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ABSTRACT

Natural disasters like landslides and earthquakes are one of most common natural disaster in
nature that have capability to cause threat to human life, infrastructure and economical damage.
Both of these disasters are random which makes it difficult to predict and manage by providing
early warnings. Traditional methods for disaster prediction are not that accurate and have
limited ability to predict accurately and timely. So, this thesis addresses these issues or gap by
providing advanced hybrid machine learning models which uses different technologies
including computational and different type of data like real-time, remote sensing, and historical
data to improve the prediction and forecasting of disasters. The aim is to improve disaster
management system and make them more reliable by integrating these different ways and
techniques, provide better early warning and enable more effective risk mitigations. The
research primarily focuses on development of hybrid machine learning models designed for
detecting and prediction landslide and earthquake. The main contribution is creating real-time
landslide prediction model which collects data from real-time Wireless Sensor Networks
(WSNs) in a laboratory setup, the sensors consistently monitor all useful factors such as soil
moisture, vibration, temperature, humidity, angular acceleration, angular velocity other various
other parameters. The data is processed using a predictive system which combines hybrid
machine learning model such as Multiple Linear Regression (MLR) and Long Short-Term
Memory (LSTM) to analyse this data in real time. Using this hybrid model for landslide
prediction improves the accuracy by identifying patterns that provides insights that a landslide
may occur and also offers early warning alerts for area prone to landslides.

As progressing forward, landslide detection using remote sensing data is introduced with
advanced segmentation and feature extraction methods. A deep learning model UNet-Pyramid
is used to capture minute details in the images and also analyzing high resolution images to
grasp the change in landscape like angle displacement, shift in vegetation cover indicating a
risk of landslide event. To deeper analysis of remote sensing Object-Based Image Analysis
(OBIA) is used for feature extraction, which works by forming groups of small pixels together
to identify larger objects such as displaced soil cover or vegetation area. Moreover, the Swin
Transformer architecture is applied, that helps to capture features in images more effectively
using window-based mechanism and provides more detailed segmentation. The main benefit
by using combined feature extraction techniques like OBIA, and Swin Transformer helps to
handle high-resolution satellite images better and detect complex surface changes. This

XVi



cumulative technique including segmentation, feature extraction and applying hybrid models
all together provides a detailed, accurate and reliable solution in identifying risky areas and
detecting landslides events efficiently.

Further, the complexity of seismic activities in earthquake prediction prompted the shift as
earthquake being another frequent disaster in nature, so a hybrid model which combines the
features of two different techniques such as SARIMA (Seasonal Autoregressive Integrated
Moving Average) and XGBoost (Extreme Gradient Boosting) is applied. This hybrid model
uses sequential data for earthquake prediction which contain both short-term and long-term
seismic trends. Firstly, the SARIMA helps to capture seasonality trends and patterns which are
commonly cyclic in nature in the time series data and then XGBoost supports to model complex,
non-linear relationships between provided variables to improve the effectiveness of earthquake
prediction. So, it starts with Exploratory Data Analysis (EDA), that is applied for understanding
intrinsic patterns and insights of dataset. For feature engineering process, EDA helps in
identifying the most useful features and data augmentation and feature engineering techniques
are applied to further enhance the prediction accuracy, by integration of these techniques,
provides more accurate earthquake forecasts by considering different kind of patterns in the
data. As research progressed, it explores another hybrid model which combines CatBoost and
Support Vector Regression (SVR) for earthquake prediction using LANL earthquake dataset.
Here, CatBoost uses gradient boosting method to optimize and handle categorical data. The
signal based LANL earthquake dataset comprises of acoustic data and Time to Failure (TTF)
which uncover important patterns from acoustic data used to analyze significant features and
patterns which contributes to accurate earthquake prediction. In CatBoost, multiple decision
trees are built on top of other to improve the prediction accuracy by reducing error at each stage
and Support Vector Regression (SVR) captures the residuals from CatBoost and further process
them using its support vector-based mechanism to capture non-linear relationships in the data,
that cannot be modeled by simple boosting approaches. Finally, a precise and reliable
earthquake prediction system is developed using hybrid model that contributes in generating
early warning systems and improves disaster preparedness methods. The integration of these
hybrid machine learning models represents a substantial advancement in the field of natural
disaster prediction. Finally, the prediction technique that combine real-time sensor data, remote
sensing data, and time series analysis, provides with a comprehensive framework disaster
prediction which is accurate, timely and lifesaving. Various models considerably improve the
early warning systems for both disasters, by providing precise resource allocation, informed

decision-making, and optimized disaster response strategies. The proposed model has deep and

XVii



far-reaching impact in disaster preparedness, as it could be applied to different natural disaster
scenarios, minimizing the loss of life and infrastructure. So, these data driven solutions provide
a promising pathway for safeguarding lifestock and infrastructural damages from disaster
events.

xviii



CHAPTER 1

INTRODUCTION

1.1 Introduction

Disasters are sudden catastrophic events that result in fundamental disturbances, loss of
property, human lives, and the environment. These events can be caused by man, such as
chemical leaks, nuclear accidents, and industrial accidents, or can be natural, like storms,
floods, and earthquakes. Disasters affect local communities or have global consequences, and
their impact differs depending on factors such as geographical position, population density,
and readiness of the affected areas. They often lead to extensive destruction, health crises,
economic loss, and long-term environmental damage, which makes effective disaster
management. The coordinated strategy is used to manage disasters to avoid, prepare for,
respond to, and recover from disasters by relieving readiness, reactions, and recovery. These
are its four primary phases. Through measures such as the creation of robust infrastructure or
forcing laws to minimize environmental damage, mitigation is to reduce disaster probability or
its effects. Planning, teaching, and community education about the risks of disasters and
effective. While the recovery phase focuses on reconstruction and returning to normal after the
incident, the reaction phase deals with urgent measures taken. during the disaster to maintain
lives and provide assistance. The disaster management requires cooperation between
governments, local authorities, humanitarian organizations, and communities. The importance
of disaster management cannot be overestimated because it minimizes the negative effects of
disasters and guarantees a rapid and organized reaction. Appropriate planning and disaster
reactions can save lives, reduce injuries, and reduce infrastructure and environmental damage.
It also helps to maintain social order and stability due to a disaster, which allows communities
to recover faster and return to normal activities. In addition, catastrophe management promotes
resistance by preparing companies to better address future challenges, minimize the
vulnerability of endangered populations, and support sustainable development. Investing in
disaster management is necessary for the protection of communities and building a safer and
more resistant world. A landslide is the movement of a rock, soil, mud, or debris on a slope,
usually caused by natural events such as severe precipitation, earthquakes, volcanic activity, or

gradual weakening of the earth's materials. Soil landslides can occur in various forms, such as



rockfalls, debris flows, or landslides, and differ in size from small to large movements of soil—
destructive events that destroy the whole community. These natural disasters are most common
in mountain areas or in regions with steep slopes, where the stability of the country is easily
endangered by external forces such as precipitation, seismic activity, or human activity such as

deforestation and construction.

Landslides have devastating effects, resulting in death, damage to property, and interruption of
vital infrastructure, including motorways, railways, and communication systems. Soil
landslides often avoid rivers, which leads to a flood or construction of temporary dams that can
use and cause more damage downstream. Landslide events deeply affect places where the local
economics, tourism and agriculture depends on slope stability specifically in rural areas. The
risk associated with these events needs an early detection method to save livestock, reduce
injuries and infra structural losses associated with them. When identifying danger of extinction
and understanding the triggers of landslides, authorities can perform specific strategies to
reduce vulnerability and prevent disaster. In addition, the ML and DL models allow monitoring
and appropriate real-time warning systems that immediately emphasize the populations that are

in danger.

This helps to protect communities, maintain infrastructure and reduce the financial burden on
recovery efforts. In addition, landslides detects before they happen, it contributes to the overall
more efficient management of disasters, improves response time and ensures that suitable
sources are available, when and where they are needed. Early detection and proactive planning,
supported by machine learning and deep learning technologies, are necessary to protect lives,

protection of property and support sustainable development in areas susceptible to landslides.

1.2 Motivation

Landslide prediction is motivated by the need to lessen the destructive effects of these natural
disasters, which can result in a large loss of infrastructure, property, and human life. Geological
conditions, precipitation, seismic activity, and human activity are just a few complicated factors
that could affect the occurrence of landslides that are often not expected. Due to the destructive
nature of landslides, especially in vulnerable regions such as mountain or coastal areas, early
detection and predictions are essential for saving lives, preventing injury, and reducing

economic losses. Due to the dynamic and complex nature of landslides, it historically depends



on field observation and expert interpretation, which has often proved to be inadequate.
Because ML and DL can process and evaluate a huge amount of different data, they have
become effective tools for the prediction of landslides. To identify trends and predict future
events, ML algorithms can learn from past layout incidents and environmental factors (such as
slope, collision, soil moisture, and seismic activity). DL uses neural networks and
automatically finds a comprehensive association in large data sets, which allows even more
advanced analysis. The abundance data present requires proper processing and analyzing so
that these advanced models can do continuously learning and adapting to new environmental
condition. Also, rapid changes in these factors are observed, so by working on data from
various sources such as real time, remote sensing data, historical data can allow model to
provide precise predictions and timely alerts to authorities for issuing early warning and also
initiate preventive measures. The main goal revolves around reducing economic losses and
building durable communities to prevent risk of landslide with limited information of historical
trends of landslide. Since these technologies are still progressing, they offer promising
opportunities to improve our understanding of landslide dynamics and create a proactive
approach to disaster management. One of the greatest risks for the local and global economies,
as well as for human settlements, is geological risks. The most common geological dangers
include landslides that include the movement of rock, dirt, mud, or debris. Natural occurrences,
such as earthquakes or intense rains, can often cause landslides, especially in areas with
hydrological, geological, and geomorphological characteristics. However, the mechanics of
landslides also depend strongly on other key elements such as weather, soil head, and in situ
tension. Topography, forests, soil characteristics (such as consistency, structure, density, and
temperature), and infrastructure, such as roads and agriculture, can be significantly affected by
landslides in mountain areas. The size of landslides determines how serious these effects will
be. Finding vulnerable areas and understanding mechanisms of landslides over the past 20
years has become more important in landslide research. This research has led to valuable
knowledge about the analysis of geomorphological, tectonic, geological, climatic, and human-
induced factors. Historical records show that it experienced the highest number of deaths in the
land of landslides, with a total of 132 deaths. Risk assessment relies strongly on the location of
landslides and their risk assessment. Research on landslides has been significantly advanced in
recent years using new technologies and techniques, especially in crisis management for
mountain regions or those that are vulnerable to such risks. Number of quantitative techniques
are tested and evaluated to create accurate and reliable model for improved landslide

prediction.



1.3 Contributions

The major contributions of this thesis can be summarized as follow:

« Designing a threshold-based real-time landslide prediction system utilizing loT
networks: This system efficiently monitors key environmental parameters such as, soil
humidity, slope displacement, and rainfall, providing real-time data and triggering
alerts if hazardous thresholds are reached to enhance early warning capabilities for
landslide-prone areas.

« Developing an inexpensive landslide early warning system based on loT for continuous
landslide monitoring, especially in regions with constrained resources, our contribution
offers a scalable and affordable approach that ensures real-time data collection and
analysis for efficient risk reduction and disaster management.

« Creating a semantic segmentation system using a UNet-pyramid architecture for
landslide prediction. This framework improves the accuracy of detecting landslide-
prone areas by utilizing remote sensing data from the Landslide4Sense dataset,
allowing for precise and reliable landslide hazard evaluations.

» Integrating SARIMA and XGBoost for spatial earthquake forecasting. This hybrid
approach improves earthquake prediction by accounting for both spatial and temporal
dependencies in seismic data. This offers more accurate forecasts and better risk
management for subsequent earthquake areas.

« Improving landslide hazard mapping through deep learning-based semantic
segmentation. The implementation of deep learning models for analyzing remote
sensing data contributes to more reliable identification and classification of landslide
hazards, , increasing the assessment of risks and land use in affected areas.

« Contributing to disaster preparedness and mitigation through advanced early warning
systems: The thesis provides advance methodologies and smart tools that allows
accurate real-time landslides and earthquakes prediction, reducing the potential impacts

of natural disasters and improving resilience in vulnerable communities.

1.4 Thesis Outline

This thesis consists of seven chapters, each of which focuses on different aspects of landslide
and earthquake prediction using advanced machine learning and deep learning techniques.

Chapter 1 represents the research topic and outlines the significance of predicting natural



disasters and the need for innovative methods. Chapter 2 presents an extensive overview of
existing literature on landslide and earthquake prediction, focusing on hybrid models that
integrate deep learning and machine learning approaches. Chapter 3 discusses a threshold-
based real-time landslide prediction system which is designed for hilly areas, along with the
enhancement of a low-cost Landslide Early Warning System (LEWS) utilizing Internet of
Things (1oT) networks for regions susceptible to landslides. Chapter 4 presents a novel
semantic segmentation framework using UNet-pyramid for landslide prediction, using remote
sensing data. Chapter 5 examines the synergy between SARIMA (Seasonal Autoregressive
Integrated Moving Average) and XGBoost for spatiotemporal earthquake time series
forecasting, highlighting the potential of combining statistical and machine learning models.
Chapter 6 examines the LANL earthquake dataset and the hybrid CatBoost and SVR model for
earthquake forecasting. By providing a summary of the main conclusions drawn from the
simulation and experimental data, Chapter 7 sums up the thesis and proposes future study

avenues in the areas of earthquake and landslide prediction.



CHAPTER 2

RELATED LITERATURE AND BACKGROUND

2.1 Introduction

Recently, the most promising advancement in the disaster management field is introducing ML
and DL. This demonstrated exceptional possibilities for good data analysis, disaster prediction,
and resource optimization. The permeation of these technology processes has resulted in a field
of dynamic and transformation-based data to remove the influence of disasters on infrastructure
and human life. These tools and methods allow disaster management systems to improve
proactive and adaptive strategies in the direction of risk assessment, early warning systems,
and accurate disaster forecasting systems. These approaches are integrated into the key aspects
of reaction to disasters such as evacuation planning, damage assessment, and logistics
optimization, which provide efficiency and accuracy. By reviewing existing research, this
study highlighted the enhancement and advancement in disaster management and remaining
major challenges that still lack to provide better management results in disaster management
and prediction, providing insight into the future abilities of these technologies in the domain of
disaster management and identifying important opportunities for further progress in this critical

area.

2.2 Foundation of Landslide Prediction using Machine
Learning

The combination of DL and hybrid ML models with wireless sensors and Internet of Thing
(1oT) has led to a revolutionary approach for the prediction of landslides and early alert
systems. Fundamentally, this new strategy aims to predict and reduce the catastrophic effects
of landslides, which continue to be one of the most unexpected and devastating natural disaster,
using the synergy of ML, DL and sensor network. With the possibility of more precise, reliable
and real -time landslides prediction methods, this technological integration means a shift from

conventional monitoring systems to more advance hybrid approaches.



By combining different methods and architectures, "hybrid models of ML and DL aim to
improve the precision of prediction and detection by combining various sources and data
models. The critical or important data for these models are provided by wireless sensors and
internet devices of things that constantly monitor environmental parameters, including
temperature, rain, soil moisture and soil movement. When combining these sensor networks
with advanced computing methods we introduced a novel powerful framework for prediction

of landslides.

The core foundation of this approach is found in several key areas. Wireless sensors and 10T
devices play a key role in data collection in real time distant and often dangerous areas. These
sensors monitor vital parameters of the environment such as rain, soil moisture level and
seismic activity, which are critical indicators of landslides. To evaluate big database and detect
complex patterns, ML models like Decision Trees, Support Vectors and Random Forests are
combined with DL architecture like convolution neuron network (CNN) and recurring neural
network (RNN). By combining the best characteristics of both paradigms, this hybrid technique
increases the accuracy and durability of the landslide detection. Among the techniques of deep
learning, a fully convolutional network (FCN) has appeared as a powerful tool for predicting
landslides, especially when working with remote sensing geospatial data, and very good in
tasks such as segmentation, which means classification of each image or map in different
categories. They are made to handle predictions at the pixel level. For the analysis of satellite
images, topographic maps and other sources of geospatial data that are frequently used in the
evaluation of earth landslides risk, this capacity makes FCN especially useful. Regions with a
high risk of landslides can be identified with precision by using FCN, which consider
environmental characteristics such as the type of soil, the steepness of topography and
historical landslides events. The flexibility of the FCN in the processing of space data provides
an additional precision layer to the models of prediction of landslides, particularly in complex

and large -scale geographical areas.

IoT sensors and machine learning models work together to process real -time data, allowing
dynamic changes in early warning and risk assessment. This characteristic is crucial to give the
appropriate authorities and communities so that they can take precautions before a crisis occurs.
The integration of many data sources is one of the main obstacles in the prediction of landslides.

Hybrid models can produce more complete risk profiles combining information from many



sensors, weather reports and geographic information systems (SIG). In addition, feature

engineering methods help determine which factors are most important to the precise prediction.

The 10T technology combination with ML and DL offers scalable solutions that can be
implemented in vast and difficult to achieve. This allows monitoring large geographical areas
continuously and efficiently, improving the general resilience of the regions which are prone
to landslides. This literature survey aims to explore these fundamental aspects of the prediction
of landslides through hybrid machine learning models, focusing on the integration of wireless
sensors, 10T networks and advanced techniques such as FCN. When reviewing the current state
of the investigation, we will highlight the advances, challenges and future opportunities in this
field. Through this exploration, we seek to provide an integral understanding of how these
technologies can work together to improve disaster preparation and response, offering new

possibilities to save lives and minimize destruction caused by landslides.

To achieve best output, the application of ML is used to analyze data through clear process
using several phases. One phase begins with the collection and preparation of data as illustrated
in Figure 2.1. Raw data is gathered from many sources like databases or sensors then, data
cleaning is done to missing values or other outliers present in data. Further suitable model for

training is taken into consideration.

A_ Obtain and
prepare data

Figure 2.1 Overview of the key stages in the machine learning pipeline

After modelling, the next phase is visualization in which the data must be visualized using
graphs or graphs to appear patterns or correlations. Then model evaluation is done using

various metrics which determines the usefulness of model. Each phase of this process is



interconnected, and the decision made in one step affects the outcome biased in the following

phases.

N Casagil et al. [1] designed a model for detecting and monitoring landslides, which
emphasizes the importance of remote detection techniques (RST) in control of the grounds
associated with landslides. Landslides are generalized phenomena that can cause considerable
damage, especially if they occur near inhabited areas and infrastructure. Precise detection,
continuous monitoring and reliable prediction are essential for risk alleviation. The first, such
as satellite -based observations, laser scanning and earthly interferometry, are helpful in these
processes. Extrusion of landslides can be detected and measured on various spatial and time
schedules thanks to a thorough overview provided by satellite RST. On the other hand,
although they are focused on smaller regions, ground sensors such as Lidar, Doppler radar and
interferometric radar, offer excellent accuracy, frequent data collection and customizable
settings. The use of these systems for early warnings of landslides and monitoring in real time
is growing. Special needs, including the size of the affected region, the type of landslide and
possible risks, determine which first is the best. Each first has a unique set of advantages and
disadvantages. Integration of multiple technologies is therefore often the most effective
approach for laying and risk control. Better communication with residents in areas susceptible
to landslides, deployment of intelligent sources and the use of large data are necessary for more
efficient control of landslides.

J Barman et al. [2] designed a model for creating landslide forecasting zonation in Lunglei
Mizoram district using bivariate statistical techniques based on GIS. After a multicollinearity
test for landslide susceptibility zonation, 17 factors were selected for the study. 234 occurrences
of landslides, divided into 70% training and 30% of data sets were used to create a map of soil
inventory. Nine main factors such as altitude, gradient, dimension, curvature, normalized
difference vegetation index (NDVI), geomorphology, road length, distance from the line and
river - it was found to have substantial weights for landslide susceptibility zonation using
entropy index (IOE) model. It was found that other elements such as geology, collisions and
soil and cover use were of very importance. Two models have been improved Scenario 1 and
assessed nine factors, and scenario 2, which contained all 17 factors. The results indicated that
16% and 14% of the district area was classified as very highly susceptible to the screenplay in
the 1 and screenplay 2. Accuracy of model present, with area under the Curve (AUC) Values

of 0.947 for Scenario 1 and 0.922 for Scenario 2, Indicating Better Performance for Scenario



1. Mapping landslide susceptibility zonation from Screenplay 1 is considered to be the most
suitable for management of policy creation in land risk management with regard to these

findings.

MT Riaz et al. [3] developed a model to use the efficiency of different techniques of
distribution of landslides sensitivity modeling (LSM) and was used in the Pakistani district of
Muzaffarabad. The model was used 961 landslide samples which further split into training
samples of 70%, 672 and testing samples of 30%, 289. The training samples were processed
using the average method of the nearest neighborhood index (ANNI), revealing a sliding
distribution pattern for landslides. Among the training samples of 79% showed the behavior of
the cluster, while 21% showed random behavior. With 17 parameters of geoenvironmental
parameters, five machine learning algorithms were used in clusters and conventional random
training samples to evaluate the prediction force of clustering. Using AUC-ROC, sensitivity,
specificity, accuracy and index Kappa was evaluated model performance. With AUC-ROC
values, it varies from 0.96 to 0.86, Kappa index between 0.76 and 0.60 and accuracy between
0.90 and 0.83, the cluster distribution method showed greater predictive potential. On the
contrary, the approach of random segmentation also did not work. AUC (0.962), accuracy
(0.902) and Kappa Index (0.755) were highest for the Random Forest (RF) based on cluster
training samples that overcome the XGBoost. The outcome demonstrate that the division of
clusters enhances LSM precision, especially for complex Himalayan terrain, and emphasizes
the potential advantages of using data sets based on cluster over the traditional random division
in LSM.

P. C Huang et al. [4] developed a model which integrates a seepage flow model and slope
stability model to get the spatial and temporal shifts in areas. The input of the model, the
dynamic cumulative shifted area, is derived from the seepage flow and soil slope stability
analysis, ensuring that the physical meaning of the ML based model is preserved. The approach
effectively predicts when landslides are likely to occur in different areas.The results show that
only specific regions, which experience significant changes in instability during rainfall, need
to be closely monitored. The model’s prediction accuracy is high, with the mean relative error
of the predicted landslide periods (Ps) and initial time (Ts) controlled within 5.19%, and an R2
consistently greater than 0.889. The model successfully predicted around 82.2 percent of the

study area's recorded landslide incidents.
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P Varangaonkar et al. [5] introduced an innovative framework that uses a long -distance
survey to automatically detect landslides and localize regions. The system includes pre-
processing, segmentation, feature extraction, and classification. In the preliminary processing
phase, the image is denominated by 2D medium filtering, atmospheric and geometric
corrections are performed and excess areas are eliminated. ROI is then extracted by dynamic
image segment. For the automatic extraction of the elements, convolutional neural network
(CNN) layers are used and use the ResNet50 to enhance accuracy and minimize computing
expectations. Long -term short memory and artificial neuron network classifiers are used to
predict land landslides. The potential placement of landslide is identified in the subsequent
processing step if landslides are predicted. According to experimental data, the proposed CNN-
LSTM model works better than current solutions in terms of accuracy, score F1, accuracy and
download. It also reduces computational complexity by 35% and increases the overall accuracy

of prediction by 2% compared to the latest techniques.

