is 17°C. Calculate the rise in temperature when the gas is	3	2
	compressed suddenly to 4 times its original pressure. (Given $\gamma = 1.5$).		
	(b) An electron and a proton are trapped within a spherical box of radius R. The potential within the		
	box is defined as (V=0 for r <r, and="" between<="" distance="" equilibrium,="" in="" minimum="" td="" the="" v="R/0;r≥R)."><td>5</td><td>3</td></r,>	5	3
	electron and proton is r. (i) Write the appropriate Schrödinger equation for this system (ii)		
	Suggest a solution of Schrödinger equation and draw the graph of wave functions in ground		
	state.		
25	(a) Two Carnot engines A and B are operating in series. The first one A receives heat at 1000 K and	2	3
	rejects to a reservoir at temperature T K. The second engine B receives the heat rejected by A		
	and in turn rejects to a heat reservoir at 300 K. Calculate the temperature T for the situations		
	when (i) The work outputs of two engines are equal (ii) The efficiency of two engines are equal.		
0	(b) The kinetic energy of an electron is 4.55×10^{25} J, then calculate the velocity, momentum, and		
100	wavelength of electron.	2	2
)6	(a) What is latent heat equation and write down its applications.	3	3
	(b) A system has 5 different macrostates, under which there are 6, 20, 42, 12 and 2 microstates. A property x associated with the system has values 4, 4, 2, 6 and 10 respectively, for the 5		
	property x associated with the system has values 4, 4, 2, 6 and 10 respectively, for the 5	4	2
. 2	property x associated with the system has values 4, 4, 2, 6 and 10 respectively, for the 5 macrostates. Calculate (i) probabilities for the different macrostates and (ii) average values of x and of $\sqrt{x^2}$.		PART STATE
19/1			
17	tay between taken s law for blackbody fadiation. Also show that the total energy density of radiation	4	3
	is proportional to the 4 th power of temperature in Kelvin.		
A CONTRACT	(b) Obtain the expression for the average speed and average energy of electrons at zero Kelvin	4	2
	temperature.		