Y A Nanehkaran et al. [6] introduced a model which implemented artificial neural networks
to evaluate the risk of landslides along riverbanks. This model is alligned with the Sustainable
Development Goals of the UN, specifically Goal 11: Sustainable Cities and Communities. The
article examines how ANNSs are increasingly being used to map landslide vulnerability in
riverbank regions, emphasizing how well they outperform conventional techniques. Better risk
management and increased community resilience to geohazards are made possible by the
incorporation of ANNs into landslide assessments, which promotes sustainable and disaster-
resilient urban development. In order to promote sustainable development, better risk
management techniques, the review focuses on the most widely used neural network algorithms
for riverside landslide prediction. By expanding knowledge and creating safer, more resilient

communities, the use of ANNs supports the SDGs.

C Zhou et al. [7] designed a new, cost-effective framework for landslide prediction that
combines a MT-INSAR with machine learning techniques. MT-INSAR is used in terms of
extracting time series of shifts from the Corernicus Sentinel-1A SAR images. Then the
displacement series is divided by means of wave transformation into trend, periodic and noise
components. The trend and periodic shifts are predicted by the machine learning model known
as the gated recurring units (GRU). These predictions are summarized to estimate the overall
shift. GRU overcomes other algorithms such as long short -term memory networks and an

extreme kernel -based learning machine, with an Adam algorithm. The results of the prediction
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show low errors (the RMSE of 3,817 and 5.145 for Shuping and Muyubao landslides). The
proposed framework effectively integrates MT-INSAR and machine learning and offers cost-

effective solutions for prediction of moving landslide on large areas.

S Algadhi et al. [8] developed a thorough strategy to improve the prediction of landslides by
a combination of explaining approaches to artificial intelligence (XAIl) with deep neuron
networks, 1D convolutional neural networks and DNN-CNN. XAl increases the interpretation
of deep learning and makes it easier to decide. To evaluate how the variables affect the
prediction of landslides, the DNN model uses the game theory. The study identifies the
sensitivity zones to a high and very high landslide and shows that the DCN model overcomes
CNN and DNN with AUC of 0.97, compared to 0.94 for CNN and 0.9 for DNN. XAl reveals
significant remnants at the back of CNN despite its high AUC. The key parameters for accurate
prediction include precipitation, inclination, soil texture and line density, while the game theory
emphasizes the line density as the primary influential factor, observed by a topographic

moisture index, curvature and inclination.

H Ishibashi et al. [9] proposed an approach for assessing the economic risk of structures
impacted by collisions caused by landslides with a focus on increasing resistance to extreme
rainfall events. The study used ML, specifically random forests and LightGBM, to develop
models of landslides and include spatial division of conditioning and trigger factors. The
precipitation index, which considers time differences in precipitation, was used to assess the
intensity of precipitation and the risk curve was estimated by the generalized distribution of
extreme value to represent the connection between the precipitation index and its annual
probability of crossing. To evaluate the sensitivity to the landslide with landslides of landslides
of landslides with landslides, the risk curve was created for economic loss of structural damage.
The results showed that LightGBM exceeded the random forest in predicting a collision caused

by a soil landslide.

L. Liu et al. [10] introduced a study to investigate the effiectiveness of classical models in
predicting landslide failure-time using displacement monitoring data, with a focus on dynamic
prediction. Since landslide monitoring continuously updates the data, predictions should be re-
evaluated in real-time. The study examined the limitations of classical models, using data from
four real landslides. To improve prediction accuracy, an ensemble model was developed,
integrating classical models through a machine learning-based meta-model. A new indicator,

the "discredit index (B)," was introduced, where higher B values indicate poorer prediction
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quality. Results showed that Verhulst and Saito models had higher B values, while GM (1,1)
had the highest MAE. In comparison, ensemble models, particularly the decision tree

regression-based ensemble, performed better and provided more accurate predictions.

H. Harsa et al. [11] developed landslide prediction models in Indonesia using artificial
intelligence algorithms and ML. These ML models were trained using precipitation data from
global satellite observations and landslide occurrence data provided by the Indonesian National
Board for Disaster Management. The model was trained with two distinct approaches, leading
to the creation of 52 and 72 model candidates for each approach. The best-performing models
from each method were selected, with the generalized linear model excelling in the first method
and DL outperforming others in the second. The top models achieved AUC values of 0.828
and 0.836, with log-loss values of 0.156 and 0.154, respectively. The second method, which

included data transformation, yielded superior results.

Z Chang et al. [12] introduced a study to forecast the LSP using slope units retrieved by the
multi-scale segmentation (MSS). They dealt with the question of neglect of heterogeneity of
conditional variables in slope units, which can lead to incomplete input variables in LSP
modeling. The authors introduced a new approach that includes internal variations of
conditional factors (diameter, standard deviation and range) into slope units. Using the Chongyi
Country as a case study, the study has expanded 15 original conditional factors to 38
considering their internal variations. The authors compared models of machine learning,
including random forests (RF) using slope units with and without internal variants, as well as
conventional grid -based models. The finding revealed that the models representing the internal
variations within the slope units overcame models based on the grid, which shows greater
directional and practical usability. This approach emphasizes the importance of incorporating
the heterogeneity of conditional factors into slope units for more accurate and thorough

modeling of the sensitivity of landslides.

L. Nava et al. [13] introduced the evaluation of seven DL algorithms to predict landslide shif
ts. This study compared 1D CNN and LSTM architectures CONGLSTM combining 1D CNN
and LSTM architectures via multilayer shortterm memory, repeating units, 1D folding netwo
rks, 2XLSTM, bidirectional LSTM, and slides from four countries with different geographic

and geographical conditions. Two of these landslides were affected by artificial reservoirs, w
hile the other landslides were driven by precipitation. The results showed that MLP, GRU, an
d LSTM models were reliable in all scenarios. This allows the CONPLSTM model to be best
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run on seasonal Baishuiheslides. MLP was excellent at predicting top shifts, while LSTM and
GRU models were effective at lower shift peaks. These results recommened that these DL m

ethods can significantly improve landslides.

Y. Shen et al. [14] proposed a new type of landslide model of machine learning, neuronal net
works, and topography indexes to improve accuracy. A study conducted in Western Baijan, Ir
an evaluated 16 factors related to geology, environment and geomorphology and analyzed 16

0 landslides. A 30:70 training ratio of the test data was used with four support vector algorith

ms and an artificial neural network. The results showed that over 80% of landslide areas were
extremely sensitive. Geological factors such as trends, increases and precipitation played an i
mportant role with sensitivity of 100%, 75.7%, 68%, and 66.3%. This study assessed the perf
ormance of the model using AUC, classification matrix and sensitivity, accuracy and specifici
ty metrics, and found that the algorithm surpassed other methods for machine learning. The S
VM and Kernel-Sigmoid algorithm achieved the highest accuracy with a performance value of
1.

Z. Chang et al. [15] introduced a new methodology to examine the uncertainty in the selection
of sensitivity sample for LSP, which does not include landslides. In order to create LSP models
and calculate various soil sensitivity indices, this framework uses machine -based machine -
based models in which samples of non -domestic soils are randomly selected many times (n =
1, 10, 100, 500, 1000, 5000) from places outside the soil. The maximum probability analysis
(MPA) is used to lower the unpredictability of identification of the ideal sensitivity level for
each slope unit, while the statistical analysis is used to display landslide susceptibility indexes
uncertainty based on different selections. A study conducted in China Chongyi County in China
used LR models and SVM with 16 conditioning factors. The power of the model was evaluated
by the accuracy. The results showed that landslide susceptibility indexes monitored normal
distribution instead of constant value and was effectively represented by uncertainty when
choosing a sample without land.

L. Achu et al. [16] developed a new methodological system for quantification of uncertainty
in the prediction of the landslide sensitivity by means of files by eight machine learning
techniques (MLT). This framework has been tested in the southern western Ghats area in
Kerala, India, a area susceptible to frequent landslides. Fourteen factors of landslides have been
identified and correlated with 671 historical landslides. Four models were used in the study:
Committee diameter, weighted probability diameter, median probability and probability
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average. Based on the operating functions of the receiver, real skills and areas under the curve,
the weighted probability average was determined as the most successful model between them.
A variation coefficient was used to analyze the uncertainty and a confident map was created to
show the zone of the sensitivity of landslides with different scales of uncertainty. The results
revealed that 74% of past landslides fell into high uncertain zones with low susceptibility. The
study concluded that using such a micro -level zone could increase the efficiency of soil
sensitivity maps and provide planners valuable tools for formulating adaptation strategies of
landslides.

Y. Wie et al. [17] introduced an improved method to assessing the soil sensitivity by
integrating ML, including random forest, a tree decision -making tree and logistics regression,
with interferometric synthetic radar technology. This combined approach was compared with
the original models and the results showed improved accuracy of prediction with reduced FN-
false negative and FP- false positive mistakes. The LR-INSAR has shown the best performance,
especially when identifying areas with high susceptibility, both in regional and smaller scales.
The results of the modeling were verified by means of data from the unmanned aerial vehicle
(UAV) flights.

L. Chen et al. [18] developed a better technique of landslide -based landslides that integrates
the machine learning models into the spatiotemporal Knowledge graph. This method deals with
the difficulty of integrating data from multiple sources of long -distance survey and creating a
consistent prediction process, which is often the disadvantage of contemporary models. This
technique chooses the best ML model to forecast landslides in places with a smaller figure
when it takes into account environmental similarities between areas. Compared to conventional
machine learning techniques, experimental results showed 93% improvement of processing
efficiency and 29% increase in score F1. In addition, this approach has solved the problems of
Subpar prediction, which caused a lack of data, especially for forecasts performed at the region
level. Especially in regions with limited data, this strategy offers thorough information to create

more effective techniques of landslide.

C. Chen et al. [19] examined the effect of selection of contributing factors on the precision of
landing sensitivity forecasts using machine learning and deep learning models. The study has
explored four methods of selection of factors: the ratio of information profit, recursive
elimination of elements, optimizing particle swarm, least absolute shrinkage and operators’

selection and optimization Harris Hawk, along with an auto -gap factor for deep learning. The
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results showed that the selection of significant assisting factors enhanced the accuracy of
models. But the result of the DL models has improved when the autoencoder architecture was
used to select factors. The study concluded that the choice of factor selection method was more
significant than specific factors providing to increasing the precision of the permission

sensitivity.

N. Nocentini et al. [20] developed a dynamic approach to analyze the susceptibility of
landslides by combining the static sensitivity index with dynamic variables using the random
forest algorithm (RF). This methodology integrates the likelihood of spatial landslide (static)
with dynamic factors such as seasonality and precipitation in different periods to increase land
landslide forecasts. The RF model was applied in the metropolitan city of Florence in Italy,
where the importance of variables and verification of the consistency of the model with
observed trigger mechanisms used out-of-Bag errors and charts of partial dependence. The aim
of the study was to fulfil dataset of training and test datasets with space -time data, identify
relevant variable precipitation for timing and location of landslides, and test the dynamic RF
application for forecasts. The results showed that the dynamic model precisely reflected the
triggers of physical landslides, especially short and intense precipitation, and identified
promising configurations for future regional applications in the assessment of the probability

of landslides and early warning systems.

T. Xiao et al. [21] developed an innovative framework of ML to predict the landslides caused
by rain in space and time that dealt with the challenge of incomplete landslides, especially the
lack of accurate timing of landslides. This study systematically compared various methods
based on data-based, statistical and machine learning-for soil landslides and introduced a
probability model of landslide, which can be used even when timing data is missing. The
integrated model provides a useful tool for timely warning systems and real -time decision -
making accurately estimated the risk of soil and predicting the spatial development of
landslides during rain storms. The model beat previous data -based approaches in terms of

accuracy and predicational ability after being verified against 35 years of data on Hong Kong.

K. Doerksen et al. [22] designed a method using machine learning techniques (ML) and deep
learning (DL) of artificial intelligence (Al) for predicting landslides in Nepal at the level of the
district with 7, 10- and 14 days of time resolution. This approach uses an open source, space
data, including calibrated precipitation and geomorphic data. The study showed predictive
power of random forest and U-Net models to predict land landslides and provided scientific
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knowledge through the analysis of significance. This method improves predictive abilities and
offers valuable tools for disasters and solves the challenges of a complex causal chain of
landslides in Nepal, where large earthquakes and intensive monsoon collisions are common

triggers.

H. Hong et al. [23] designed five integration models that combine locally weighted learning
(LWL) with various classifiers such as radial basis function classifier, decision tree, credal
decision tree, quadratic discriminatory analysis, Fisher linear discriminatory and classifier with
radial basis. The study conducted in China in the Yongxin district used 364 landslides and 15
environmental factors. The results showed that the LWL-RS-ADT has surpassed others in
terms of reliability and stability. Among the environmental factors, NDVI, lithology and
altitude were identified as the most important in predicting the sensitivity of landslide. The
proposed integration models have been induced as effective tools for the prediction of soil

landslide.

S. Aldiansyah et al. [24] designed a model of foresting sensitivity, which combines the
techniques of resampling, including cross validation, bootstrap and random subsampling, with
a series of machine learning models such as support vector machine, random forest, generalized
linear model, maximum regression tree Discriminating discriminatory disgraceful analysis,
flexible discriminatory analysis, flexible disgraceful analysis, flexible disgraceful analysis,
maximum regression tree, and regression. Probability and maximum entropy. The
methodology was used in Kendari, an area affected by destructive erosion. The predictive
accuracy of the model was assessed using metrics like AUC, TSS, COR, NMI and CCRTHE,
achieved impressive power metrics with AUC of 0.97, COR of 0.99, NMI of 0.50, TSS of 0.97
and CCR of 0.93. The study concluded that these integrated models provide promising results

to predict the landslide sensitivity and could be successfully applied in other regions.

M. Dahim et al. [25] focused on predicting the sensitivity of landslides in the area of Saudi
Arabia by means of machine learning and deep learning algorithms, along with the sensitivity
and analysis of uncertainty. The study took advantage of a random forest as a model of machine
learning and a deep neural network as a model of deep learning, both of which were
enthusiastically tuned through the grid search. The operating characteristics of the receiver,
score F1 and F2, the Gini value and the accuracy curve were used to verify the models. Analysis
of sensitivity and uncertainty made using the DNN model revealed the impact and uncertainty
of various parameters on the occurrence of landslides. The results indicated that the RF and
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DNN models predicted 35.1-41.32 km2 and 15.14-16.2 km2 of high and very high soil
sensitivity zones. The DNN model reached 0.96, while the RF model won 0.93. The sensitivity
analysis emphasized that the most important factor is collision, followed by the topographic

wetness index, curvature, inclination, soil texture and lines density.

N. Sharma et al. [26] developed a probability framework for mapping sensitivity to landslides
that deals with limitation of existing maps, such as small-scale data, heuristic methods, low,
small study areas and spatial resolution. The framework combines the techniques of handling
the imbalance and techniques of machine learning by means of support of vector machine
synthetic oversampling technique to solve class imbalances and generate smaller representative
data for model training. The technique of mixing file is used for lower uncertainty, which
includes support vector machines, random forests and hyperparameter tuned ANN. This
methodology is provided by the probability and class of landslides. With a resolution of 0.001
° (~ 100 m), the frame was used to create the first Indian landslide maps of landslides at the
national level and was divided into five levels. The map achieved of sensitivity With a
sensitivity of 97.08%, accuracy of 95.73% and correlation coefficient Matthews 0.915 on test
data showed an excellent generalization, robustness and accuracy. The model found new high
-risk regions, including the Eastern Ghats regions that were not previously reported. The Indian
map of sensitivity to landslide will be assumed to help model prediction models and reduce the
risks of disaster.

T. Zeng et al. [27] investigated the impact of grading factors in landslide prediction modeling,
addressing the subjectivity and randomness typically linked to this method. Focusing on the
Wanzhou section of the Three Gorges Reservoir area, the research evaluated the performance
of various machine learning models under different grading strategies, including non-grading,
equal intervals, and natural breaks. The results indicated that the optimal grading strategy varies
depending on the model used. For instance, the SVM model performed best with level 8
grading using natural breaks, while decision tree models were more effective without any
grading. Deep learning models, such as Multi-Layer Perceptron Neural Networks and
Convolutional Neural Networks, showed better results with natural breaks grading beyond 8
levels. Gated Recurrent Unit and Deep Neural Networks performed more effectively with
equidistant grading of over 12 levels, while Long Short-Term Memory Networks excelled with

equidistant grading exceeding 16 levels.
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P. Priyanka et at. [28] proposed a model for soil movement prediction in areas susceptible to
landslide Himachal Pradesh in India, where climate change intensifies the risks of landslide.
The study has used models like long short-term memory, a convolutional neural network long
short-term memory, convolution LSTM, encoder-decoder LSTM and the new model of the
ensemble, Multi-LSTM-SVM, which is critical for understanding for landslides. Research,
which was carried out in the Kamand valley with extensive monitoring systems, found that the
SoilSense Multi-LSTM-SVM has reached 88.1% accuracy, overcame other models such as the
LSTM and CNN-LSTM, which achieved 82.26% accuracy. adaptation. The study suggests that
the refining of the fine models can further improve predictions and eventually help to reduce

the risks of landslides and investigate lives and property in vulnerable areas.

A. Saha et al. [29] developed a model which used susceptibility of landslides combining the
statistical model AHP and ML model SVM to predict landslides in Darjeeling district, West
Bengal, India. The study identified 114 placement of land shells and divided them into training
sets (70%) and validation (30%). Ten training factors were assessed, including rain, soil
texture, waiting and geomorphology for analysis. The AHP-SVM using linear, polynomial,
radial bases (RBF) and sigmoid algorithms generated four maps of the sensitivity of ground
landslides. Among them, the AHP-SVM. Sigmoid showed the highest prediction performance
and achieved a prediction capacity of 86.2%. This study concluded that the AHP-SVM Sigmoid
model is a promising technique for mapping sensitivity to landslides that offers valuable ideas

for local planning and decision-making and can be used for other regions for similar studies.

Q. Ge et al. [30] investigated how different elements of element selection techniques affect the
productivity of machine learning model in prediction of offspring soil deposits in a deposit area
of China. The research focused on the landslides of shuping and Baishuihe as case studies and
evaluated four automatic learning algorithms: backup neuronal network, support vectors, short
-term memory and closed recurring unit. Three characteristic engineering approaches were
used: unprocessed multi-variation timing, autocorrelation functions of the maximum
information coefficient and partial coefficient and relational analysis of GRA-PACF. The
results revealed that static automatic learning models have improved significantly with the
selection of suitable characteristics, while dynamic models such as LSTM and GRU, which
inherently represent temporary formulas, showed only a slight improvement with engineering

other features.
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Y. Wang et al. [31] introduced various machine learning models for accessing the sensitivity
in the Wushan region using models like random forest, logistics regression to compare the
results and best model. The mentioned dataset uses 19 conditional parameters and train & test
split is done is 80:20 ratio for further analysis. Different performance metrics were
implemented to calculate the accuracy of model. The results provide insights that random
forest outperformed all other models with 0.848 accuracy, 0.904 for area under curve, F1 score
as 0.740. The research summarized as the random forest provided most efficient results and
that proved to be one of most useful approach to assess the sensitivity and other parameters of

landslides.

H. Wu et al. [32] the study included factors such as landslides, triggering factors and dams,
and developed six predictive models using logistics regression, K-nearest neighbours, Support
Vector Machine, Naive Bayes, decision tree and random forest. These models considered five
factors, including the parameters of the geometry and attribute properties, and were compared
with the dimensionless blockage index (DBI). The results showed that while the machine
learning models corresponded to the accuracy of DBI, they provided benefits in situations
where DBI cannot be used. Among the models achieved random forest with the highest

performance, with 89% accuracy, 7% error rate, 15% false alarm rate and without uncertainty.

H. Shahabi et al. [33] evaluated the efficiency of three machine learning algorithms, such as
decision tree (DT), random forest (RF) and support vector machine (SVM) to map the
sensitivity of landslides, focusing on Kamyaran -Sarvabad Road in Iran and Kurdistan, and an
area that was often influenced with Landslides. Fourteen factors of landslides, including
inclination, aspect, height, river density, disorders and topographic indexes, were used as inputs
for the MLA. The study identified 64 landslide seats using 70% for model training and the
remaining 30% for verification. The model of the decision -making tree reached the highest
area under the operational characteristic curve of the receiver 0.94, exceeded random forest
(0.82) and support vector machines (0.75).

G. Tang et al. [34] developed a AutoML-based framework for global landslide sensitivity
prediction (LSP) in two spatial resolutions (90 m - 1000 m), reaching the area under the
operational characteristics of the receiver (AUC) over 0.96. Global prediction results were
validated using regional landslides from three countries, three provinces and two prefecture
data files. In addition, global LSP results at 90 m were used to increase regional predictions by

incorporating areas with low and very low susceptible as samples of non -domestic soils. The
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model has shown improved performance compared to the original global predictions. This
study emphasizes the potential of intelligent learning methods for reliable global LSP

applications.

S. Meng et al. [35] developed a deep learning framework that integrates the LSCDBN-WOA
with Laplace function sparse regularized continuous deep belief network. This model addresses
issues such as feature homogenization of continuous input variables, limited samples of
landslide, and local optima during the training phase. Using a comprehensive database of 18
landslide conditioning factors, the study demonstrated that the LSCDBN-WOA model AUC =
0.964, RMSE = 0.174 outperformed the LSCDBN-GWO model AUC =0.952, RMSE = 0.182
and the standalone LSCDBN model attain AUC = 0.913, RMSE = 0.291. The proposed
LSCDBN-WOA framework also surpassed traditional machine learning models SVM, BP, RF,
and LR and deep learning models RNN, CNN. The outcome highlights the effectiveness of the
LSCDBN-WOA framework for landslide susceptibility assessment.

C. Chen et al. [36] proposed a deep learning model, Deep-Attention-LSF, designed for
mapping of landslide susceptibility. This model assigns relevance scores to input contributing
factors at local levels, improving the understanding of the factors influencing landslide events.
DeepLIFT was implemented as an attribution branching network to interpret the relationship
between the factors and landslide events. The model, which combines convolutional neural
networks and long short-term memory networks, was tested on the Three Gorges Reservoir
Area, using 18 landslide-related factors. The Deep-Attention-LSF model achieved high
performance with accuracy - 0.9645, precision - 0.9676, recall - 0.9583and F1-score - 0.9522,
outperforming other models such as self-attention LSM, random forest, and gradient boosting

decision tree.

C. Yang et al. [37] developed the Bayesian optimization technique to maximize the sample
ratio of landslide to a non-landslide assessment to assess the soil sensitivity based ML. The
study focused on the edge of Anhua in Hunan province in China, which is the area susceptible
to landslides. Three ML models, such as random forest, support vector machine and gradient
increase, were used to assess sensitivity to landslides. The use of Bayesian optimization
algorithm identified the optimum sample ratio, which improved the performance of the model.
The finding has shown that higher power was the result of an optimized P/N ratio, with the RF
gaining maximum or AUC 0.840, followed by GBDT 0.831 and SVM 0.775. In the LSA Study
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models, the Bayes optimization technique works well to maximize the P/N sample ratio, while

RF and GBDT are more suitable for solving imbalance problems.

M. A. Hussain et al. [38] updated the inventory of land landslides along the Karakoram
highway (KKH), a critical route connecting South Asia, Central Asia and China, which is
highly sensitive to landslides due to extreme geological conditions. The study was used by
SBAS-InSAR and PS-InSAR technology and processed Sentinel-1 data from June 2021 to June
2023 to identify and measure slope deformation (Vslope). Among the 571 landslides that were
found were 24 new landslides and some of the pre -defines the existing existing ones. The soil
-sensitivity model was developed using an updated inventory that combined land landslides to
causing factors. To evaluate deep learning models such as deep learning models such as CNN
2D, RNN, RF and XGBoost, 70% of training and 30% test part were used. The mapping was
considered a total of fifteen elements causing landslide. The CNN 2D made the best and a map
of landslide susceptibility that has been produced offers a useful risk control and risk

prevention tool and helps to assess and alleviate risks.

Y. Liu etal. [39] developed a method of assessing the sensitivity of landslides, which combines
information models with machine learning (ML) for more accurate forecasts and solves the
problem of sample selection outside Landslide. The study focuses on the selection of samples
without the land of the first screening of influential factors using a correlation analysis and then
using a model of the value of the information value (IV) to define low and relatively low
sensitivity. IV-ML models, such as IV-Logistic regression, IV-Random forest, 1V-Support
vector machine and IV-artificial neural network, were used to assess the sensitivity of
landslides in the province of the province of Dabie in Anhui province. Compared to traditional
ML models such as LR, RF, SVM and Ann, IV-ML models have shown significantly better
performance in terms of accuracy, with improved ACC, AUC and Kappa values. This

emphasized the increased efficiency of the proposed method for evaluation of soil landslide.

D. Sun et al. [40] focused on mapping of landslide sensitivity using interpretable machine
learning, specifically exploring topographic differentiation. The study area included two
different regions in Chongging: zone I (corrosion layered high and middle mountain areas) and
zone Il (middle mountain area with strong regional feet). Bayes optimization was used to
increase the parameters of the LightGBM and XGBoost models, with the most accurate model
selected for soil sensitivity mapping. The SHAP (Shapey additive explanation) was applied to
examine the molding mechanisms in both regions. The results showed that LightGBM
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overcame XGBoost, with AUC values 0.8525 and 0.8859 for zones I and I1. Common dominant
factors for the occurrence of soil in both zones included altitude, soil use, section depth,

distance from roads and annual collision.

This literature survey examines the application of ML and DL hybrid models to predict
landslide using remote sensing images and data in real time collected from several sensors. The
integration of satellite images, LIDAR, radar data and other technologies remote detection with
sensor networks plays an essential role in the identification and predictions of areas susceptible
to landslides. An overview emphasizes how hybrid models combining traditional algorithms,
including support vector machines (SVM), random anticipation and K-nearest neighbors
(KNN), along with advanced deep learning techniques such as deep beliefs networks (DBN),
fully convention networks (FCN), offer improved prediction capabilities for landslide
prediction and detection and risk assessment. In addition to remote exploration data, the
overview focuses on data collection in real time of various sensors located in regions
susceptible to landslides. These sensors capture key environmental factors such as soil
moisture, rainy intensity, soil relocation, seismic activity and atmospheric conditions. Real
time data is collected by ground sensors, meteorological stations and, among other things,
unmanned aerial vehicles (UAV) and then feed on hybrid models of machine learning.
Incorporating real -time sensor data improves the ability to monitor dynamic environmental
changes and detect possible landslides and provide valuable information for early warning
systems. Further advances are essential for improving early warning systems and efforts to
prepare disasters. Table 2.1 provides a detailed summary of review of literature on landslide
prediction using hybrid models of automatic learning and deep learning with sensor data in real

time and remote sensor images.

Table 2.1 Summarization of literature review for Landslide Prediction

Author Technique Problem Performance Limitation
Statement Analysis
N. Casagil et Remote Sensing Landslide detection | Multiple RSTs offer | Integration of
al. [1] Techniques (RSTs) and monitoring effective monitoring | multiple RSTs is
using satellite and with high spatial complex and
ground-based and temporal resource-intensive
sensors to manage flexibility. Ground-
landslide risks based systems offer
accuracy for small
areas
J. Barman et GIS-based Bivariate | Landslide Scenario 1 (9 Limited by the
al. [2] Statistical Approach, | susceptibility factors) geographical scope
Index of Entropy zonation (LSZ) in outperformed of the study,
(ICE) Lunglei, Mizoram Scenario 2 (17
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M.T. Riaz et
al. [3]

P.C. Huang et
al. [4]

P.
Varangaonkar
etal. [5]

Y.A.
Nanehkaran et
al. [6]

C. Zhou et al.
[7]

S. Algadhi et
al. [8]

H. Ishibashi et
al. [9]

L.L. Liu et al.
[10]

H. Harsa et al.
[11]

Machine Learning
Algorithms,
Clustering
Partitioning

Neural Network
Algorithm,
Clustering Method

Remote Sensing,
CNN, LSTM, ANN,
SVM

Artificial Neural
Networks (ANNS)

Multi-Temporal
InSAR, Gated
Recurrent Units
(GRU)

Deep Neural
Networks (DNN), 1D
CNN, DCN, XAl

Machine Learning
(Random Forest,
LightGBM), Rainfall
Hazard Curve

Classical Models
(Verhulst, GM (1,1),
Saito), Ensemble
Models

Machine Learning
and Al, Precipitation
Data

to predict landslide-
prone areas

Evaluate alternative
partitioning
techniques for
landslide
susceptibility
modeling in
Muzaffarabad
Predict shallow
landslides using
geomorphological
features and
clustering methods

Automatic landslide
detection and
region localization
using remote
sensing images

Assess riverside
landslide
susceptibility for
better urban
planning and
disaster resilience

Cost-effective
displacement
prediction for
landslides using
INSAR and machine
learning

Enhance landslide
prediction by
integrating deep
learning and
explainable Al

Assess economic
risk from rainfall-
induced landslides
and improve
resilience of
structures

Predict landslide
failure time using
displacement
monitoring data

Landslide event
prediction in
Indonesia using
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factors), with AUC
of 0.947 (Scenario
1) and 0.922
(Scenario 2)
Cluster-based
partitioning method
improved predictive
accuracy with AUC-
ROC values up to
0.962 for Random
Forest model

High prediction
accuracy (mean
relative error:
5.19%), with Rz >
0.889 and 82.2% of
observed landslide
events predicted
CNN-LSTM model
outperformed
traditional methods,
improving accuracy
by 2% and reducing
complexity by 35%
ANNSs improved
risk management
strategies for
riverside areas,
supporting
sustainable urban
development

GRU model
provided high
accuracy in
displacement
prediction with
RMSE values of
3.817 and 5.145
DCN model
achieved AUC of
0.97, outperforming
DNN (AUC: 0.9)
and CNN (AUC:
0.94)

LightGBM
outperformed
Random Forest with
higher accuracy for
rainfall-induced
landslide
susceptibility
Ensemble models,
especially decision
tree regression-
based, outperformed
classical models in
prediction accuracy
Best models:
Generalized Linear
Model (AUC:

overlooking other
factors

Specific
geographical
features of
Muzaffarabad may
affect
generalizability

Relies heavily on
geomorphological
data, limiting
generalization to
other regions

Requires
computationally
intensive resources
for real-time
applications

Limited to riverside
areas, unsuitable
for non-riverside
regions

Dependent on
satellite imagery,
which may be
inaccessible or
expensive in some
regions

XAl increases
complexity and
computational
demand

Does not account
for non-rainfall-
induced landslides
in areas with
different triggering
factors

Classical models
had high prediction
errors (e.g., GM
(1,1) with high
mean absolute
error)

Performance varies
with different
satellite data or



Z. Chang et al.
[12]

L. Nava et al.
[13]

Y. Shen et al.
[14]

Z.Chang et al.
[15]

L. Achu et al.
[16]

Y. Wie et al.
[17]

L. Chenetal.
[18]

C. Chenetal.
[19]

N. Nocentini et
al. [20]

T. Xiao et al.
[21]

Multi-Scale
Segmentation (MSS),
Machine Learning

Deep Learning
(MLP, LSTM, GRU,
Conv-LSTM)

Machine Learning,
Neural Networks,
Geomorphological
Indices

Slope Unit-based
Machine Learning
Models

Ensemble Machine
Learning Techniques

Machine Learning
(Random Forest,
Logistic Regression,
GBDT), InSAR

Spatio-Temporal
Knowledge Graph,
Machine Learning

Machine Learning
and Deep Learning
Models, Factor

Selection Methods

Random Forest (RF),
Dynamic Variables

Machine Learning

satellite
precipitation data

Landslide
susceptibility
prediction
addressing the
heterogeneity of
conditioning factors

Forecast landslide
displacement and
improve early
warning systems

Enhance landslide
susceptibility
mapping with
machine learning
and
geomorphological
data

Study uncertainty in
selecting non-
landslide samples
for landslide
susceptibility
prediction
Quantify
uncertainty in
landslide
susceptibility
prediction

Improved landslide
susceptibility
assessment using
machine learning
integrated with
INSAR

Address challenges
in organizing multi-
source remote
sensing data for
landslide prediction
Investigate the
impact of
contributing factor
selection on
landslide prediction
accuracy

Combine static and
dynamic factors for
landslide
susceptibility
assessment

Incomplete
landslide
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0.828) and Deep
Learning (AUC:
0.836)

Models
incorporating
internal variations
within slope units
performed better
than grid-based
models
Conv-LSTM
performed best in
predicting
displacements,
particularly in
seasonal landslides
SVM and Kernel
Sigmoid algorithms
achieved the highest
accuracy

Maximum
probability analysis
(MPA) reduced
uncertainty
effectively

Weighted mean of
probabilities model
was the most
effective for
uncertainty
guantification
LR-InSAR model
showed superior
performance in
identifying high-
susceptibility areas

29% increase in F1
score and 93%
improvement in
processing
efficiency
Autoencoder-based
factor selection
improved DL model
accuracy

RF model with
dynamic variables
accurately
forecasted landslide
occurrence based on
rainfall data
Probabilistic
landslide model

geographic
conditions

High complexity
due to multi-factor
modeling and data
requirements

Does not generalize
well to all types of
landslides

Does not generalize
well outside the
studied
geographical area

Dependent on
large-scale data
collection, not
suitable for small
areas

High computational
demands for large-
area predictions

Limited by data
availability and
unsuitable for
regions with
minimal INSAR
data

Struggles in areas
with poor data
availability or
inaccessible regions

Limited to factors
studied, unsuitable
for other regions or
datasets

Does not perform
well in regions with
limited rainfall data
or varied climatic
conditions

Model performance
is dependent on the



K. Doerksen et
al. [22]

H. Hong et al.
[23]

S. Aldiansyah
et al. [24]

M. Dahim et
al. [25]

N. Sharma et
al. [26]

T. Zeng et al.
[27]

P. Priyanka et
al. [28]

Machine Learning,
Deep Learning, Al

Locally Weighted
Learning (LWL) with
various classifiers
(RBF, FLDA, QDA,
CDT, ADT, RS)

Machine Learning
models (GLM, SVM,
RF, BRT, CRT,
MARS, MDA, FDA,
MaxEnt, MaxL.ike)
integrated with
resampling
techniques
Hyper-tuned
Machine Learning
(RF) and Deep
Learning (DNN)

Ensemble machine
learning (SVM-
SMOTE, ANN, RF,
SVM)

Machine Learning
(SVM, DT, DNN,
GRU, LSTM) with
grading conditioning
factors

Machine Learning
(LSTM, CNN-
LSTM, Conv-LSTM,
Multi-LSTM-SVM)

inventories,
particularly missing
landslide timing
data.

Complex causal
chain of landslides
in Nepal due to
large earthquakes
and intense
monsoon rainfall.

Need for reliable
landslide
susceptibility
models in areas
with limited data.

Landslide
susceptibility
prediction for
regions with
destructive erosion.

Landslide
susceptibility
prediction in Saudi
Arabia with
sensitivity and
uncertainty
analysis.

Issues with limited
data, low spatial
resolution, and
small study areas in
landslide mapping.

Subjectivity and
randomness in
grading strategies
for landslide
susceptibility
modeling.

Escalating landslide
risks due to climate
change in Himachal
Pradesh, India.

26

outperformed other
data-driven methods
in predicting the
spatio-temporal
evolution of
landslides during
rainstorms and
assessing landslide
risk.

Random Forest and
U-Net models
demonstrated strong
predictive power,
with feature
importance analysis
providing insights
into the causal
factors.
LWL-RS-ADT
model showed
superior reliability
and stability, with
NDVI, lithology,
and altitude as key
predictive factors.
Resampling
algorithms enhanced
the performance of
models; Bt-RF
model showed
highest statistical
performance
(AUC=0.97).

RF and DNN
models achieved
high prediction
accuracy (AUC:
RF=0.93,
DNN=0.96).

Developed a
national-scale
landslide
susceptibility map
with high accuracy
(95.73%) and
sensitivity
(97.08%).

Grading strategy
improved
performance of deep
learning models;
model performance
varied with different
models.

SoilSense Multi-
LSTM-SVM model
outperformed other
models (88.1%
accuracy).

availability of
landslide data for
validation.

Limited by the
availability and
resolution of open-
source space-based
data.

May be sensitive to
the choice of
classifiers and
model parameters.

Limited to the
performance of the
resampling
algorithm used in
model integration.

Sensitivity and
uncertainty analysis
highlight
limitations in
parameter
influence.

Model may require
refinement for

broader application
in different regions.

Performance varies
based on the choice
of grading strategy
and model used.

Performance may
be limited by the
availability of
accurate antecedent
rainfall data.



A. Saha et al.
[29]

Q. Geetal.
[30]

Y. Wang et al.
[31]

H. Wu et al.
[32]

H. Shahabi et
al. [33]

G. Tangetal.
[34]

S. Meng et al.
[35]

C. Chenetal.
[36]

C.Yangetal.
[37]

M. A. Hussain
et al. [38]

Ensemble models
(AHP + SVM)

Machine Learning
(BPNN, SVM,
LSTM, GRU) with
feature selection
techniques

Machine Learning
(RF, Logistic
Regression, Extreme
Gradient Boosting)

Machine Learning
models (Logistic
Regression, KNN,
SVM, Naive Bayes,
DT, RF)

Machine Learning
models (RF, DT,
SVM)

AutoML-based
framework

Deep Learning
(LSCDBN, GWO,
WOA)

Deep Learning
(Deep-Attention-
LSF, CNN, LSTM)

Machine Learning
(SVM, RF, GBDT)
with Bayesian
optimization

ML and DL (CNN,
RNN, RF, XGBoost)

Landslide
susceptibility
mapping in
Darjeeling, India.

Impact of feature
selection techniques
on landslide
displacement
prediction.

Landslide
susceptibility
assessment in
Wushan County.

Landslide dam life
span prediction.

Landslide
susceptibility
mapping for the
Kamyaran—
Sarvabad road in
Iran.

Need for global
landslide
susceptibility
prediction across
different
resolutions.
Challenges such as
feature
homogenization and
local optima in
landslide
susceptibility
modeling.

Need for
interpretable
models in landslide
susceptibility
mapping.

Optimizing sample
ratio for machine
learning models to
address landslide
susceptibility.

Updating landslide
inventory along the
Karakoram
Highway (KKH).
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AHP-SVM model
showed 86.2%
prediction accuracy.

Static ML models
benefited
significantly from
feature selection;
dynamic models
showed marginal
gains.

Random Forest
model outperformed
others with higher
AUC, F1 score, and
accuracy (0.848).
Random Forest
showed highest
performance (89%
accuracy) for
predicting dam life
spans.

Decision Tree
model performed
best (AUC=0.94).

The model achieved
an AUC > 0.96 and
improved regional
predictions.

LSCDBN-WOA
model outperformed
others with AUC =
0.964 and RMSE =
0.174.

Deep-Attention-LSF
model achieved
high accuracy
(0.9645) and was
more interpretable
than other models.
Bayesian
optimization
improved
performance, with
RF achieving the
highest AUC of
0.840.

CNN 2D model
demonstrated best
performance in
landslide

Model
effectiveness may
depend on the
choice of
algorithms and
input variables.
Optimal feature
selection varies by
model and specific
landslide
characteristics.

Dependent on the
quality of soil
thickness and other
conditioning
factors.

Models may not
address all types of
landslide dam
scenarios.

Limited by
available input
variables and
spatial scale of
study.

Results are
dependent on the
availability of
regional landslide
inventories for
validation.

Limited by the
quality of landslide
conditioning factors
used in model
training.

Interpretability is
limited to the
quality of input
factors.

Performance
dependent on
optimizing the P/N
sample ratio for
each case.

Limited by the
quality and
availability of
geospatial data.



susceptibility

mapping.
Y. Liuetal. Machine Learning Non-landslide IV-ML models Model's
[39] (IV-Logistic sample selection in | significantly effectiveness may
Regression, 1V- landslide outperformed vary across
Random Forest, IV- | susceptibility traditional ML different regions
SVM, IV-ANN) evaluation. models in terms of and datasets.
accuracy and other
metrics.
D. Sun et al. Interpretable Topographic LightGBM The model is
[40] Machine Learning differentiation in outperformed limited to the
(LightGBM, landslide XGBoost, with selected zones and
XGBoost, SHAP) susceptibility AUC values of topographic factors.

mapping.

0.8525 and 0.8859

for Zones | and II,
respectively.

2.3 Fundamental of Earthquake Prediction using Machine

Learning

The phrase earthquake prediction refers to the process of predicting seismic occurrences using
real-time data and sophisticated computing methods. Therefore, the goal of earthquake
prediction is to increase the accuracy of earthquake predictions by utilizing data from several
sensors, including accelerometers, seismometers, and GPS devices. So, it begins with data
collection from different sources like real-time sensors, historic data and acoustic signal
captured over time. The signals and values obtained from them provides the early alert signals
for evacuation and safety measures. Most commonly used prediction technique specifically for
time series forecasting involves the use of SARIMA (Seasonal Autoregressive Integrated
Moving Average), this model helps in capturing temporal patters formed and variations which
are seasonal in nature. Further, to capture the non-linear relationships XGBoost model is used
to improve prediction by analyzing large and complex dataset to find the patterns. Finally, after
completion of training model is ready for prediction of probability of earthquake and lastly
provide necessary strategy for warning and alerts. The main objective of this literature survey
is to assess various aspects related to earthquake prediction. In analysis phase we tried to
present the essential principals of earthquake prediction. Our goal is to provide with
contribution that surrounds its potential revolution in disaster preparedness and strategical

responses.

V. Macchiarulo et al. [41] developed approach for evaluation of regional-scale post-

earthquake damage using post-event very high-resolution, synthetic aperture radar imagery and
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machine learning. The method utilizes supervised learning on specific datasets and it was tested
on random study area to assess the ML model adaptability. The model outperformed with
achieving 72% accuracy by classification of collapsed building in that region. The framework
provided potential for improving disaster preparedness and management techniques.

F. H. Chen et al. [42], developed earthquake recognition and warning systems that integrate
Arduino, sensors and transmission technologies to improve the security of earthquake attacks
in Taiwan. The system uses a capacitive 3-axis acceleration meter to measure vibrations and
early earthquake warnings. Additionally, it includes an IR flame sensor to identify fires and an
MQ series air quality sensor to monitor harmful gas concentrations. When it recognizes an
earthquake, the system warns individuals of evacuation. When the harmful gas exceeds critical
levels, the system activates a warning light and exhaust gas to extract the toxic gas. If a flame
occurs, an alarm is triggered to arrange for a quick evacuation. The proposed system is
affordable and easy to offer, providing immediate notifications. This provides a valuable tool

for improving disaster response and security in earthquake zones.

E. M. A Alcantara et al. [43] proposed an approach to forecast the damage state of buildings
in reinforced concrete (RC) resistance moment frames using machine learning technology
(machine learning). This study includes the design of structural members of RC buildings, with
X and Y story counters and direction numbers using virtual working methods. The purpose of
this study is to split earthquakes, construct data records, and split tests of data records to predict
damage conditions in new buildings and to reduce bias, multiple random selections were made,
and prediction accuracy was measured using the mean and standard deviation. The study
utilized 27 Intensity Measures based on ground and roof sensor data, which included
acceleration, velocity, and displacement to analyze building behavior. The input data for the
machine learning methods consisted of IMs, the instance of stories, and spans, while the
outcome data was the maximum inter-story drift ratio. Seven machine learning methods were
tested to identify the optimal combination of training buildings, IMs, and methods for the

highest prediction accuracy.

B. Tian et al. [44] reviewed the development and application of movement-detection sensors,
emphasizing their importance in understanding surface movement and tectonic activities.
Modern sensors have significantly contributed to various aspects of earthquake management,
including monitoring, prediction, early warning, emergency response, search and rescue, and

life detection. The study classified sensors based on earthquake timelines, their physical or
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chemical mechanisms, and sensor platform locations. The analysis focused on sensor platforms
that have become widely used in recent years, particularly satellites and UAVSs. The study's
findings offer valuable insights for improving future earthquake response, relief efforts, and
research aimed at reducing earthquake-related risks.

M. E. Tusun et al. [45] developed a sensor system utilizing strain gauge technology, optimized
for detecting earthquake waves and structural vibrations, to address the limitations of
traditional damage detection methods in buildings. These methods, such as cross-sectioning of
columns, are time-consuming, costly, and lack continuous monitoring capabilities.
Accelerometers, although useful, are inadequate for detecting low-frequency earthquake
waves. The proposed system collects vibration data, applies Fourier transform to obtain the
frequency response of the structure, and detects shifts in this response to classify the structure's
damage condition as intact, slightly damaged, or very damaged. This classification is
performed using a deep learning model running on a low-power microcontroller. The results
demonstrate that the developed sensor is more effective than accelerometers in assessing
structural health and enables real-time damage evaluation using Fourier transform and machine

learning techniques.

M. Bhatia et al. [46] developed a cooperative monitoring and prediction system focused on
collaborative loT-Edge-centred, which combines marginal and cloud computing to provide
warnings of early earthquakes for high-risk areas. Real -time sensor data collects the system
using Internet of Things and is sent to a marginal layer for categorizing functions using the
unique Bayes belief method. To predict magnitude earthquakes, the cloud layer also uses an
adaptive neuro-fuzzy inference system (ANFIS). Through achievement of good classification
performance with an accuracy of 92.52%, sensitivity 91.72%and specificity 91.01%showed
experimental simulation efficiency of the frame. The system also showed a significant
reduction in computing delay (23.06s) through the edge calculation. In addition, the model
showed high reliability (95.26%) and stability (92.16%), ensuring increased accuracy and

permeability for the prediction of the earthquake.

P. Govindarajan et al. [47] developed a new way of predicting real -time earthquake in Chile
a combination of machine learning techniques with intelligent technologies. Due to the serious
threats that the earthquake represents Chilean people and infrastructure, the study uses Al and
ML to overcome the deficiencies of conventional prediction techniques and increase the speed
and accuracy of prediction. The proposed technique combines improved analysis of neuron
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network time series, LSTM-IC (long short-term memory inverse correlations), with modified
cluster strategy, LMSCAN (local maximum based spatio-cluster). This strategy uses sensor
network, sophisticated predictive algorithms and previous seismic data, provides early
warnings, improves response to disasters and resistance. The model achieved a remarkable
accuracy of 95%, showing its exceptional learning and adaptability, distinguishing it from other

methods of forecast and offering significant progress in the prediction of the earthquake.

MS. Abdalzaher et al. [48] proposed the integration of the EEWS Early Warning System into
intelligent cities to improve disaster management and preservation of human lives. The system
uses the Internet of Things to collect data from various EEWS entities and machine learning
technology to analyze this data for effective decision making. The article examines the key
EEWS components, starting with the 10T role in monitoring the earthquake parameters. He
then classifies ML models to linear or non -linear categories and discusses the assessment of
metrics focusing on seismology. The study represents a taxonomy that emphasizes the
emerging efforts of ML and 10T for EEWS, followed by the design of the EEWS generic
architecture based on these technologies. Finally, the article examines how ML can increase
the observations of the earthquake parameters, which eventually leads to a more efficient
EEWS.

W. Huang et al. [49] introduced the use of data from granular fault tests for the creation of a
ML method for the prediction of earthquake. They gathered data dynamics, such as shifting
and speed, on 2203 sensors, and used the combined method of finite discrete method (FDEM)
to model two -dimensional cut granular failure system. The LightGBM algorithm has been
trained using this data to predict the Gouge-Plate coefficient, which represents the behavior of
the wand and the friction state of the error. This study optimized the data by assessing the
importance of input elements and selected the most important for prediction. The model
reached a value of R? 0.94, showing high accuracy. Additionally, values were calculated to
evaluate the contribution of each input function of the prediction. The results show that
LightGBM, along with form values, can accurately predict the frictional state of laboratory
faults and identify the most important input functions for predicting earthquakes. This study
provides potential knowledge about natural earthquake prediction and the use of artificial

intelligence to study earthquake predecessors.

P. Lara et al. [50] prepared a model using P wave data capturing by a single station in less
than 3 seconds, the Earthquake early warning system (E3WS) is designed for identifying,
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locating and estimating the amount of the earthquake. The ensemble ML algorithms, which
consist of the E3W, have been trained using data on the time series of ground acceleration from
the global data set, Peru, Chile and Japan, analysis of temporary, spectral and Cepstral
attributes. The three steps of the system operation are detection, selection of P-phase and the
characterization of the source that includes azimuth, depth, size and estimate of epicenter
distance. Without false positives and several false negatives (only for the earthquake M < 4.3),
the E3SS has an amazing 99.9% success in distinguishing between earthquakes and noise. For
collecting P-phase, the average system's absolute error is 0.14 s sufficient for early warning of
the earthquake. Compared to the current one with one station, the E3Ws offer objective and
extremely accurate estimates to characterize the source, especially for the size and somewhat
improved accuracy of the earthquake location. By updating estimates, E3Ws offer E3WSs
estimates -dependent -dependent -dependent and provides faster predictions than current

multiple stations systems, which provides more time for protective actions.

M. S. Abdalzahar et al. [51] proposed a new method for EEWS (ML) early warning systems
that use machine learning techniques (ML) to analyze seismic activity in two seconds after P-
wave begins to quickly assess the intensity of the earthquake. The 2S1C1S evaluates the force
of the earthquake using data from one component and one station. After being trained on a
large data set known as an "instance”, which contains information from hundreds of stations in
the Italian National Seismic Network (INSN), the model examines 50,000 occurrences or
150,000 seismic windows after two seconds. With a stunning rate of accuracy of 99.05%, the
algorithm predicts the severity of the earthquake by identifying important elements from the
tracks of the wave shape. The centralized IoT system, which includes the 2S1C1S paradigm,
enables rapid transfer of alarm to the authorities for early response. Compared to traditional
manual techniques, the 2S1C1S with extreme gradient boosting (XGB) works better in
estimates than a number of comparative machine learning values, which shows its usefulness

to EEWS applications.

A. Joshi et al. [52] designed a cross-region prediction model called SeisEML (Seismological
Ensemble Machine Learning) to forecast peak ground acceleration (PGA) at a specific location
during an earthquake. The hybridization models, tree regression algorithms, kernel-based
algorithms, and other regression techniques are all combined in the SeisSEML model. A study
on model ablation was carried out to assess the effectiveness and choice of meta-machine

learning models in SeisEML. There are 20,852 and 6,256 accelerograms from the Kyoshin
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Network in Japan that make up the training and testing datasets. SeisEML reduces both the
mean absolute error and root mean square error by around half when compared to traditional
attenuation relations, according to a comparison of the model's performance using these
metrics. The iso acceleration contour map of Japan was created using the model for three
earthquakes of magnitudes of 7.4, 6.6, and 6.1. A qualitative comparison of the iso acceleration
contours from actual and predicted PGA showed that SeisEML can reliably predict PGA
distributions. Additionally, the model was tested for Iranian earthquakes, outperforming
regional attenuation relations in terms of MAE and RMSE.

W. Zhu et al. [53] developed a chain machine learning models (ML) to predict multiple
seismic reactions to the center of the distribution device during strong earthquakes by means
of intensity (IMS) measures. The models are designed to predict answers to multiple vulnerable
positions like porcelain insulators and connection flanges, by connecting several individual
models in the sequence. One model is a simple chain where the output of one model becomes
the input for the next, while the other combines the intensity measures with the previous output
as the input for the next model. The training of these ML chain models is optimized using bio-
inspired multi-objective techniques for selecting hyperparameters. A case study involving a
1100 kV transformer bushing is used to establish ANN-gradient boosting regression and ANN-
kernel ridge regression models for predicting peak stresses at the most susceptible positions.
The results, including evaluation indicators and shaking table tests, demonstrate that both ML
chain models provide accurate predictions. These models are effective for detecting initial
equipment damage and can be used to support post-earthquake rapid judgment and relief

efforts.

K. C. Sajan et al. [54] designed an approach based on artificial intelligence to predict the
intervention of damage and rehabilitation after the earthquake, especially after the earthquake
Gorkha in Nepal in 2015. The study analyzes comprehensive information on the building of
549 251 impacts on buildings and intensity of ground shocks on the use of ML methods (ml)
to predict the scope of damage. The models were created, and their performance was evaluated
by four popular machine learning algorithms: logistics regression, XGBoost, Random Forest
and decision tree. The finding has shown that if the building collapse was predicted and the
need to strengthen, XGBoost led better than other algorithms. In addition, 19 of the 20 best
features were found to predict the degree of injury and rehabilitation therapy using an analysis

of important importance from the XGBoost. Compared to typical fragility functions, which are
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often ambiguous and difficult to use in specific locations, our method provides a more accurate

forecast.

C. E. Yavas et al. [55] analyzed machine learning and neural network to develop a new method
for earthquake prediction of Los Angeles earthquake in California. They connected previous
work with new information for improving accuracy of model. They achieved high results by
forming a matrix that predicts the estimation of highest size of earthquake. This study
emphasizes how machine learning and neuron networks can revolutionize the accuracy of the
prediction of the earthquake, which significantly increases seismic risk management and

readiness.

K. A. Yusof et al. [56] explored the potential of geomagnetic anomalies as precursors to the
earthquake (EQs) and focused on the development of practical models of earthquake prediction
using AutoML. The work has used geomagnetic field data from 131 global magnetometer
observatory over 50 years. To extract functions that were then fed into models that were
optimized by asynchronous consecutive algorithm (ASHA) and automatic methods of methods
and enhancement of hyperparameters and automatic methods and automatic methods of
methods and hyperparameter improvements Selection of methods and automatic methods of
method and automatic selection of methods and wavelet selecting transform (WST) and after
optimized asynchronous consecutive half algorithm. With an accuracy of 83.29%, the model
of the neural network (NN) exceeded the five other classification methods tested. The results
show that even for complicated systems such as lithospheric and seismo-induced geomagnetic
processes, the automobile can facilitate useful models of earthquake prediction.

K. Qaedi et al. [57] examined how to improve the accuracy of the Earthquake prediction (EQ)
by reducing the complexity of the global data of the geomagnetic field by analyzing the
principal component analysis (PCA). Further for prediction of EQ intensity multiple classes
(ML) were built also SMOTE analysis was executed to solve the imbalanced data. The final
results show promising values as accuracy of 77.50%, F1-score of 76%. So, the principal

component-based ML model is used for prediction of earthquake with optimal accuracy.

S. OMMI et al. [58] designed a model for predicting large earthquakes by studying changes
in seismicity and the potential occurrence of significant seismic events in the seismic zone.
This research is not only necessary for seismological studies, but also for informed decisions

on crisis management. To analyze it, they tested several machine learning techniques (ML),
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including artificial neural networks (Ann), Random Forest (RF) and supporting vector
machines (SVM). The study focused on the seismic catalog of northern Zagros, seismically
active areas with large cities. Nine seismic parameters were used to predict the likelihood of
the large earthquake that occurs within a month. The accuracy of the models was evaluated by
four statistical measures: evocation, accuracy, accuracy and score F1. The results revealed that

the Ann method overcame others, especially for predicting larger earthquakes.

A. Berhich et al. [59] designed a model of earthquake prediction dependent on the spot using
recurring neural network algorithms. This approach includes clustering of seismic data based
on geographical parameters (length and latitude) using the K-Means algorithm. Each cluster is
further divided into two subgroups: one for events between 2 and 5 and the other for those who
have more than 5 sizes. This cluster allows models to focus on specific regions and more
precisely capture regional trends. In addition, large earthquakes that have less events are trained
independently to prevent interference from smaller, more common. LSTM, GRU and Hybrid
models LSTM-GRU tested data from Morocco, Japan and Turkey. Their performance is
evaluated using metrics such as an average absolute error, an average error for the second and
the root diameter error. The results show that models overcome other existing methods,

especially when predicting large earthquakes.

M. H. Al Banna et al. [60] proposed systematic research of Al based techniques to predict the
earthquake. The study reviews 84 scientific papers from various academic databases that report
the use of artificial intelligence methods in predicting earthquake. These techniques include
methods based on rules, shallow machine learning and deep learning algorithms. The post
provides an overview of these methodologies and offers a comparative analysis of their
performance with regard to the data and evaluation metrics used. The aim is to help select the
most suitable techniques to predict an earthquake -based comparison. In addition, the
contribution deals with continuing challenges and potential future directions of future research

in this area.

S. Mujherjee et al. [61] proposed a novel Ensemble Earthquake Prediction Method (EEPM)
aimed at improving the accuracy, reducing variance, and minimizing errors in earthquake
prediction. The method uses a combination of continuous data parameters collected from India
and Nepal, along with categorical surveyor’s data (precursors) gathered from India, Nepal, and
Kenya over five years. The data is preprocessed by merging both types of information. EEPM
focuses on detecting early signs of earthquakes and calculating the probability of occurrence
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in specific regions. The results show that EEPM outperforms individual machine learning
models, achieving a higher R2 value, lower variance, and less error, with an accuracy rate of
87.8%. This prediction model not only helps alert society but also aids organizations in

understanding the potential magnitude and dynamics of an earthquake’s occurrence.

R. Yuan et al. [62] designed a seismic prediction model that uses clustering of global
earthquake data. In order to deal with the limitation of traditional clustering K-Simple-for
example, the need to define the number of clusters, any selection of initial centers and the lack
of parameter. This study introduced an improved algorithm K-significant. This improvement
takes into account the maximum minimum distance of STM and the distance space distance
when selecting the initial cluster centers. The number of evaluation criteria, such as the sum of
square errors, calculates the number of Davies - Bouldin clusters, the Calinski - Harabasz and
the Silhouette coefficient. In addition, the model uses an artificial neural network to predict the
earthquake in conjunction with the findings of clustering. When the improved technique was
applied to global seismic data USGS from 1900 to 2019, the accuracy of clustering over K-
Means conventional approach. In addition, this method worked well for the analysis of local

seismic risks and showed a promise to predict future earthquakes.

A. Berhich et al. [63] examined a long short -term memory network (LSTM), which is based
on the attention for predicting the location, size and timing of large earthquakes. The
predication of the earthquake features is difficult due to their complexity and lack of different
formulas. While the attention mechanism focuses on the extraction of significant patterns and
information from input characteristics, LSTM is used to record time correlations. Because the
region is experiencing a lot of seismic activities and large earthquakes, the Japanese data file
for earthquakes, which lasts 1900 - October 2021, was used. Metrics including MSE, RMSE,
MAE, R -squared and accuracy were used to assess the performance of the model. As MSE
increases by almost 60% of the date, the proposed model works noticeably better than
alternative empirical methods and the chosen baseline.

A. A. Mir et al. [64] focused on predicting anomalies in the concentration of soil radon gas
caused by seismic activities using various methods of files and individual machine learning.
The study used file methods such as a strengthened tree, a poaching trolley and a strengthened
linear model, along with individual methods such as a SVM with linear and radial cores and
KNN. The methods were tested on the radon time series collected from the failure line in
Muzaffarabad between March 1, 2017 and 11 May 2018, which contained data from nine
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earthquakes. To minimize noise in performance estimates, the models were evaluated using a
ten -fold cross validation process, which was repeated ten times. Metrics such as RMSE,
RMSLE, MAPE, PB and MSE were used to evaluate performance. Setting 1 was best for SVM
using a radial core that produced the lowest RMSE 1381.023. SVM worked best on setting 3,
where RMSE varied from 1262,864 to 1409,616. The model of the strengthened tree had the
lowest map (0.056) and RMSE (1573,174) in settings 4. The study found that the method of
strengthened tree is particularly accurate for automatic predictions from environmental

parameters and SVM core and strengthened the activities.

C. Wang et al. [65] designed a model for monitoring and collecting signals by precursor
anomaly before the earthquake for seismic prediction, was created and acoustic and
electromagnetics for artificial intelligence in China. To find the enhanced architecture for the
prediction of the earthquake, this study evaluates a number of traditional models of time series
and non-time series. The neuron network of long short -term memory (LSTM) was selected to
predict the real -time earthquake during the 16 -week period, as it brought the best results based
on AETA from precursor anomalies of signals.

B. Zhang et al. [66] developed an EPT, a deep learning data model to predict the earthquake
that overcomes the disadvantages of earlier methods that only local seismic data used. To
improve the prediction of the main Mainshock in specific areas, the model uses closed blocks
of elements to extract basic patterns in the movements of the plate and by crustal movement
from global historical seismic catalog data. Using this method, up to 50% more predictions are
performed. The model also overcomes the difficulties of LSTM network, which it encounters
in the processing of long -term data using multi -headed self -confidence to identify long -term
dependencies in regional time series. The EPT was verified on five provincial data sets and in

all cases, it achieved more than 90% accuracy.

Q. Wang et al. [67] dealt with an important problem for the prediction of the earthquake by
means of long short -term MEMORY (LSTM) network to use spatial correlations between
earthquakes in different places. Traditional methods of prediction, such as mathematical
analysis, decision -making trees and support vector machines, often fight for the dynamic and
unpredictable nature of the earthquake. However, the authors acknowledge that the earthquakes
are influenced by the movement of the crust, and suggest that predictions not only consider

local data but also historical data from a larger area. The results of their simulation show that
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the LSTM network using a two -dimensional input effectively captures these space -time

relationships, leading to an improvement in the accuracy of prediction.

Z. Zhang et al. [68] designed a new method for the prediction of the earthquake that combines
a ConvLSTM with a sequence. This network gains knowledge of global time and spatial
correlations of seismic data. This method overcomes the limitation of existing approaches,
which are often limited to local areas and fully remove spatial correlations and resolution. The
proposed approach includes the creation of a Spatiotemporal series from global seismic maps
with high resolution, spatial distortion by turning maps, and using a weighted MSE-MAE to
focus on the area of the earthquake. It also integrates a 4-D data file that includes earthquakes
and depth. The output demonstrate that the method exceeds existing models and achieves an
average download of 51.83% and an accuracy of 64.54% per test kit, with a pixel resolution of
72.92 x 67.71 km. These findings emphasize the ability of the model to predict an earthquake
with higher resolution and accuracy and provide valuable knowledge about global seismic

samples of activity.

M. Akhondzadeh et al. [69] reviewed the progress and challenges in the prediction of an
earthquake using satellite data, emphasizing the potential for creating earthquake warning
systems. Due to the limits of data on in-Situ, including the quantity, location and expenditure
of ground stations, the precise forecast of the earthquake has not yet been carried out despite
extensive research. However, with the development of satellites with a long -distance survey,
statistical research of the earthquake precursors has dramatically increased and focused on
unusual changes in physical and chemical parameters that occur one to thirty days before
significant earthquakes. The report emphasizes recent developments, such as an increase in
satellites devoted to earthquake research, the availability of different earthquake precursors and
creating more methods of identification and prediction. In addition, progress in cloud data
storage and processing services (such as Google Earth Engine and Giovanni), together with the
creation of intelligent integration systems for integrating and analyzing multiple precursors in

the near future increased optimism with low uncertainty.

Z. Ye et al. [70] presented a long-term short-term memory model (LSTM) to predict seismic
size along with elite genetic selection (EGA) with genetic algorithm function (EGA-LSTM).
The time series structure of seismic data and dual properties provides the difficulties of
overcoming this method. To find serious correlations, the technology pre-combine
electromagnetic and acoustic data from Roulette-based EGA and AETA systems. LSTM uses
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selected features to estimate the size. Entire procedure includes fitness components such as
RMSE and the ratio of selected properties. Using data from four different locations in China,
the models were evaluated taking into account different periods and weights of fitness
functions. The results show that EGA-LSTM exceeds several metrics including EV, Mae,
MSE, RMSE and R2. Non-parametric testing confirms that EGA-LSTM significantly exceeds
the standard LSTM model.

The literature overview deepens the diverse applications of the ML and DL hybrid models in
the prediction of the earthquake and emphasizes the integration of historical seismic data
records, geophysical data and sensor networks. Also, explore how historical earthquake data is
critical to the training of predictive models that provide information about samples, trends and
relationships in space-time, which may not be recognized in real time. This overview
emphasizes the development and improvement of hybrid models combining several
algorithms, such as decision -making trees, neural networks, SVM, KNN and random forests,
to determine the decision to improve the precision and provision of real -time predictions.
Advanced architecture for deep learning, such as CNN, RNN, long short time network (LSTM)
and generative contradictory networks (GAN), also use to extract functions, analysis of time
series and detect anomaly in seismic data. The installation of historical seismic data records,
often covering decades or centuries, plays a key role in enhancing the predictive power of ML
and DL models. These data sets contribute to the capture of long -term trends and seismic
formulas, so the model can identify the correlation between predicted events and the occurrence
of earthquakes. This overview also analyzes the importance of preliminary data processing
techniques for noise processing, missing data and irregularities in historical data sets of
earthquakes. In addition, to improve robustness and modeling, the use of methods, including

pulses and closure techniques, can be examined.

The survey describes the use of hybrid models, including a combination of SVM and neural
networks and integration of DBN with RNN for relationships with uncomplete lines in seismic
data. The integration of strengthening learning (RL) and transmission learning to predictive
earthquake models is also examined because they promise to adapt to a new seismic
environment with minimal data. Literature also describes the value of the inclusion of specific
domain knowledge, such as tectonic plates and geological properties, along with historical data
sets to enhance the accuracy and interpretability of the model. This includes the difficulty of

receiving high quality data and the challenge of converting historical formulas into processable
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predictions. Despite these challenges, hybrid models discussed in this literature have an
important potential for progress in techniques of earthquake predictions supported by historical
earthquake data. These models provide promising solutions for early alarm systems and
disasters readiness. Table 2.2 includes a detailed summary of an overview of literature for
predicting earthquakes by means of ML and hybrid models of DL.

Table 2.2 Summarization of literature review for Earthquake Forecasting

Author Technique Problem Statement Performance Limitation
Analysis
V. Macchiarulo Machine Post-earthquake Achieved 72% Limited to specific
et al. [41] Learning (ML) & | damage assessment accuracy to earthquake cases
Very High- using SAR imagery | classify standing (2021 Nippes, 2023
Resolution and ML for regions and collapsed Kahramanmaras).
(VHR) SAR not previously buildings in new
imagery studied. regions.
F.H. Chenetal. | Arduino, Sensors | Earthquake detection | System issues Limited to Taiwan;
[42] (Accelerometers, | and safety system for | alerts for sensors face
IR Flame, Gas Taiwan, using a evacuation and operational
Sensors) combination of safety, providing limitations in certain
sensors for early effective real-time | environments.
warning, fire notifications.
detection, and gas
monitoring.
E.M. A Machine Predicting damage Determined the Results are highly
Alcantara et al. Learning (ML) condition of best combination dependent on the

[43]

B. Tian et al. [44]

M. E. Tusun et
al. [45]

M. Bhatia et al.
[46]

for RC building
damage
prediction

Movement
Detection
Sensors

Strain Gauge
Technology &
Machine
Learning (Deep
Learning)

loT-Edge
Computing &
Bayesian Belief
Model

Reinforced Concrete
buildings using ML
and time-history
analysis.

Importance of
movement-detection
Sensors in
earthquake
management,
including monitoring
and early warning
systems.

Detecting earthquake
waves and structural
damage through
advanced vibration
sensors and ML-
based classification.

Smart earthquake
monitoring using
10T and edge
computing for early
warning at
vulnerable locations.
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of ML methods
and input data for
accurate
predictions.

Contributed
significantly to
earthquake
management areas
like early warning,
monitoring, and
life detection.

Demonstrated
superior
effectiveness in
detecting low-
frequency
earthquake waves
and real-time
damage
classification.
Achieved high
classification
accuracy (92.52%
precision), reduced
computational
delay (23.06s), and

quality of
earthquake records
and may not apply to
all building types or
locations.

Focuses on sensor
technology and does
not address all
earthquake
scenarios.

Requires specialized
equipment and is
costly for large-scale
implementation.

Relies on edge
computing, which
may face limitations
in some
environments or
regions.



P. Govindarajan
et al. [47]

M. S. Abdalzaher

et al. [48]

W. Huang et al.
[49]

P. Laraetal. [50]

M. S. Abdalzahar
et al. [51]

A. Joshi et al.
[52]

W. Zhu et al. [53]

Machine
Learning &
Modified
Clustering
Approach

IoT & Machine
Learning for
EEWS

Machine
Learning &
Finite-Discrete
Element Method
(FDEM)

Ensemble
Machine
Learning
Algorithms

Machine
Learning
(2S1C1S Model)

Machine
Learning
(SeisEML
Model)

Machine
Learning Chain
Models

Real-time
earthquake
forecasting for Chile
using Al and ML
techniques.

Integration of loT
and ML in
earthquake early
warning systems for
smart cities.

Predicting fault
friction states for
earthquake
prediction using
sensor data and
FDEM simulations.

Earthquake detection
and source
characterization
using single station
data and P-wave
arrival times.

Earthquake intensity
estimation within 2
seconds after P-wave
onset using ML.

Cross-region
prediction of peak
ground acceleration
(PGA) for
earthquake hazard
mapping using
hybrid ML models.

Predicting seismic
responses of
substation equipment
during earthquakes
using intensity
measures (IMs).
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high reliability
(95.26%).
Achieved 95%
accuracy in
forecasting
earthquakes,
improving
prediction speed
and accuracy.
Enhanced
decision-making
and earthquake
parameter
observation using
ML and IoT.
Attained high
prediction
accuracy with an
R2 value of 0.94,
using LightGBM
with SHAP values
for feature
importance
analysis.

Achieved 99.9%
success in
distinguishing
earthquakes from
noise with minimal
false positives and
an accurate source
characterization.
Achieved 99.05%
accuracy for
earthquake
intensity
forecasting with
the 2S1C1S model,
outperforming
conventional
methods.

Reduced MAE and
RMSE by
approximately half
compared to
conventional
attenuation
relations;
demonstrated good
predictive
performance for
multiple regions.
Provided accurate
predictions of peak
stresses for
substation
equipment,
supporting post-
earthquake rapid
judgment.

Limited to Chile;
may not generalize
to other regions with
different seismic
behavior.

Requires advanced
infrastructure and
may not be feasible
in all cities or
regions.

Limited to
laboratory-based
fault models and
may not fully
replicate natural
earthquake
conditions.

Works best with
high-quality P-wave
data and may not be
effective in low-
seismicity areas.

Requires high-
quality seismic data
and may not work
well in regions with
sparse networks.

May not be suitable
for all tectonic
settings; heavily
dependent on the
availability of
quality regional data.

Focuses on specific
substation
equipment; not
applicable to other
infrastructure types.



K. C. Sajanetal.
[54]

C.E. Yavas et al.
[55]

K. A. Yusof et al.
[56]

K. Qaedi et al.
[57]

S. Ommi et al.
[58]

A. Berhich et al.
[59]

M. H. Al Banna
et al. [60]

Machine
Learning
Algorithms
(XGBoost,
Decision Tree,
etc.)

ML & Neural
Networks

Geomagnetic
Anomalies &
AutoML

Principal
Component
Analysis (PCA)
& Multi-class
ML

Machine
Learning (ANN,
RF, SVM)

Recurrent Neural
Networks (RNN),
K-Means
Clustering

Al-based
Techniques

Predicting damage
grade and
rehabilitation
interventions for
buildings after
earthquakes using
ML.

Earthquake detection
using advanced ML
models and neural
networks, focusing
on Los Angeles'
seismic risk.

Investigating
geomagnetic
anomalies as
earthquake
precursors and
developing
models using
AutoML.

Enhancing
earthquake
prediction accuracy
by applying PCA to
geomagnetic data
and utilizing
ensemble and SVM
models for multi-
class classification
of earthquake
intensity.

Predicting large
earthquakes by
analyzing seismicity
changes in the
Zagros seismic zone.

Location-dependent
earthquake
prediction by
clustering seismic
data based on
geographical
parameters using
RNN models.

Systematic review of
Al methods used for
earthquake
prediction,
comparing various
algorithms.
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XGBoost
outperformed other
algorithms in
predicting damage
and rehabilitation
needs. Identified
top features for
prediction.
Successfully
predicted the
maximum potential
earthquake
magnitude with
Random Forest
algorithm.
Achieved 83.29%
accuracy using a
neural network
model, with
effective feature
extraction through
wavelet scattering
transform and
optimization via
ASHA.

Achieved 77.50%
accuracy with
ensemble models,
surpassing SVM
models in all
evaluation metrics.

ANN outperformed
RF and SVM
models, showing
the highest
accuracy in
predicting large
earthquakes.
Hybrid LSTM-
GRU model
outperformed other
methods,
improving
prediction
accuracy,
particularly for
larger earthquakes.
Provides a
comprehensive
comparative
analysis to aid in
selecting the most
effective Al
techniques for

Limited to a specific
earthquake event
(2015 Gorkha) and
building types in
Nepal.

Limited to Los
Angeles and may
not be applicable to
other regions with
different seismic
behaviors.

Requires over 50
years of
geomagnetic field
data; limited to
geomagnetic
anomalies as
precursors.

Requires PCA and
SMOTE for data
balancing; may not
apply universally to
all seismic regions.

Focused on a
specific seismic
region, which may
not generalize to
other earthquake-
prone areas.

Limited to specific
earthquake regions
(Morocco, Japan,
Turkey); clustering
may not capture all
seismic patterns.

Limited to a review;
does not present new
empirical results or
direct application
models.



S. Mujherjee et
al. [61]

R. Yuan et al.

[62]

A. Berhich et al.
[63]

A. A. Mir et al.
[64]
C. Wang et al.
[65]
B. Zhang et al.
[66]
Q. Wang et al.
[67]

Ensemble
Earthquake
Prediction
Method (EEPM)

Improved K-
Means Clustering
& Neural
Networks

Attention-based
LSTM Networks

Ensemble &
Individual
Machine
Learning (SVM,
K-NN)

Acoustic and
Electromagnetic
Data & LSTM

Deep Learning
(EPT Model)

LSTM Networks

Novel approach
combining
continuous and
categorical data to
improve earthquake
prediction accuracy.
Clustering global
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CHAPTER 3

Low-CoSsT IOT-BASED THRESHOLD-DRIVEN
LANDSLIDE PREDICTION AND EARLY WARNING
SYSTEM FOR HILLY AREAS

3.1 Introduction

Landslide is one of most commonly occuring natural disaster in nature, which leads to
significant loss to life and property damage. It is essential to mitigate their harmful effects due
to the destructive consequences of landslides. Early warnings allow authorities to take
proactive measures to evacuate people and infrastructure protections in time. However,
regional forecasting is difficult due to the numerous parameters that affect its occurrence. The
key factors such as local geology, physical telephones, precipitation patterns, and hill trend
structure take part in the sensitivity of landslides on Earth. Therefore, these factors need to be

measured and understood to predict when and where landslides will occur.

Different technologies are being used to improve landslide prediction to monitor and recognize
landslides. Mainly it comprises of remote recognition techniques that use satellites or aerial
photographs to observe changes in the landscape using GPS (Global Positioning System) and
Geographic Information Systems (GIS) that map and analyze land elements. It monitors
fiberglass, radar, wireless sensor technologies, changes in floor movement and actual
environment changes, laser and acoustic technologies to measure and recognize early signs of
landslides [71]. However, there are also limitations such as high costs, environmental
limitations, or technical issues that can affect reliability. Due to the limitations of individual
technologies, scientists focused on developing an integrated online surveillance system from
landslides. This system combines various geosensors and wireless sensor networks to measure
factors that influence slides [72]-[75] to continuously collect data on critical parameters.
Additionally, multivariate statistical analysis allows for the processing of complex data records
and the identification of formulas that can predict future landslides. Simultaneous analysis of
several parameters such as precipitation, soil moisture, and climbing stability allows the system

to more accurately predict landslide events.
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The aim is to provide early warnings to local residents and authorities that will allow preventive
measures such as strong infrastructural strength and evacuation routes before landslides. This
research is a comprehensive system for Real-time landslide that integrates several components,
including wireless sensors, microcontrollers, cloud servers, and hybrid algorithms. The system
collects sensor data in the environment and is then transferred to a cloud server for storage and
analysis. An important part of the system is the use of visualization software such as Tableau,
which contributes to improving data representation, making it easier to interpret and understand
patterns related to landslide. Algorithmic process alongwith the data obtained from sensors are
responsible for generating warnings for possible landslides which are already recognized. The
objective of this multi-component system is to give impactful and automated forms of
prediction and warning for future landslide prone areas. The study also includes laboratory
experiments that can simulate real conditions that could lead to landslides.

(b)

Figure 3.1 Laboratory setup of landslide prediction system (a) Front view of landslide laboratory setup (b)
Sensor’s placement.

The laboratory setup is intended to mimic environmental factors that contribute to landslide
events, as shown in Figure 3.1, several sensors are used to collect the critical environmental
data needed to predict these events. For example, soil moisture sensor (S1) measures soil
moisture content, as changes in soil moisture can have a significant impact on gradient stability
and can contribute to landslides. Ultrasonic sensors (S2) are used to measure distance and
recognize all physical changes in the monitoring area. Similarly, the temperature sensor (S3)
measures humidity and temperature and checks the ambient temperature. Other sensors in the
system are vibration sensors (S4) that demonstrate vibrations in the environment and measure
changes in tension in response to vibration. Also, accelerometer and a gyroscope sensor (S5)
are used to understand the movement and direction of the slope and these sensors also help to

monitor changes in acceleration or angular velocity, which are key indicators of possible
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landslides [76]. The ESP-32 microcontroller collects data for all these sensors, which act as a
central processing unit for sensor inputs [77]. The microcontroller processes and forwards it to
a cloud server (Thingspeak), a cloud platform that acts as a memory and analysis center [78].
Thingspeak adds time marks to the incoming data, that enables the system to analyze and
monitor trends over time, which allows to detect any pattern that can indicate a greater

probability of a landslide.

3.2 Proposed work

In the context of landslide prediction and monitoring, each sensor in the system plays a vital
role in detecting key environmental parameters that can signal the potential for a landslide.
These sensors are methodically used to collect data related to the soil, terrain movement,

climate, and other factors that influence slope stability as shown in Figure 3.2.

Ultra Temperature
Sonic Sensor Humidity Sensor
(82) (S3)
Soil Moisture Vibration
Sensor Sensor
(S1) (S4)

Microcontroller
(ESP-32)

i

Accelerometer and
Gyroscope Sensor
(S3)

A

Y

Figure 3.2 Microcontroller Integration for Multi-Sensor Data Collection.

Below is a detailed explanation of how each sensor functions in the landslide prediction system:

i.  Soil Moisture Sensor (S1): The soil humidity sensor is crucial to detect changes in soil
moisture content. Excessive humidity of rain or other sources can significantly weaken
the soil, reducing its resistance to cutting and increasing the risk of landslide. The
monitoring of soil humidity levels allows early identification of unstable slopes that can
be prone to failure. The sensor uses electrodes placed in contact with the ground. As the

soil absorbs water, the electrical resistance between the electrodes changes. The more

47



water present, the less the resistance the sensor can measure. These data are transmitted
to the microcontroller, which processes the information and sends it to the cloud server.

An increase in soil moisture can be a strong indicator that a slope is at risk of sliding.

ii. Ultra Sonic Sensor (S2): The ultrasonic sensor measures any change in the physical
displacement of the soil, the rock or other materials on the slope. This sensor can detect
small displacements or changes in the ground, providing early alert signals. The sensor
emits ultrasonic waves and measures the time it takes for the waves to recover after
hitting a surface. The distance between the sensor and the surface is calculated
depending on the moment. If the slope changes or moves, the distance will change, that

the sensor can detect in real-time.

iii. Temperature and Humidity Sensor (S3): The temperature and humidity sensor
detects the environmental conditions by measurement by thermistor and humidity with
a capacity or resistance element. If there is a significant change in these factors,
especially in areas susceptible to rain or temperature fluctuations, the sensor can alert
the system to the possible risks of landslides. For example, high humidity can indicate

saturated soil, a critical factor of landslide instability.

iv. Vibration Sensor (S4): The vibration sensor detects any vibration in the soil, which
may be caused by seismic activity, movement on the ground or external force. These
vibrations are often related to landslide because it shows instability in the field. The
sensor uses a piezoelectric element or accelerometer to detect mechanical vibrations in
the environment. As the vibration is observed in the sensor, there comes an electrical
signal, which is then sent to the microcontroller. By monitoring the frequency and
vibration intensity, the system can identify abnormal formulas that may indicate that
the inclination begins to fail, providing early warnings.

v. Accelerometer and gyroscope Sensor (S5): These sensors are designed to detect
changes in movement and terrain orientation. By measuring acceleration and angular
velocity, they provide essential data on any change or change of slope that may indicate
an immediate land sliding. The accelerometer measures the speed of acceleration or
slowing down the ground along one or more axes (usually in three dimensions: X, y, z).
It works detecting capacity changes as the soil moves. The gyroscope measures angular
speed or how quickly the slope revolves around the axis, which helps identify changes
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in the slope angle. The combined data of these sensors provide detailed ideas about the
movement of earth, allowing the system to detect whether the inclination moves in a

way that suggests that it could collapse.

vi. Microcontroller (ESP-32): The microcontroller is known as the brain of the
system. It collects data from all sensors, processes them and transmits information to
the cloud server for a subsequent analysis. The microcontroller ensures that data is
accurately recorded and can trigger immediate responses if necessary. The ESP-32
microcontroller is responsible for receiving data from each sensor in real time. It
processes this data, analyzes trends, and checks if any thresholds indicative of a
landslide have been surpassed (e.g., a significant increase in soil moisture or
movement). It then transmits this data to the cloud server for storage and further
analysis. The microcontroller also communicates with the cloud platform (such as
ThingSpeak) for alert generation. The ESP-32, Bluetooth Ultra-Low Power
Consumption, Dual Core + 38Pin Development Board WiFi formally known as ESP-
32, the entire solution uses the least amount of PCB space to the integration of the
ESP32 with RF baluns, antenna switches, low-noise amplifiers, power amplifiers,
filters, and management modules. Using TSMC's ultra-low power consumption 40nm
technology, the 2.4 GHz Wi-Fi plus Bluetooth dual-mode chip offers the best power
dissipation and RF performance, and is safe and dependable, and is simple to adapt to

a wide range of applications. It helps send data to other servers through wireless means.

vii. Cloud Server (Thingspeak): The cloud server serves as the central data repository
and analysis platform. It stores all sensor data, timestamps it, and allows machine
learning algorithms to process the data and generate landslide predictions as shown in
Figure 3.3. The server is also responsible for issuing alerts when potential landslide
conditions are detected. ThingSpeak is a cloud-based platform that collects data from
the sensors via the microcontroller. Once the data reaches the cloud server, it is
timestamped, allowing the system to track changes over time. The server then runs
machine learning models that analyze the data for patterns or anomalies that indicate
an increased risk of a landslide. If the system detects such risks, it can issue early
warnings to local authorities and residents, potentially saving lives and minimizing

property damage.
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viii. Real-time data: In real-time landslides prediction systems, several sensors are
used to collect critical environmental data that can help identify possible landslides
events. These sensors include soil moisture sensors, ultrasonic sensors, temperature and
humidity sensors, vibration sensors, accelerometers and gyroscopes [79]-[83]. Before
collecting data, important environmental factors are considered like slope angle, soil
type, precipitation and the use of the land to improve the accuracy of the data collected.
Steep slopes, certain types of soil, heavy rains and human activities can affect the
likelihood of a landslide. The data in Table 3.1 are collected before and throughout
terrestrial landslides and include several environmental and geophysical determinants
crucial for landslide understanding and prediction. These sensors monitor various
physical parameters like temperature, displacement, acceleration in three axes (X, Y,
and Z) and angular rates, with readings taken at regular time intervals. They are time -

marked and give an accurate record of the behaviour of the system over time.

The data being collected are critical in order to assess the status of the system so that
immediate interventions or corrective actions can be taken. It is also fine-tuned to
ensure the quality and accuracy remains consistent. This preprocessing can involve
data cleaning and standardization of features and engineering to prepare the data so that
itis reliable and relevant for the analysis. After processing, the final data record serves
as the basis for advanced analysis, trend detection, anomaly identification, and future
actions of the system. Ultimately, data records can help enable well-discovered

decisions, optimizing system performance or support more research into system
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dynamics. This data leads to fixed lines and is extremely important for analysis of
factors monitoring current events to improve predictive modeling. Once the data is

collected, a microcontroller transmits data, where it is updated and stored continuously

in real-time.
Table 3.1 Real time landslide data
Time S1 S2 S3 S4 S5 X|S5 Y|S5 Z|S5X|S5Y|S5Z
stamp (%) | (cm) | (°C) | (%) | (Mms™?) | (ms2) | (ms™2) |[(°fs) | (°/s) | (°/s)
09:40:59 245 2.75 225 45 0.02 0.05 0.03 9.78 0.02 0.03
09:41:18 24.6 2.80 22.6 46 0.03 0.06 0.04 9.77 0.03 0.02
10:10:34 25.0 3.00 23.0 50 0.07 0.10 0.08 9.73 0.07 0.07
10:10:53 25.1 3.05 231 51 0.08 0.11 0.09 9.72 0.08 0.08

The process of compilation and use of real -time sensor data for machine learning
models (ML) or deep learning (DL) in the prediction systems of landslides implies
several steps to verify that the data is captured, pre -processed, transmitted and used
effectively for prediction. Initially, several sensors, like soil moisture sensors,
ultrasonic sensors, humidity and temperature sensors, vibration sensors, accelerometers
and gyroscopes, are placed in strategic locations to collect real-time environmental data
that indicates a possible landslide activity. Then, ESP-32, acts as an interface between
the sensors and the cloud server. The microcontroller analysis the unprocessed signals
received from the sensors and prepares the data for the transmission. Further, the
microcontroller transmits the data to the cloud server for further analysis. The next
crucial step is data preprocessing, which is important to clean the unprocessed data in
a usable format for automatic learning models or deep learning. During preprocessing,
the data goes through several steps, like sometimes it may be necessary to scale or
standardize the sensor data to take into account variations in the measurement unit so
that the model can operate with uniform inputs. This is especially important as the raw
data collected by various sensors can change and the model must operate at comparable
scale using input values to avoid distortion. The characteristics such as moisture levels,
temperature, slope angle and soil type are extracted as individual unprocessed attributes
or characteristics. The preprocessing data set can be feed on ML models, such as

random forests, support vectors (SVM) or deep learning models, such as
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convolutionary neuronal networks (CNN), which can detect complex patterns and

correlations in data.

After training, the model can make predictions on real-time sensor data, giving early
warnings to residents and local authorities when the system detects conditions that lead
to landslide. When continuously updating the sensor data and feeding them to the
model, the system guarantees timely and precise predictions, which can be used for
alerts generation, allowing the appropriate efforts for evacuation or mitigation before a

landslide occurs.

3.3 Data Preprocessing

Once the real-time data from the sensors is transmitted to the cloud server or data storage
system, it undergoes a crucial stage of data preprocessing to make it suitable for ML or DL
model analysis [84]. Data pre-processing requires a series of steps to clean, reshape, and
organize the unprocessed sensor data to ensure it is accurate, consistent, and ready for model

training or prediction. The following detailed steps explain the preprocessing process:
3.3.1 Data Cleaning:

The initial step in preprocessing is data cleaning, whose objective is to eliminate any noise or
inconsistency in unprocessed data that may affect model’s performance. Unprocessed sensor
data may include missing values, duplicate inputs or atypical values that do not reflect real
world conditions. For example, a sensor might malfunction and provide a reading that is far
beyond the expected range (for example, an ultrasonic sensor detects an extremely high

distance due to a faulty signal). To address this, the following techniques are commonly used:

i. Handling missing data: If sensor data is missing in certain time intervals, this can be
due to communication failures or sensor malfunction. Missing data can be handled in
different ways, such as imputing (filling) missing values using techniques such as
average imputation (filled with the average of nearby values) or interpolation
(estimating missing values based on the tendency of surrounding data points). In some
cases, missing values can be ruled out if they are too frequent, but this depends on the

context and the proportion of missing data.
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ii. Outlier detection: Outlier are data points that fall far from the expected range, often
due to sensor errors or unusual environmental conditions. Statistical methods such as
the Z score or the IQR- interquartile range method is used to detect and eliminate or
adjust these atypical values. If atypical values represent unusual genuine events (for
example, a seismic event), they can be maintained in the data set, since they could
indicate a possible discarding of landslides.

iii. Noise extraction: Some sensors, such as accelerometers or vibration sensors, can
produce noise due to environmental factors (for example, wind, vehicles that pass).
Smoothing techniques can be applied as moving averages or Gaussian filters to

eliminate short -term fluctuations and highlight the general trend in the data.

3.3.2. Normalization and Standardization:

Different sensors may output data in various units and scales. For instance, soil moisture could
be measured in percentage, while vibration might be in voltage or acceleration units. To make
these different data types comparable, it is important to normalize or standardize the data:
Normalization: This involves rescaling the sensor readings to a fixed range, typically between

0 and 1. The normalization is represented as:

Y- Yminimum

Ynormal= Y Y
maximum minimum

where Y is the value of the original sensor, and Y,,,inimum and Ymaximum are the minimum and
maximum values of the data set. The standardization ensures that all data characteristics have
the same scale, which is particularly important for distance-based models such as K-Nearing

(KNN) neighbours and neural networks.
3.3.3 Feature Engineering:
The feature engineering is crucial because it determines the model’s ability to detect patterns

in the data:

i. Extraction of Temporary Features: Real-time landslide prediction generally implies
monitoring changes over time, so temporary characteristics such as day time, averages
per hour/daily or rolling windows (for example, moving average of 30 minutes) can be

useful for capturing trends and cyclic patterns. For example, the accumulation of rain
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or soil moisture in recent hours may be more indicative of an imminent landslide than
a unique isolated reading.

ii. Feature Interaction: Some parameters might interact with each other, such as soil
moisture and temperature. Creating new features that combine these parameters, such
as the humidity temperature ratio, could reveal non-obvious patterns of individual
characteristics. Deriving additional features: For sensors such as accelerometers and
vibration sensors, calculate the speed of exchange or frequency domain features (for
example, FFT - Fast Fourier Transform) can provide deeper information about motion

or vibrations on the slope, which could indicate instability.
3.3.4. Data Transformation and Reshaping:

In some cases, the raw sensor data might need to be reshaped to fit the input format required
by certain machine learning models. For instance, Time-series data: Since landslide prediction
often depends on trends over time, organizing the sensor readings as time-series data is
essential. This may involve transforming the data into sequences where each instance consists
of sensor readings at a specific time step (e.g., 5-minute intervals). The input features would
consist of previous time steps, helping the model to learn temporal dependencies. Categorical
Data Encoding: Some features, like soil type or land use, might be categorical. These need to
be encoded into numerical values using techniques like one-hot encoding or label encoding

before being fed into the model.
3.3.5. Data Split and Model Preparation:

After the data has been cleaned, normalized and transformed, it is usually split into test, train,
and validate datasets. This step ensures that the ML or DL model are able to learn from a data
set (training), tune hyperparameters based on another set (validation) and evaluate its

performance in a completely invisible data set (test).
3.3.6. Final Dataset Creation:

Once the preprocessing is completed, the final data set consists of characteristics that represent

the conditions that lead to landslides, such as soil moisture, temperature, vibrations and other
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environmental factors. This structured data set is now ready to be admitted to models , which

can detect patterns in the data and predict the future trends on the risks of future landslides.
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Figure 3.4 Proposed workflow of real-time landslide prediction.

Through this data cleaning process, standardization, characteristics and transformation
engineering, unprocessed sensor data is prepared and optimized for use in predictive modeling,
which allows precise and reliable land landslides predictions and alert generation as shown in
Figure 3.4.

3.4 Machine Learning Algorithm

In this section, attention focuses on the application of several algorithms to predict landslides
using real -time sensor data. These algorithms RFR, MLR, GBR, LSTM and XGBOOST are
used to evaluate their predictive performance in real world scenarios. The aim is to compare
the performance of these algorithms for accurate prediction of landslides to provide the ability

to process data in real time and predict it quickly.
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3.4.1 Multiple Linear Regression (MLR):

MLR is one of the simplest and most widely used machine learning algorithms to predict a
persistent result derived from multiple input features [85]. In the context of the prediction of
landslides, MLR can be used to model the relationship between the sensor data and the
probability of a landslide occurring. The model presumes that the correlation between the input
features and the outcome is linear. It computes a set of weights (coefficients) for each feature,
with the goal of minimizing the difference between predicted values and actual observations.
While MLR is easy to implement and computationally efficient, it may struggle with capturing
complex, non-linear relationships in the data, which is common in environmental systems like

landslides.

Equation for model fitting:
X = ao + alYl + azYZ + -+ amYm+E (31)

Here aj, a2, a3....am represents change in X that is linked with one unit of increase in value of
corresponding independent value. Also, X is DV and Y1,Y2,...,Yn are 1V, ag is constant and aj,
a2, a3 are coefficients of IV and € represents error rate. Least square method is mostly
approached by linear regression [34].

Estimation of coefficients: y = (YTY)"1YTX (3.2)

Here estimation of y,,¥1,¥2,..,¥p can be done using given equation. y corresponds to p+1
coefficient vector, Y represents n-dimensional vector corresponding to dependent variables,
(YY)~ denotes inverse of n*n matrix of Y7Y and Y7 represents transpose of Y.

Evaluation of model: For evaluation of model coefficient of determination (R?) and adjustment
of R? is done. R? = 1 — (Sresidual — S total) (3.3)

Here S residual corresponds to squared sum of residual i.e. difference of predicted and actual
value and S total corresponds to total squared sum of difference between actual and mean
values.

Adj. R? = 1-[(1-R?) * (n-1)/(n-p-1)]. (3.4)

No. of independent variables (Adj. R?) can be represented as shown in equation 3.4, here p
denotes number of independent variables and n represents total no. of observations.

Prediction values: Now model is ready to make prediction after being evaluated properly.
XA = ao + alYl + azYz + -+ amYm (35)

Where X" is predicted value of dependent variable for set of independent variables.
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One hot encoding (OHE): OHE is technique of translating categorical data into format that may
be input into machine learning algorithms to boost prediction accuracy. Each category is
converted into a binary vector of zeros and ones during this procedure, with 1 denoting the
presence of a category and 0 denoting its absence. In OHE, we set single entry to one and all
other corresponding must be zero. The one-hot vector a is binary vector of length n.

ae{01)" YL,a=1 (3.6)

3.4.2. Random Forest Regression (RFR):

RFR is a method that builds multiple decision trees during training and fuses its results to
produce a more precise and stable prediction [86]. Each decision tree is trained in a random
subset of the data, and the final prediction is carried out averaging the outputs of all trees. RFR
is particularly effective to handle complex and high-dimension data such as sensor readings for
the prediction of landslides, since it can capture non-linear correlations and interactions
between the characteristics. In the prediction of landslides, RFR can take into account
numerous factors, such as soil properties, slope angles, humidity levels and rain patterns to
predict the probability of a earth slide event. The advantage of RFR lies in his robustness

towards its ability to handle a combination of numerical and categorical data.

We take average prediction of decision tree (DT), the prediction for data point y, taking decision
Tree X, can be written as:

f(y,X) = Zq; *I(Z € By) 3.7)

Here q; is the predicted value for j leaf node of decision tree and B; is region under j leaf

node. The function I() return 1 if'y is in Bj, and 0 and is termed as indicator function.

Using random forest overall prediction for data point y can be given as:

) = () * = () (3.8)

Where m is number of DT present in RF, and L is the jth DT in forest. In this equation average
of predictions of all DT is used to make final predictions.

Criteria for splitting in DT is Gini index (G), which can be represented as:

Here K; is proportion of data points in j node of DT. Lower the value of G represents a pure
node.

Prediction space is divided into non overlapping or distinct regions P; .... P;. Predicted mean
of all observations is P;. Root of sum of squares (RSS) is:
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R
X1 Zjep, (Xi — xp)? (3.10)
Here within j™ region, P, is mean response of observation.

3.4.3. Gradient Boosting Regression (GBR):

Gradient Boosting Regression (GBR) is another powerful machine learning algorithm that
builds an ensemble of decision trees [87]. Unlike RFR, GBR constructs trees sequentially,
where each tree tries to correct the errors made by the previous one. This process results in a
model that is more accurate over time. GBR focuses on minimizing the residual errors in
predictions by optimizing a loss function using gradient descent. For landslide prediction, GBR
can be particularly useful as it handles non-linear relationships effectively and can model
complex interactions between variables like soil moisture, rainfall, and slope angle. The model
is highly flexible and can provide better accuracy than simpler models, particularly when fine-
tuned with hyperparameters. However, GBR can be computationally expensive and prone to

overfitting if not properly regularized.

Initialize Lo(a) = arg minp };{%; F(b; p) (3.11)

For n=1 to N do:
Step 1: Computing the negative gradient:

b{ = [w (3.12)
Step 2: Fit the model:
Bn = argming, ¥i"[b — yh(a;; Bn)]? (3.13)
Step 3: Gradient descent step size selection:
on = argming %1%, F(b; Ly — 1(a)) + ph(a;; B)) (3.14)
Step 4: Updating the estimation of L(a):
Ln(@) = Ln_1(a) + pnh(a; Bn) (3.15)

3.4.4. XGBoost

XGBoost (Extreme Gradient Boosting) is an optimized and tuned version of the Gradient
Boosting algorithm. It was developed to improve computational efficiency and prediction
accuracy, especially for large data records [89][90]. XGBoost accomplishes this with advanced
techniques such as parallelization to accelerate model training and reduce over-fitting at the

same time. When predicting landslides, XGBoost is very effective when processing sensor
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data. This is because nonlinear relationships and complex interactions between multiple
properties can be modeled. XGBoost is extremely popular due to its robustness, flexibility and

efficiency in the machine learning competition.

3.4.5. Long Short-Term Memory (LSTM) Networks

LSTM is atype of recurrent neuronal network (RNN) designed for the processing of continuous
data. LSTM is particularly useful for time series predictions where previous observations (such
as sensor values) affect the outcome [88]. In relation to landslide prediction, LSTM models can
analyze temporary data. LSTM networks can learn long-term dependencies by training with
real-time order data, the LSTM model can learn the patterns and time-dependent features given
by future landslides, this ability to capture long-term relations, especially when actual

monitoring of time is important, makes LSTM a powerful tool for predicting landslides.
3.4.6. MLR-LSTM

The MLR-LSTM hybrid model is a very powerful algorithm for landslide prediction, as it
combines the characteristics of both models to make final predictions. First, MLR provides a
linear relationship between environmental factors. The LSTM layer improves these predictions
by including the temporal nature of the data. In contrast to traditional models that rely solely
on historical data, LSTMs can be continuously trained from real-time sensor data flows.
Dynamically updates new data when it arrives so that the model can quickly adapt to changing
conditions. This makes LSTM particularly suitable for temporary serial data. Also, the sensor
values, develops patterns over time and LSTM models there too captures the nonlinear
relationships and complex patterns in the data making it more effective in situations where

complicated relationship is there between variables.

The LSTM layer comprises of several components that helps to manage temporary units
effectively. These include input, output and forget gate which together control the flow of
information from a time step to the next, ensuring that the relevant data of the previous steps
are retained while irrelevant data is discarded. This allows the model to remember long-term
patterns and make precise predictions even if the data is incomplete. During the training and
prediction phases, MLR-LSTM hybrid model optimizes parameters, adjusts the weight,
distortion and states of LSTM cells to improve their ability to learn both linear relations

identified by MLR and complex time patterns captured by LSTM. By integrating the strengths
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of both models, the hybrid MLR-LSTM offers a comprehensive approach to the prediction of
landslides. It provides immediate insight into risk factors through MLR and at the same time it
represents developing risks with LSTM over time. This combination results in a more accurate,
more reliable and sensitive tool for prediction of landslides, which is essential for generating
early warnings and strengthening the efforts to alleviate disasters. Real-time data collected
from multiple sensors ensures that the model remains upto date and is able to provide important

information to help prevent and manage land landslides.
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Figure 3.5 Architecture of MLR-LSTM model.

3.5 Results and Analysis

In the testing phase of the landslide prediction system, the process of calculating and optimizing
values for each of the key sensor parameters (S1, S2, S3, S4 and S5) began. These thresholds
act as critical decision-making points that help determine when the system must induce
warnings in order to alert people with immediate risk of landslide. The thresholds for these five
fields obtained were 0.77, 0.55, 0.60, 0.40 and 0.50. These threshold values were calculated on
the basis of historical data, deducting sensors in real time and observing how the parameters
correlate with the occurrence of landslides. The system uses these thresholds to classify sensor
data in different risk areas depending on the severity of the values. The first step in the
categorization process means comparing the sensor data in real time with predefined
thresholds. The values are assigned in specific ravages that correspond to variable levels of
landslides. For example, reading a sensor between 0 and 50 is considered a "safe zone", which
means that the environment is stable and that the probability of landslides is minimal. Reading
between 50 and 60 is classified as a "yellow zone", suggesting that the system has detected
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certain differences in parameters and residents must remain careful. If the reading drops
between 60 and 80, the system enters the "red zone", a critical phase that indicates that the
conditions are rapidly dangerous and more likely to be landslide. Finally, any value greater
than 80 will start the most urgent warning, marked as an "evacuated zone" where people are
recommended to leave the area immediately to seek safety. Once the thresholds are defined for
each zone, the system continuously monitors real-time sensor data and compares them with
these thresholds. If one of the sensor parameters exceeds the threshold values defined for a
particular zone, the system generates a warning to informing population and local authorities.
For wider areas, the system uses digital communication methods such as SMS messages and
notifications sent through mobile applications or other digital platforms. These reports contain
details of the risk of landslides, affected areas and instructions for evacuation, which ensures
that people who may be further from the immediate danger zone are still informed and can take
measures if necessary. The combination of real time data monitoring, predefined thresholds
and multiple communication channels ensure an integral and efficient system of early and

efficient warning system for prediction and prevention of landslides.
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Figure 3.6 Cumulative displacements obtained through (a) Moisture, (b) Distance, (c) Temperature, (d)
Vibration, (e) Gyroscope, (f) Accelerometer, (g) Fluctuations observed through sensors.
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The experimental evaluations of the sensor system, as illustrated in Figure 3.6, highlight the
fluctuations observed in the sensor readings through continuous monitoring of various
environmental factors. These fluctuations are normalized to make the data comparable across
different sensors. The data from each sensor is collected in real-time and continuously assessed
to track changes in environmental conditions. The sensors in this study monitor a variety of
variables, including soil moisture, temperature, vibration, and other indicators associated with
landslide prediction. To scale the data for these sensors to an equivalent scale, the values are
normalized and the sensor measurements are directly compared and made available for use in
predictive models. The model is trained with five sensors, all contribute to the final prediction.
The training process involves the weight, distortion and adaptation of the MLR and LSTM
components to optimize prediction results. For a part of the MLR model, each sensor is
assigned an individual weight that reflects the relative significance of predicting the probability
of landslide. The sensor weights are set to 0.70, 0.55, 0.60, 0.40 and 0.50 and the sensor
determines the amount of the output. These weights record the strength and orientation of the

contribution of each sensor to the final prediction.

In the LSTM model, parameters are modified by the flow of information through neural
networks. These parameters include input, forget, output gateway weights, and recurrence
matrices that determine the relationships between different LSTM network layers. For
example, the entrance gate (Win), Forgotten (Wrorget), and the start gate (Wout) are assigned
weights: 0.75, 0.55, 0.7, and 0.6. These weights adjust the flow of information each time and
determine the number of sensor data from previous steps to the current prediction. Preloads
connected to the gateway, such as Bin, forget gate, output gate etc., are set to 0.1, -0.2, or 0.2
to control information flow, improve the model's capabilities, and capture complex time

addictions.

Finally, the combined layer of the hybrid model integrates the MLR and LSTM component
outputs. In this combined layer, additional weights (Wcomb) and distortion are used to fine -tune
the final output and ensure that the model creates accurate prediction in real time. The MLR
and LSTM integration allows the model to use both linear relationships identified by the MLR
and non-linear time dependencies captured by LSTM, which provides robust access to
landslide prediction. The ability of this hybrid model to modify its real-time parameters based
on incoming sensor data makes it a powerful tool for predicting landslides and release early

alerts to relieve the risk.
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3.5.1 Evaluation and Performance parameters

Mean Absolute Error (MAE): It is used for evaluating the efficiency of the regression
model. In addition to this, it is used to calculate the average of absolute differences
between the predicted value and the actual value simply by taking the average of
absolute difference between the predicted and actual values for each data point.
MSE= (=) « B(xi — xi") 72 (3.16)
—~ :
Here m represents number of observations. For i observation, xi is actual value of

dependent variable and xi" is the predicted value of dependent variable.

Mean Squared Error (MSE): It is obtained by averaging the squared differences
between the actual value and the predicted value for each data point. It helps measure

the average square differences between predicted and actual values.

MAE = (i) * Y)i=1tom]||x; — x; | (3.17)

m

Here m denoted total number of samples. For i sample x; is actual value of target

variable and xi" is the predicted value of target variable.

Root Mean Squared Error (RMSE): RMSE is basically used when errors are
expected to be distributed normally and it considers square root of average squared

difference.
RMSE = sqrt(sum((predicted values — actual values)?)/m (3.18)

Here m represents number of data points, predicted values obtained from regression
model denoted predicted values and actual value are those that are directly obtained

from dataset.

In the context of landslide prediction, data was gathered from five key variables that represent

distinct environmental factors, all of which change dynamically when a landslide is at its peak.

Each field corresponds to a specific type of sensor reading that was critical for understanding

the behavior of the land at the time of a landslide event. Field 1 represents soil moisture, which

plays a pivotal role in landslides, as soil with higher moisture content tends to lose its cohesion
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and stability. When rainfall or other water sources saturate the soil, it becomes more prone to
slipping, especially on steep slopes. Soil humidity sensors capture real-time data for monitoring
these changes that are vital to detect early symptoms of potential landslide. Field 2 represents
a distance measured by an ultrasonic sensor that is usually used to monitor physical changes or
shifts in the environment. As the landslide progresses, the ultrasonic sensor can be detected by
physical shifts such as cracks, shifts or off-road movements. This can help assess how far the
earth moves and identify the scope of landslides in real time. Field 3 monitors the level of
moisture in the air, which can contribute to the accumulation of water in the soil. The
temperature in the degrees of Fahrenheit is measured by Field 4, which can affect the behavior
of the soil and water content. Sudden drops or temperature increases can lead to changes in
water retention in the soil, which could contribute to instability. Field 5 monitors ground
vibration using a vibration sensor that detects oscillation on the surface. These vibrations are
often early indicators of landslides because the movement of the surface begins before the real

large slide occurs.

As soon as the data from these five areas were collected, the comparison of the behavior of
these parameters at the time of landslide and when no landslide was presented. The aim was to
identify data formulas that could indicate when landslide was immediate. For example,
increased soil humidity, combined with a sudden increase in humidity and temperature,
Similarly, increased vibrations and displacement of the ultrasonic sensor indicates that the
landslide event was about to occur. By analyzing fluctuations in the sensor values, the key
characteristics that defined the platform phase of landslide and detect specific data formulas
that signal when the land is probably landslide were isolated and to further increase the
accuracy of the prediction, sensors of accelerometer and gyroscope were used for more detailed

monitoring of ground movements.

Table 3.2 represents five different sensors used to monitor the key parameters of the
environment that could indicate the onset of landslides. Each sensor provided vital data points,
which allows to detect changes that could signal threatening landslides. The sensors included
soil moisture sensor, ultrasonic sensor, temperature sensor, vibrating sensor and other
movement sensors in the form of accelerometer and gyroscope. These sensors continuously
capture data during normal and critical conditions and help scientists to observe the fluctuation

of the environment that occur before, during and after landslide.
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The soil humidity sensor was used to measure the water content in the soil, a critical factor of
stability of landslides. In front of soil landslide, soil moisture values usually ranged from 10%
to 20%, reflecting normal soil conditions where the moisture content was not too low or too
high. The ultrasonic sensor was used to monitor the distance between the sensor and the object,
the detection of any changes was observed by the sensor. After the landslide, these shifts
became more pronounced because the surface moved significantly, with the sensor detecting
more distance changes that indicated the substantial displacement of the terrain. The
temperature sensor was used to measure ambient temperature fluctuations, which can affect the
retention of humidity in the soil. However, the temperature remained relatively stable, usually
in the range of 60 ° F to 70 ° F. After the landslide, the temperature may remain stable or

fluctuate on the basis of weather conditions.

The vibration sensor played a decisive role in detecting the movements of the land. In front of
the landslide, the vibrations were generally small, with values in the range of 0.01 to 0.1 m/s?,
reflecting the minimum shifts of the Earth. As the soil became increasingly unstable, these
vibrations grew by frequency and intensity. During the landslide, the vibrations increased
significantly and achieved 0.2 to 1.5 m/s? or higher, indicating greater and significant
disturbance of the Earth. These sharp fluctuations in vibration data were key indicators that

landslide began or actively occurred.

The accelerometer and gyroscope sensors were used to monitor the movement of the surface
in more detail. The accelerator measured the acceleration or moved in motion along the axis
X, Y and Z and even captured minor movements. At time of the landslide, these sensors
recorded small shifts, with readings such as 0.01 m/s? (axis X), 0.09 m/s? (axis Y) and -0.03
m/s? (axis Z). These subtle changes testified of slight movement in the ground when
destabilized. After the landslide, the accelerometer detects much greater movements, with
significantly higher accelerations, especially along the axes. Similarly, the gyroscope captured
the rotary movements of the Earth, which reflected any tilt or rotation when the terrain moved.
At time of landslide, the gyroscope values were minimal, with values such as 9.26 ° (X axis),
2.87 ° (Y axes) and -1.32 ° (Z axis), indicating slight tilting or rotation on the surface. These
rotations become more pronounced during and after the landslide because the surface has
experienced greater shifts and tilting. The data collected by these five sensors together with the
accelerometer and the gyroscope provided a comprehensive overview of the environmental

conditions before and after the landslide.
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Table 3.2: Sensor Readings Before and After Landslide

Sensor

Before Landslide

After Landslide

Soil Moistur

e 10-20%

50% or higher

Ultrasonic (Distance)

5.0 meters (stable)

4.8 meters or lower (displacement)

Temperature

60°F to 70°F

Fluctuating, depending on conditions

Vibration

0.01-0.1 m/s? (small shifts)

0.2 to 1.5 m/s? (large shifts)

Accelerometer (x-axis) | 0.01 m/s?

Increased (larger shifts)

Accelerometer (y-axis) | 0.09 m/s?

Increased (larger shifts)

Accelerometer (z-axis) | -0.03 m/s?

Increased (larger shifts)

Gyroscope (x-axis) 9.26°

Increased (larger tilts)

Gyroscope (y-axis) 2.87°

Increased (larger tilts)

Gyroscope (z-axis) -1.32°

Increased (larger tilts)

Through the continuous monitoring, these sensors made it possible to develop a brighter understanding
of changes in the environment that preceded landslides. The study by monitoring soil moisture, distance,

humidity, temperature, vibration and additional data from accelerometer and gyroscope is to increase

early detection systems and provide more accurate warnings to alleviate the effects of landslides.

Table 3.3 Parameters resulting in landslide.

S. No. Fields Values
1. Moisture in Soil 56

2. Distance (by Ultra-sonic) 20

3. Humidity 45

4. Temperature (degree F) 68

5. Vibration 1

6. Accelerometer (X axis) 0.01
7. Accelerometer (Y axis) 0.09
8. Accelerometer (Z axis) -0.03
9. Gyroscope (X axis) 9.26
10. Gyroscope (Y axis) 2.87
11. Gyroscope (Z axis) -1.32

Table 3.2 shows the relationship of different parameters contributing to the events of landslides,
with the corresponding values for each parameter. This table contains measurements such as

soil moisture, distance (measured by ultrasonic sensors), humidity, temperature, vibration,
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accelerometers, and gyroscope data for various fields. These parameters are important to
understand factors that influence landslide occurrence and to understand the monitoring
conditions that may indicate immediate events. Thingspeak allows real-time monitoring and
allows to collect, store and analyze sensor data in one centralized system. The values of the
recorded gyroscope and accelerometer sensors, along with other environmental factors, were
constantly updated and provided an overview of the situation in real time. By observing these
fluctuations and comparing values with historical data, the system could predict whether the
conditions are correct. Once the specific thresholds were determined from the data collected
during previous events, these thresholds were determined as a reference point for future
forecasts. For example, if moisture or vibration levels approach the values observed during past
landslides, the system may issue warnings to local authorities or inhabitants, provide early

warnings and enable timely evacuation or safety measures.

Python Application (notify.py)

Landslide alert
é I EVACUATE |

(@) (b)

Figure 3.7 An illustration of a system sending an alert via, (2) Notification and (b) SMS services.

A reading between 50 and 60 falls into the "yellow zone™ signalling a cautionary state that
requires close monitoring for potential risks. A reading between 60 and 80 is designated as the
"red zone™ where the situation is more critical, and immediate attention is necessary. When
sensor reading exceeds 80, it enters the "evacuation zone", where immediate evacuation and
relocation to a safe place are required. Once these thresholds are defined, they generate
warnings by comparing the sensor values in real time with predefined ranges. As shown in
Figure 3.7, in local areas, these warnings are communicated through visual indicators such as
turn signals and sound alarms such as Hooters, which ensures immediate awareness of the
situation. SMS messages and pressure notifications are sent for a wider area to inform the larger
population of level changes, which keeps all of the affected areas updated in real time. These
thresholds are based on changes observed from historical data and are essential for categorizing
risk levels from safe conditions to the need for evacuation. The system ensures that people are
immediately informed about changing conditions through various warning channels, which

provides a structured and reliable method for readiness and response to disasters. By defining
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these risk zones and monitoring sensor data in real time, authorities can take timely steps to

alleviate potential threats and protection of public security.
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Figure 3.8 Comparison of performance across various machine learning techniques.

Data-based models, such as our hybrid MLR-LSTM model, analyze real-time data from several
environmental sensors to discover underlying patterns, which significantly improves the
accuracy of landslide predictions. These models use predefined thresholds to establish
reference criteria that help classify data at different levels of risk. The thresholds define safe,
warned and high-risk areas, forming the basis for the initial evaluations of the conditions. While
these thresholds provide a clear structure, the hybrid MLR-LSTM model goes beyond
considering the dynamic and real-time factors, improving early alert systems and improving

disaster mitigation strategies, particularly in areas prone to landslides.

Our proposed hybrid model demonstrates a clear advantage over traditional models, including
individual MLR models, as well as more complex models such as random forest (RF) and
XGBoost, in the prediction of landslides, as shown in Figure 3.8. This higher performance is
attributed to the combination of two powerful modeling techniques: MLR and LSTM. The
MLR component captures linear relationships in the data, offering simple but effective ideas
about factors such as soil and rain moisture. On the other hand, the LSTM component stands
out in the modeling of complex and non-linear interactions and temporal dependencies present
in the data, such as the changing dynamics of environmental conditions over time. Individual
models such as MLR, RF and XGBOOST often do not accurately model the complex and
dynamic nature of landslides due to numerous interdependence and correlations between
different environmental factors. However, the MLR-LSTM hybrid model is able to capture
both linear patterns with MLR and linear formulas more complex through LSTM. This results

in a more holistic and accurate prediction system that provides a more reliable early warnings
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for landslides and improved the general disaster management process. By integrating linear
and non-linear modeling techniques, the MLR-LSTM hybrid model offers an integral approach
to the prediction of landslides that exceed each model, ensuring better preparation and

alleviating in high-risk areas.

Table 3.4 Performance comparison of landslide prediction.

Author Algorithm MSE MAE RMSE
Kumar et al. [91] BS-LSTM - 0.160 0.270
D. Zhang et al. [92] TCN-AR — 0.280 0.250
Kshirsagar et al. [93] LR 0.045 - 0.126
Proposed Model MLR-LSTM 0.014 0.140 0.120

This table provides insights into the work already been carried out by comparing the values
with the previous research on basis of MAE, MSE and RMSE values. MSE is an average square
difference between expected and actual values, with less value indicating better accuracy. MAE
measures the average absolute difference between the anticipated and actual values, which
gives a direct indication of the accuracy of the model prediction without considering the
direction of errors. RMSE is the square root of MSE and provides a scale to understand the size

of a prediction error, with a lower value indicating a better performance.

Kumar et al. [91] used the BS-LSTM model (two-way short-term memory), the model showed
MAE 0.160 and RMSE 0.270. Zhang et al. [92] used the TCN-AR algorithm (a time convention
network with the author), also without the value of MSE. The performance of the model
resulted in MAE 0.280 and RMSE 0.250. Kshirsagar et al. [93] implemented the model of
linear regression (LR), which showed MSE 0.045 and RMSE 0.126. The MSE and RMSE
values indicate that it worked better than the BS-LSTM and TCN-AR models, but still had
higher errors than the proposed model. The proposed model is a combination of multiple linear
regression (MLR) and long short -term memory (LSTM), which outperforms all other models
at MSE 0.014, MAE 0.140 and RMSE 0.120. This suggests that the MLR-LSTM hybrid
approach provides the most accurate forecast of landslides compared to other methods tested

in this study.

Comparison of different models of landslide prediction highlights the efficiency of the
proposed MLR-LSTM hybrid model. Performance metrics including MSE, MAE, and RMSE
indicate that the MLR-LSTM model overcomes other models such as BS-LSTM, TCN-AR,
and linear regression. In particular, for MSE (0.014), MAE (0.140), and RMSE (0.120), a

significant reduction in error values suggests that this model provided more accurate and
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reliable predictions for landslides. This accuracy is essential for early warning systems and
helps minimize and mitigate the impact of landslides in areas at risk. Integrating several sensors
in real time, including soil moisture, ultrasound, temperature, air humidity, vibration, and
accelerometer sensors will improve soil capacity. By constantly monitoring environmental
factors and including them in machine learning models, the system recognizes the changes that
indicate future landslides. Generating warnings related to actual data processing systems and
decisions using threshold-based limits for early warning communities in the early stages to
save lives and prevent significant infrastructure damage. The results check the feasibility and

efficiency of MLR-LSTM access and demonstrate the possibilities of real-time applications.

The real-time loT-based landslide monitoring system has been fully implemented and tested
within a laboratory environment, proving its ability to effectively collect, analyze, and transmit
environmental data for early warning purposes. Transitioning this system to deployment in
real-world landslide-prone regions involves addressing several critical operational challenges
to ensure consistent performance and reliability. Field deployment requires systematic
installation of sensor nodes across rugged and often inaccessible terrain. This involves detailed
site surveys to identify optimal sensor locations that comprehensively cover vulnerable slopes
and critical points. Installation teams must navigate difficult access routes and unstable ground
conditions, using specialized equipment for secure sensor placement. Regular maintenance
schedules are essential to inspect and replace sensors affected by environmental wear and
damage. The sensors and associated hardware must be ruggedized and enclosed within
protective casings to withstand harsh environmental conditions, including heavy rainfall,
extreme temperatures, humidity, soil movement, and vegetation growth. These protective
measures prevent physical damage and reduce sensor drift caused by environmental exposure,
ensuring accurate and consistent measurements over extended periods. Power supply is a
fundamental challenge in remote areas lacking grid infrastructure. The system employs solar
panels combined with rechargeable battery storage to provide continuous power. This setup
ensures uninterrupted sensor operation day and night and during adverse weather conditions.
Battery capacity is sized to sustain operation for extended periods without sunlight, minimizing
maintenance frequency. Communication between sensors and cloud servers relies on robust
wireless networking adapted to remote and challenging environments. The deployment utilizes
long-range communication technologies such as LoRaWAN or mesh networks to ensure
reliable data transmission across complex terrain with limited cellular coverage. Local data

buffering in sensor nodes stores measurements during connectivity interruptions, preventing

70



data loss and enabling synchronization when the network is restored. Sensor calibration and
health monitoring protocols are integral to maintaining data integrity. Automated self-
diagnostic routines detect sensor anomalies or failures, triggering maintenance alerts.
Calibration is conducted periodically in the field to adjust for sensor drift caused by
environmental factors. Finally, integration with local disaster management agencies and
community engagement are critical for effective deployment. The system’s alert dissemination
framework delivers timely warnings through SMS, mobile applications, and sirens. Training
programs for local authorities and residents ensure that alerts translate into prompt evacuation
and mitigation actions, maximizing community safety. This deployment framework addresses
all key challenges associated with real-world operation of the loT-based landslide monitoring
system. The laboratory-validated prototype evolves into a resilient, autonomous, and
maintainable network capable of providing reliable early warnings in landslide-prone regions.
This implementation advances practical disaster risk reduction and sets a foundation for large-

scale field applications.
3.6 Summary

The integration of various sensors and advanced algorithms had a major impact in real time on
the accuracy and efficiency of landslide prediction. The study focuses on solving problems
related to prediction of such disasters so by collecting data from various sensors provides with
examined study of possibilities of different machine learning models for predicting landslides.
These models, such as multiple linear regression (MLR), XGBoost (XGB), and Random Forest
(RF), have been tested and evaluated against each other to identify the most effective methods
for accurate predictions. Of the models tested, the MLR-LSTM hybrid was listed as the most
promising and this hybrid model combines MLR intensity when dealing with linear
relationships between time dependencies and LSTM networks, when analyzing non-linear
forms. The LSTM function of the sequential storage function allows models to be analyzed and
learned from time-dependent data such as soil moisture, temperature, and other environmental
factors that represent key indicators to threaten landslides. This approach made it possible to
identify and predict the events of landslides more efficiently, especially when considering the
dynamic and fluctuating nature of data collected in real time. Moreover, the successful
implementation of the hybrid model of generating real-time warning has shown its potential to
help the authorities and communities early measures to minimize the impact of landslides. The

results of this study emphasize the importance of using the advancements of machine learning
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and sensor data to improve the strategies of prediction and management of disasters, and
eventually save lives and reduce the economic and social costs associated with landslides. The
thesis effectively utilizes real-time sensor data to simulate and monitor environmental
conditions that can lead to landslides, offering a practical framework for early detection.
However, despite the advantages of real-time data, this method of data collection might still
have a few limitations. One key issue is sensor coverage—in a controlled laboratory
environment, sensors are positioned optimally, but in real-world settings, full coverage of the
affected terrain may not be feasible due to geographical constraints, installation challenges, or
cost limitations. As a result, certain critical changes in environmental conditions may go
undetected, affecting the comprehensiveness of the data. Additionally, sensor reliability poses
another concern. Sensors are prone to malfunctions, calibration drift, or temporary failures due
to harsh weather conditions, physical damage, or interference from surrounding elements. For
example, an ultrasonic sensor might give false readings if obstructed by debris, or a moisture
sensor might fail to respond accurately if embedded in compacted soil. Moreover, data
transmission delays or losses—especially when using wireless communication and cloud
platforms like ThingSpeak can lead to time lags or gaps in the data stream, which in turn affect
the real-time responsiveness of the system. These limitations, if not accounted for, can reduce
the accuracy and reliability of the landslide prediction model, particularly in dynamic and
unpredictable environments. Therefore, while the system is robust in a lab context,
acknowledging these potential real-world limitations is important for future improvements and

deployment.
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CHAPTER 4

A SEMANTIC SEGMENTATION FRAMEWORK WITH U-
NET-PYRAMID FOR LANDSLIDE PREDICTION USING
REMOTE SENSING DATA

4.1 INTRODUCTION

Landslides are frequent natural events triggered by several factors, including earthquakes,
heavy rains, river erosion, the cutting of slopes for the construction and activity of groundwater
induced by natural and human water [94][95]. Due to climate change, the increase in
urbanization and increased seismic activity, the frequency of landslides has constantly
increased, which leads to long-term impacts, such as the destruction of property, infrastructure
and loss of life [96][97]. A landslide occurs when rocks, soil and debris move downhill due to
gravitational force. These movements can be different in speed and size, usually resulting in
serious damage to buildings and to human security. Traditionally, landslides were detected
through field work on the site, where experts physically examined areas prone to landslides,
paying attention for signs like unstable slopes, cracks on the ground or past landslides remains
[98]. Although this method was useful, it was intensive in labour, slow and limited, especially
in areas difficult to access or remotely. With the development of geospatial technologies, the
detection of landslides has become much more advanced. Techniques such as aerial
photogrammetry use high resolution aerial images to create precise landscape models, allowing
an in-depth analysis of the characteristics of the earth and the possible risks of landslides [99].
In addition, satellite remote sensing allows continuous supervision of large regions and
identifies displacement in landscape that might indicate the probability of immediate landslide.
Compared to the traditional methods, these modern technologies offer more efficient and
accurate way of identifying areas susceptible to landslides, which improves both speed and

accuracy of detection.

Continuous landslide monitoring and detection is essential to reduce the risk and consequences
of landslide on infrastructure, municipalities and the nature. Traditional landslide methods

often rely on subjective interpretations of satellites or aerial photography. The ML algorithm
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is trained on large remote sensing image data records, allowing to automatically identify
samples assigned to landslide. These ML algorithms can detect important features like
topographical changes, increase, vegetation patterns, and surface morphology. All of these can
indicate the probability of a landslide. ML not only accelerates landslide prediction it also
increases the reliability and accuracy of EWS [100]. This technology is necessary to reduce the
damage caused by landslides, as it allows for proactive measures like evacuation plans,
strengthening infrastructure and effective management of land use in high-risk areas. Due to
the complexity of traditional methods, there is a growing demand for aim and more techniques
which are automated to predict landslides. Many landslides occur on slopes with exposed soil
or rock, which often have vegetation or other surface features that create complex patterns in
optical images. Advances in remote sensing technology, in particular the enhancement of
spectral and spatial resolution of satellite images from the platform such as the Sentinel series
significantly improved the ability to monitor large areas susceptible to landslides in detail.
Landslide prediction or detection techniques and algorithms can generally be classified into
three main approaches: local field survey, machine learning algorithms and deep learning
techniques. Local field survey means on site surveys and manual data collection, while ML
analyzes significant quantities of geospatial images to detect trends and patterns. Deep learning
proposes neural networks to analyze even more complex data and create very accurate
predictions [101]. These developing technologies are the key to the detection of landslides and
alleviate the potential risks or destruction they can pose. The field survey has been recognized
efficiency in the prediction of landslides but faces significant challenges. These challenges
include the risk of damage, time constraints deposited by huge areas that must be covered, high
costs associated with sending equipment and helping teams to the affected sites, and potential
inaccuracies when trying to attempt manually evaluate large and complex terrains. While
manual exploration was once the main method of identifying landslides, the entering of
geospatial technologies such as remote sensing RS and aerial images, provided new and more
efficient forms for detecting areas susceptible to landslides. One of the key progresses is the
use of high-resolution satellite and aerial images that have significantly improved accuracy of
landslide prediction or detection. Satellite images are particularly valuable because they
provide detailed spatial data that can detect essential indicators of potential activity of
landslide. A remarkable technique used in this context is an Object-Based Image Analysis
(OBIA) [102]. Unlike traditional pixels -based analysis, which focuses on individual pixels,
OBIA groups pixels in significant objects based on their spectral properties (such as color and

intensity) and spatial relations inside the image. This makes it possible to analyze not only
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spectral characteristics, but also the context in which these pixels appear, such as their spatial
disposition, form to other characteristics of the landscape. Combining this contextual
information allows OBIA to identify consistent properties of land that can have geological
properties and have vegetation density, topographic morphology, or instability. On the other
hand, pixel-based analysis examines every single pixel based on its color or spectral properties,
without considering the broader context or spatial relationships between adjacent pixels. This
method is easier and works well in some scenarios, but can be problematic with more complex
landscapes. This landscape neglects fine texture changes, spectral signatures, or transitions
between different types of land coverings and geological layers. OBIA can counter these
challenges with regard to the spatial composition of groups of pixels. This is especially
effective when identifying and mapping landslides. The efficiency of OBIA in landslide
detection has been further improved based on the availability of high-resolution satellite images
and the building of highly developed tools and these tools can perform semi-automatic or fully
autonomous analysis. This increases the need, speed and accuracy for manual interpretation of
landslides. As a result, OBIA is an important part of the detection and classification. This
means it will be effective in a comprehensive approach to monitoring and predicting landslides.
Pixel-based models were often used to classify images and disaster surveillance, including
landslide detection [103][104]. However, these approaches have limitations, especially when
satellite images are processed at very high resolution. These images often create issues such as
the "salt and pepper" effect. This effect leads to large fragmented pixels of detail [105]. This
problem makes it difficult to accurately classify images and predict landslides, as individual
pixels can be misclassified due to data complexity. OBIA has become a more effective
alternative, especially when manipulating high-resolution remote-acquired images, to
recognize the boundaries of pixel-based methods, particularly in image classification. OBIA
changes the analysis approach of individual pixels to evaluation of shaping objects by
summarizing pixels based on common characteristics such as texture, color, and spatial
proximity. Segmentation plays an important role in OBIA by converting individual pixels into
coherent image objects that represent important features of the landscape. These objects are
identified and grouped after a combination of spectral, structural, morphological, and
topographical characteristics. By segmenting images with critical units, OBIA improves the
accuracy of predicting landslides and reduces false alarms. The segmentation process refers to
the definition of factors that define the size and format of objects in an image. This can be a
difficult task. Since the characteristics of the land features, including landslides, may vary

significantly, often requires an iterative process where various segmentation techniques are
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tested and refined through visual inspection to ensure that objects accurately represent
characteristics of the real world. Once the segmentation process is completed the classification
starts, where each object is classified according to specific criteria. To detect landslide, this
include the manual thresholds setting for properties such as field changes, vegetation coverage
or soil composition, which are generally associated with areas susceptible to landslides. While
OBIA offers clear advantages over traditional pixels-based methods, it is not exempt from their
own challenges, particularly when they are combined with machine learning models for more
detailed applications. The characteristics of landslides can vary in the size of space and spatial
context in different areas, making it more difficult to apply one single segmentation strategy.
The challenge is defining the correct scale parameter to ensure that segmented objects
accurately reflect the wide range of geological and environmental features present in the
images. In addition, this variability means that OBIA methodologies should refine to consider
the different analysis scales, which requires a continuous adaptation of segmentation
techniques. The integration of OBIA with ML algorithms can help address these problems
improving the ability to automatically classify and map landslides in different terrains.
However, the success of this integration is largely based on improving the dependency of
OBIA, as well as further advancement in ML models to better manage complex and multi-scale
data that is characteristic of high-resolution satellite images. Despite these challenges, the
combination of OBIA and ML offers a promising approach for landslide prediction. As
advancement in OBIA methodologies and in ML algorithms, the potential for reliable and
large-scale landslide detection will expand while providing better tools to mitigate the risk

posed by landslides to infrastructure, communities and the environment.
4.2 Dataset Description

Deep Learning (DL) requires large number of labelled data to effectively understand multiple
parameters with variations. According to research, when small, labelled training data set is
used, it can degrade the performance of the classification, while a large training dataset is used
DL models cannot cover all conceivable cases. To solve this problem, we used a benchmark
dataset called Landslide4Sense, which contain study of sites that are affected by landslides

from different regions, as shown in Figure 4.1.
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Figure 4.1 Geographical Locations for Landslide Susceptibility Dataset Collection.

Landslides4Sense dataset is a specialized benchmark collection created to increase the analysis
of the landslide susceptibility by providing a comprehensive combination of terrain, slope and
multispectral satellite data. The terrain height is a critical factor in the prediction of landslides,
as height changes indicate areas where gravitational forces are likely to cause movement. In
particular, steep slopes are more vulnerable to landslides, because the gravitational force acts
more strongly on steeper tendencies, especially if the stability of the earth surface is endangered
by external factors such as precipitation, seismic activity or human modification. The landslide
data file includes ALOS PALSAR slope data, which provides detailed information of steepness
of the terrain, essential for assessing the risk of landslides. This data is obtained from images
based on radar satellite that offer high accuracy when measuring the surface slope, which
increases understanding of areas susceptible to landslides. In addition to slope data, the dataset
incorporates Sentinel-2 multispectral data, which includes band 1 to 12 and by combining
information about the terrain height and slope with multispectral data, the Landslide4Sense
dataset allows a more detailed and more accurate assessment of areas susceptible to landslides.
The dataset is particularly valuable because it has been thoroughly marked for classification of
landslides and non-landslide, each of which has changed to a resolution of about 10 meters per
pixel. This high level of detail and accuracy allows efficient models and analysis of machine
learning and helps to identify fine changes in the field that may indicate an increased risk of
landslide. The combination of detailed height, slope and spectral data makes the
Landslide4Sense dataset an important resource to improve the landslide detection or prediction

and increase the reliability of early warning systems.
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This dataset includes patch images containing landslide from different global locations. This
dataset is split into three separated sets: training, testing and validation. This structured division
is designed to strengthen the training of DL models and provide the potential to handle large
range of new and unseen situations, especially those that differ from the data on which the
model was originally trained. By exposing a model to diverse geographical regions and
conditions, the dataset helps to enhance the efficiency of the model in different terrains,
allowing it to be better generalized when applied to new data. The training set contain the data
from four different regions around the world: lburi-Tobu in Hokkaido (Japan), Kodagu in
Karnataka (India), Rasuwa in Bagmati (Nepal) and Western Taitung (Taiwan), as shown in
Figure 4.2-Figure 4.5. These regions were selected to represent different terrains, climate and
landslide condition. Data from these areas are used to create patches approx. 3799 of 128x128
pixels. These image patches serve as training data for the model. In addition, this dataset
contains verification and test set consisting 245 and 800 image patches of the same size

(128x128 pixels). Sentinel-2 provides detailed images across different wavelength bands, from
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SWIR, allowing analysis of multiple surface features. Landslide4Sense uses specific bands
such as B2 is blue, B3 is green, B4 is red and B8 is almost infrared, which have a resolution
detail of 10 meters per pixel. Other bands such as B5, B6, and B7 are vegetation red edge, B11,
B12 are SWIR, as well as B1 is coastal aerosol, B9 is water vapor and B10 is Cirrus, have a
different spatial distinction of 20 meters and 60 meters. These different resolutions allow for
detailed analysis with multiple features such as vegetation, water and soil formations, all of

which are important in the study of landslides.

In addition, Alaska satellite facility provides a high-resolution digital elevation model that is
derived from the ALOS PALSAR system. DEM offers detailed topographic data, which is
essential for understanding the terrain elevation. From this DEM, a layer of slope is formed,
which represents the steepness of the terrain. Since the DEM and the slope layer both are
important for the landslide prediction, they are modified into a spatial resolution of 10 meters,
which ensures consistency with other data layers. These datasets are combined in 14 different
layers in the Landslide4Sense dataset, which are then used for training and testing of DL
models aimed at detecting landslides and analysis of sensitivity as shown in Figure 4.6. The
combination of high-resolution images, and information on landslide gradients using
Landslide4Sense provides a rich multidimensional dataset. By including data from different
regions and different spatial resolutions, this data record creates a more robust and reliable
model for predicting or detecting landslides that can be used at a global level.

i.  Band 1 Sentinel-2: Blue spectral band data.

ii.  Band 2 Sentinel-2: Green spectral band data.

iii.  Band 3 Sentinel-2: Red spectral band data.

iv.  Band 4 Sentinel-2: Near Infrared (NIR) spectral band data.

v. Band 5 Sentinel-2: Shortwave Infrared (SWIR) spectral band data.

vi.  Band 6 Sentinel-2: Shortwave Infrared (SWIR) spectral band data.
vii.  Band 7 Sentinel-2: Shortwave Infrared (SWIR) spectral band data.
viii.  Band 8 Sentinel-2: NIR spectral band data.

iXx.  Band 9 Sentinel-2: Water VVapour (WV) spectral band data.

X.  Band 10 Sentinel-2: Cirrus (CI) spectral band data.

xi.  Band 11 Sentinel-2: SWIR spectral band data.
xii.  Band 12 Sentinel-2: SWIR spectral band data.

xiii.  DEM - Digital Elevation Model: Elevation information data.
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xiv.  Slope: Slope information.
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Figure 4.6 Visualize every unique layer inside the 128x128 window-size patches of the generated landslide
dataset. The first 12 bands shows multi-spectral data from Sentinel-2, bands 13 and 14 shows DEM data and
slope from ALOS PALSAR.

This dataset contains test, train and validation subsets, the subset which contain train data is
collected from four different landslide-susceptible region. Table 1 provides an extensive

description of this dataset consisting complete attribute description about data.

TABLE 4.1: Comprehensive Description of the Landslide4Sense Dataset

Sr.No. | Attributes Description of Attributes

1. Name of Dataset Landslide4Sense

2. Total Samples Training sample-3799, Testing sample- 800, Validation sample- 245

3. Response Variable No landslide - 0, Landslide - 1

4, Source of Data Landslide detection using multi-sensors

5. Geographic Regions Rasuwa district, Kodagu district, Iburi-Tobu area, and western
Taitung Country

6. Pre-processing Normalization, Empty values Removal
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7. Types of Features Topographic, Meteorological, Geological, Geotechnical

8. Data Format In CSV format

9. Feature resolution Temporal and spatial measurements at specific locations

The dataset used in this study is well-structured and diverse, comprising image patches of
landslides from four geographically distinct regions—Japan, India, Nepal, and Taiwan—which
strengthens the model’s capacity to generalize across different terrains and climatic conditions.
However, the data collection process presents several limitations that affect the model’s overall
robustness and applicability. The geographical scope of the dataset, although varied, excludes
many global terrains with unique geological and environmental characteristics. This lack of
coverage limits the model's exposure to critical landslide types found in arid regions,
mountainous rockslide zones, or coastal slopes. Expanding the dataset to include satellite
imagery from additional regions addresses this limitation by improving terrain diversity and

increasing the model's generalization capabilities.

Another limitation involves inconsistencies in spatial resolution among the Sentinel-2 image
bands. With bands captured at 10 m, 20 m, and 60 m per pixel, the variation introduces spatial
imbalance, making it difficult to uniformly detect smaller or more subtle landslide features.
Standardizing all bands through image resampling to a common resolution, such as 10 m,
ensures uniformity in data input. Additionally, implementing multiscale feature extraction
techniques in deep learning models allows the integration of spatial details from different
resolutions without compromising accuracy. Temporal and seasonal bias also affects dataset
reliability. Images concentrated within a specific season or climate condition restrict the
model's adaptability to changes in vegetation, lighting, and weather. Including multi-seasonal
and multi-temporal satellite data enhances variability in the training process, ensuring the
model performs consistently across different time frames and environmental settings. The
patch generation process further introduces the risk of class imbalance, with uneven
representation between landslide and non-landslide samples. This imbalance skews the
model’s learning process and reduces prediction accuracy. Applying data augmentation
techniques such as flipping, rotating, scaling, and contrast adjustments expands the sample set
and balances class representation. Incorporating synthetic data generation and implementing
stratified sampling also ensures equitable distribution of classes during training. Addressing
these limitations strengthens the model’s reliability, increases prediction accuracy, and

supports more effective application in real-world landslide detection scenarios.
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4.3 Methodology

In this work, we developed a hybrid deep learning model to improve the accuracy of landslide

forecasting models.

Landslides have serious threat for infrastructure and human lives highlighting the need for
reliable and accurate models for prediction. Traditional approaches usually found it difficult to
extract detailed space information from the satellite images, which motivates to explore more
advanced techniques. Our approach takes advantage of the UNet model, a well-established
model known for its accuracy in semantic segmentation performance. By integrating a pyramid
grouping layer, our goal is to improve the capacity of the model to capture multiple scale
characteristics, improving its performance in variables spatial resolutions. This approach aims
to address the challenges related to landslide detection which offer a stronger solution for
evaluating landslide susceptibility. The UNet design is appropriate for tasks that demand
accurate segmentation of spatial characteristics like landslide detection. However, to further
improve the model, we integrate the layers of pyramid groups. This layer adds several scales
to the model, allowing the model to process information about various spatial resolutions. This
way can get a sense of the fine grains and the broader landscape features that are essential for
accurate landslide detection. The ability to analyze several scales ensures that the model is able
to recognize equations that indicate the risk of landslides. This treatment at multiple scales
improves the general performance of the model and helps to adapt to a variety of topographical
conditions and soil cover types. This technique enables the model to better understand the
correlation between different image segments. This is necessary to recognize complex patterns

associated with landslide sensitivity.

OBIA improves the ability of model to identify features like variation in terrain height,
vegetation density and soil texture, which are the key risk indicators of landslide. By combining
deep learning with OBIA, we strive to increase the accuracy and reliability of landslides
detection, especially in areas where traditional methods like pixel-based method struggle to

capture simple on small variations in the landscape.
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Figure 4.7 Approaches for mapping Geographical Feature with Rule-Based and Data-Driven models.

Landslide4Sense dataset is used to train and evaluate this hybrid models. Additionally,
preprocessing procedures like normalization and noise reduction are used to ensure that the
data in model training is consistently optimized. Additionally, data augmentation methods are
used to increase the diversity of dataset. This will help the model to better generalize landslides
in areas that were not seen during training. The purpose of this study is to improve landslide
capabilities and convey valuable knowledge that can be useful for active disaster management

and reduction strategies in landslide-sensitive areas.
4.3.1 Fully Convolutional Networks (FCNSs)

FCN is a DL architecture that deals with the training closure challenges that usually arise when
an additional layer of folding is added to increase model complexity [106]. This breakdown
prevents functional networking functions of various shapes and sizes. FCN overcomes this
restriction by replacing fully connected layers traditionally found in neural networks with
convolutional layers and upsampling layers. This design causes FCN to be particularly suitable
for tasks that require image mapping on image, such as landslides, where the output is also an
image rather than a single label or classification. FCN is able to process input images of
different sizes, allowing them to process image patches of any size and are therefore
customized by different image resolution. The key feature of FCN is its ability to extract global

and local contextual features through the skip mechanism between lower sampling and
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upsampling layers [107]. Skipping the connection helps to maintain important information
from the middle layers and pass it directly to the upsampling layers, allowing the network to
create more accurate and detailed segmentation [108]. This is particularly important for
complex tasks, such as detection of landslides, where there is need to keep fine field details for
precise prediction. It also ensures that the model can maintain semantic features of high levels
and low-level spatial features, which are essential for understanding complex landscape details
that may indicate the risks of landslide. Among the different FCN models, UNet has shown
that it is particularly effective for image segmentation tasks, especially if the training data is
limited. This characteristic makes the UNet an ideal model for prediction of landslides, as it
can often be demanding. UNet architecture with a combination of contractual and expanding
routes allows the model to learn and produce accurate segmentation maps, although only a
small number of training patches are provided. This is an important advantage in the prediction
of landslide, where the marked data sets are obtaining sufficient training data which can be
time-consuming and costly. UNet ability to generate accurate predictions with minimal data
makes it a powerful tool for detecting landslides and other applications where there is limitation
of training data. By using the strengths of convolution and upsampling layers, FCN can
effectively process and segment complex landscapes and identify the features of terrain
indicating the landslide risks [109]. The flexibility for handling various image resolution and
image sizes along with efficient use of skip connection to maintain global and local features,
makes FCN an ideal choice for this prediction task.

4.3.2 Swin Transformer

Swin Transformer is a specialized type of transformer vision that increases the efficiency and
effectiveness of image processing in computer vision [110][111]. Unlike traditional
transformers, which consider the image to be a sequence of non-overlapping patches and apply
self-attention in all of them, the transformer receives a more structured approach. It divides the
image into smaller, non-overlapping local region known as Self -attention window mechanism
is applied only in each individual window. This localized approach significantly reduces
computing complexity compared to the traditional method that would require computing
attention throughout the image at once. By focusing on smaller areas, the swin transformer
minimizes the computation number while still capturing all important local features. As a
result, for the processing of large images it is highly efficient and implementing complex image

recognition tasks. The factors that really distinguishes the swin transformer from traditional
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models is the use of a shifted window where the windows move between different network
layers [112]. This shift allows the model to collect both global and local patterns, local patterns
in individual windows and global interactions between different regions of image. By moving
the windows in each layer, the model gets a wider view of the image structure, allowing it to
understand how different parts of the image are related. As the network deepens, the size of the
windows increases, allowing the model to look at most of the image and capture the abstract
features of a higher level. This hierarchical approach with the gradually growing window size
allows the swin transformer to balance computing efficiency with the ability to capture

complex features throughout the image.
4.3.3 Object Based Image Analysis

This approach focuses on grouping adjacent pixels in regions prior to classification, providing
a more structured method for analyzing high-resolution satellite images. Particularly useful for
remote sensing, this technology enables automated image analysis by describing image content
based on specific object functions. One of the most important strengths of this method is its
ability to combine spectral, structural, and spatial/context-related properties that allow pixels
to group pixels with uniform and meaningful objects. In contrast to pixel-based methods that
handle each pixel individually, this object-based approach enables objects that can be linked to
real entities. The use of object-based image analysis (OBIA) for landslides was well established
in previous studies. Previous research has shown how OBIA can be repeatedly applied to
satellite images to create historical landslides and recognize landslides in various regions.
OBIA was also used to modify landslides. One of the main advantages of OBIA compared to
traditional pixel-based approaches is its ability to classify complex geospatial objects with large
differences in size, shape and spectral properties. Landslides usually have other natural
features, such as spectral characteristics similar to those that have been altered by people and
agricultural areas etc. OBIA's ability to tackle this complexity and distinguish similarly visible
features is particularly effective when OBIA is aware of landslides. In comparison, pixel-based
approaches focus on individual pixels without considering the broader context that makes it
difficult to classify such complex objects. In OBIA, two important principles control the
analysis: segmentation and classification. Segmentation divides an image into smaller,
meaningful objects based on spectrum, structure, and spatial properties. As soon as these
objects are segmented, they are categorized based on specific features derived from them to

allow for more detailed detection of landslides. For example, OBIA is effective at a spatial
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resolution of 10 meters, with a minimum object size for identification being approximately 100
pixels. This provides a good approach to data analysis with medium resolution and substantial
landslides. OBIA works on predicting landslides by dividing remote sensing imagery into
small, meaningful objects, each one being a distinct feature of the landscape. For example,
areas with steep areas, less coverage of vegetation, or the recent obstacles in that location can
be identified as zones with high-risk zones for potential landslides. This is important because
it grouped into more uniform areas, reducing noise and improving the model's ability to
concentrate on wise characteristics related to landslides. OBIA's segmentation process
typically uses an algorithm that groups adjacent pixels based on spectrum and spatial similarity.
This step follows a classification in which segmented objects are assigned a specific name,
such as "landslide" or "safety”. Various criteria can be used to further improve classification.
These classifications are often improved through the integration of additional remote sensing
data, such as radar-based and LIDAR data, and can provide complementary information on
surface deformations and hidden geological features that are invisible in optical images. The
image processing is often performed in areas where there are subtle differences in fields that
are difficult to record using pixel-based methods. For example, landslide boundaries can be
irregular and the spectral signature of the landslide can overlap with other natural or human
signatures. Through analysis of the entire image object rather than individual pixels, OBIA can
take into account a wide range of contexts. Furthermore, OBIA can effectively handle
extremely high-resolution images and recognize small landslides and their pioneers.
Furthermore, OBIA could be improved by integrating ML techniques that allow for more
sophisticated and adaptive classification. ML algorithms can be trained on large datasets with
marked remote sensing images to automatically learn landslide distinction capabilities. These
models are capable to apply learning patterns to new invisible images, improving landslide
accuracy and robustness over time. This approach is particularly useful for monitoring large,
or inaccessible areas where manual field inspections are time consuming and expensive.
Further, recognizing limitations on pixel-based approaches, particularly for image
classification, has gained the increased importance of OBIA (object-based image analysis).
This is especially clear when considering high spatial resolution and very high resolution
(VHR) remote recording data, as it can overcome the limitations of analysis per pixel. For
satellite image processing, OBIA provides clear image analysis, for example, where focusing
on the analysis of segmented image objects is instead of individual pixel values. This method
allows for structured inspection of characteristics and events. One of Obia's core elements is

segmentation that takes into account the spectral, structural, morphological, and topographical
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properties of individual pixels and transforms them into objects [113]. This change reduces the
frequency of false positive aspects and increases the accuracy of landslides. Segmentation and
classification are usually two main steps in the OBIA method for landslide recognition.
Determining criteria that indicate the size and shape of elements in one image makes
segmentation a particularly difficult operation. To ensure that the final object is properly
displayed by important landscape elements, this level requires an iterative process in which
various segmentation techniques are evaluated and improved based on visual assessments.
After segmentation, segmented objects are classified using criteria specified in the
classification stage [114]. This classification is based on determining the different criteria's for
landslide detection based on geological properties, changes in system coverage, field
differences, or instability [115]. OBIA offers a variety of advantages over traditional pixel-
based methods, integration into machine learning models (ML) poses the challenges of more
complex applications. To find ideal scale parameters for examining factors related to
geographical characteristics such as landslides is a major challenge. Satellite image landslides
are very different and it is difficult to use a consistent segmentation approach to various criteria.
This variability underscores the need for continuous improvement of the OBIA method and
integration into ML algorithms to improve the accuracy of landslide detection and mapping in

various environmental contexts.
4.3.4 Image Segmentation

Image segmentation is a critical component of OBIA. It is intended to define the basic unit or
object of an image and is later analyzed in classification and interpretation [116][117]. OBIA's
effectiveness in landslide prediction depends heavily on the quality of the segmentation
process, as it directly affects how landscape features are identified. In segmentation, the goal
is to group adjacent pixels into coherent segments based on similarity in spectral, spatial and
context properties. These segments exceed individual pixel values by including additional
statistics such as the mean, median, standard deviation, and range of values for each image
[118]. This additional information layer makes segmentation more meaningful compared to
pixel-based analysis, as it captures wider patterns within the image and identifies larger

relevant features that show landslides.

Segmentation technology developed in the 1980s as part of a wider field of image processing

and computer vision. Several algorithms have been developed for the processing of remote
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sensing data [119]. These techniques often focus on adding spatial context information to
traditional segmentation methods and improving the ability to segment characteristics based
on their relationship to surrounding pixels. Methods frequently used for segmentation include
regional algorithms, Markov models, surface catchments, hierarchical algorithms, and
clustering techniques such as K-means. Each of these approaches has strengths in different
contexts, but they all aim to group pixels into meaningful objects. This can be analyzed with
specific features related to landslide detection, such as changes in topography, vegetation, or
soil condition. One of the biggest challenges in segmentation is to deal with objects of different
sizes in the same image, especially when applied to remote sensing data for landslide

prediction.

Traditional segmentation methods sometimes struggle to determine subtle changes in smaller
areas of landslides or wide areas affected by landslides. To overcome this challenge, a
segmentation approach using several resolutions, such as regional merge technology, has been
developed. This method adapts to different object sizes by merging smaller segments into
larger ones, so that the segmentation process can recognize both fine and larger properties.
Additional trigger segmentation ensures that objects representing landslides are accurately
separated regardless of size. This is particularly important for landslide detection, and both
small landslides need to be identified. When predicting landslides, effective segmentation is
extremely important for extracting meaningful properties from remote sensing images that can
display potential landslides. Furthermore, by segmentation [120], it allows for the integration
of various data types, such as digital height models (DEMs) and multi-level images. By
focusing on coherent image objects rather than individual pixels, segmentation allows for a
more holistic view of the landscape, allowing for a more accurate assessment of landslide
sensitivity. Therefore, segmentation plays an important role in improving the reliability and

accuracy of landslide prediction or detection models using remotely acquired images.

4.3.5 UNet

UNet was originally developed for biomedical image segmentation, but later spread to different
type of image segmentations, and landslide prediction or detection. Its effectiveness is based
on a distinctive U-shaped architecture consisting of two units: an encoder and a decoder [121].
This architecture, shown in this distinctive "u" shaped, allows UNet to perform segmentation

tasks efficiently. Additionally, the identification and classification of areas within the image is
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ideally shown, as illustrated in Figure 4.8. The encoder and decoder structure is combined by
skip connections to improve the important role of the transmission of key information between
the two components and the model's capabilities and provide accurate predictions [122]. The
context information is extracted from the input image using the UNet encoder component. This
section consists of foldable layers, followed by a maximum pooling layer that reduces the
spatial dimensions of the functional card and extracts from the image. By stopping data,
maximum pooling aids the network with its most important properties, but the folding layer
allows the model to identify different patterns and structures within the image. This helps to
collect more comprehensive context-related data using the models needed to understand
complex spatial connections that define properties such as landslides. The encoder
downsampling process compresses and promotes the model to recognize and understand large
properties and patterns [123].
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Figure 4.8 The Implemented U-Net: A Deep Learning Image Segmentation Model.

Skip connections are a key innovation in the UNet architecture. these connections link the
corresponding levels of the encoder and decoder components, allowing important spatial
information to be handed over directly between the two components. In this way, the decoder
can effectively reconstruct the detailed segmentation by incorporating high resolution

information from the encoder. The decoder uses upsampling values to increase the size of the
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feature, while simultaneously reducing the number of channels, effectively reconstructing the
image at a higher resolution. The folding layer in the decoder improves the segmentation and
improves the accuracy of the final problem. This allows UNet to generate accurate predictions
at the pixel level, allowing the gradual sampling and improvement process to clearly
distinguish between landslides and unaffected areas. During the output phase, UNet creates a
segmentation that assigns a probability value to each pixel. This shows the possibility of a
particular class, how it belongs to a landslide. This allows for detailed analysis of the entire
image and allows for the identification of specific areas of risk. It is a powerful tool in the areas
of landslides and other applications for environmental monitoring, providing high accuracy

and valuable insights for disaster risk management [124].

Image segmentation is the method of segmenting an image N:a — Q into multiple regions
ocj? = 1, meeting requirements that don't overlap o; N oy = ¢,j # iand encompassing the

Q

whole image domain Kz

1q=a, here a is image domain represented by the limited and open

subset of Q2.

In image processing, the first step is to optimize a probabilistic posterior distribution in order
to extract features from the image . By attempting to generate feature representations for a
particular envision k, this process enables a more in-depth analysis and understanding of the

content of image.

arg mep(u | g;8) = arg mgxlog p(nlgd) =

| afd)gws) _
arg m;lalx 08 5

arg mgxlog q(g | 1;8)q(k; 6)

(4.1)

The environmental factor is identified as being in terms of traditional unconscious inference.
The prior probability p(u;0) may be well-modeled by the probability (g | u;6) and normal

distributions. In particular, we have

1

— Jo (k—g)? - 2
q(g | 1;8) o e 22 B pg = o7 La KU g (1 8) o 4.2)
e~ P Jo @(V)ba

Therefore, the first step is to find a smooth approximation u and decrease the multiphase
generalizability. The following is a reformed version of this optimization problem:

90



: _ 2
Qi J, 6=Dw?dy + [_@(Vw)dy (4.3)
here W is associated with function space (g — Bu)? where B stands for blur operator, f for the
provided picture, and ¢ for a geometric expression that uses the gradient . The trade-off
between approximation smoothness to the original picture is controlled by the parameter L.
Finding the ideal p that strikes a balance between these variables is the goal in order to produce

a reliable and accurate solution for the picture segmentation problem.

In this case, B:G® - G is a blur operator, and (¢@(Vu) = u|Vp|? + |Vu| represents the
geometric prior of u. Additionally, we have p = Ay. Consequently, this method produces the
nonlinear system that is given by:

F(i;8) = D™D — tV((VW) = b (4.4)

where a = DTfand § = (D,V, t,u) all included in the parameter . In image segmentation
tasks, this nonlinear system is essential, and its successful solution yields precise and
significant predictions. Our suggested design is divided into two primary components from the
variational segmentation model: the feature integration module Ur(u: @,) and the solution
module Lt(g: @,) In the multi-stage example, extracting feature is handled by the solution
module Lt(g: @,)), whereas stage fusion is handled by the learnable feature fusion module
Ur(p: @2). In this study, we provide UNet, a novel framework for explainable landslide
prediction on images, using a nonlinear multigrid approach. The two modules function in this

way:
w= L(g:0,) (4.5)

q = Ur(g: 02) (4.6)

Here, f stands for the input landslide picture, g for the truth partition prediction, and f for the
feature map. These modules work together to provide the total approximation function:

q = P(Lr(g; 91); 02) (4.7)
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The parameters @1 and @2 in our suggested explainable UNet architecture must be learnt during

the training phase to better understand the capabilities of the UNet-generated modules
Lr(g:0,) and pr(p: @2).

The UNet architecture and folding training techniques of neural networks have been thoroughly
explained in various studies [125][128]. In this study, a fully convolutional neuronal network
was constructed on an object basis for each pixel probability. In contrast to [125][126], they
used traditional CNNs to classify landslides [129]. Based on previous research, we also propose
a pyramid pooling layer, which can be seen in Figure 4.9. Empirically, this layer is the priority
of the appropriate global context as being an important factor that influences the amount of
contextual information used in deep neuronal networks is the coverage area. By collecting data
at several scales, the pyramid pooling layer included in the architecture of system strategically
enhance the benefits of context. A more comprehensive understanding of input data improves
the system's ability to identify and predict complex patterns of landslides by this stepwise

aggregation of context-related factors.
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Figure 4.9 Visualizing UNet-Pyramid Layer Model for Multi-Scale Feature Extraction.

The UNet-Pyramid layer model is an extended and advanced variation of the traditional UNet
architecture and was developed to improve the distinctive extraction and multi multi-scale
information from the input image, making it more effective for tasks such as detection of
landslides in remote sensing images. The most important innovation in this model is the
addition of a pyramid pooling layer integrated into the contractual way of the network. These
pyramid pooling layers allow the model to record information on several scales. This is very

important for identifying objects or areas of different sizes and structures, such as landslides.
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The encoder portion of the model focuses on low-level characteristics from images like edges,
textures, simple patterns, and decoders are commissioned to record representations at a higher
level, such as contract path of the UNet-Pyramid model includes several folding blocks, each
consisting of 3x3 convolutions, increasingly extracting properties from the image. These
blocks follow the SoftMax activation function that helps normalize the results, play 2x2 filters
and feature cards, and use layers of maximum pooling layers in two steps that reduce spatial
dimensions [130][131]. Pyramid pooling allows the model to capture multi-scale context-
related information which improves the ability of the model to recognize objects of different
sizes in the image. Each folding block in the contract path doubles the number of features and
enhances the model's ability to understand abstract and high-level characteristics. In this way,
networks not only capture fine details at a lower level, but also collect a higher level of broader
contextual information, essential for accurate segmentation of complex objects such as
landslides. Images are processed through pyramid pooling layers, so the network can extract
features from different spatial resolutions, which better distinguish between landslides and
other regions with similar textures or structures. This distinctive feature extraction is
particularly useful for landslide detection. This can significantly change the characteristics of
local sites, and models must accurately record both topographical features and large-scale

details in order to make accurate predictions.

Given the feature map N, the element in n is represented by the notation Y, }, ., where a, b, and
c stand for the indexed channel, row, and column, respectively. Whereas, the convolution
process is as follows: In the convolution kernel K for the element Ka ¢, a and b are the channels
of the last slice (a) and the current slice (b), respectively, and c is the offset between two items.

Nipe =

a,b,c

{Na'b'c +n (Zm Zp N;l,b—l,c+P—1><L;n‘a'p) (48)

N is an activation function Softmax. Thus, through the convolution layers, the significance data
from the feature map is transferred to the bottom segment of the feature map. An inverted
version of the contracting path is the expanding path in the UNet-Pyramid layer model. To up
sample and integrate the features with the matching output of the encoder block at the same
level, it uses convolutional-transpose layers. Each decoder block results in a halving of the

feature map's number.
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Where = cli=Uis input ( 0= nk /Mg ) is size of the input and filters ng],p[l] and

Mis the filter, where K(n) has dimension

sl are the stride and padding values, ng

(f[l], £l fg_l]),bﬂ] is the n™ convolutions bias, W!! the activation function and finally a[l] is

; S oi 1 00
the output of this layer with size (nT ,Np’, NG )
The 26 convolutional layers of the UNet-Pyramid layer model include 22 convolutional layers,
4 convolutional transpose layers, and additional pyramid pooling layers for gathering multi-
scale data. Accurate and thorough segmentation results are produced by this architecture's
ability to gather contextual information at various sizes effectively and efficiently [132].
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Where, clI=1 is the input with size = (p,[rl_l],pg_l],p) ,q" and t!! are the padding and stride

value, ¢! is the pooling function which gl*! filter size. The alll with (pg], pg],pg]) gives the

output of pyramid pooling layer. We introduced the Binary cross-entropy loss function as the
model’s output contain multiple neurons. Loss = -1/N * Summation of [Ground truth label *
log (Predicted probability) + (1 - Ground truth label) * log (1 - Predicted probability)]

ALGORITHM 4.1: ALGORITHM FOR FEATURE EXTRACTION USING PYRAMID POOLING
LAYER

function pyramid_pooling layer(input feature map, pool_sizes)
Input_feature map: a 3D tensor of shape (height, width, channels)
pool_sizes: a list of integers specifying the pool sizes to use pooled features =[]
for pool _sizeinpool sizes do

height = [ input_feature map.height / pool_size |

width = [ input_feature map.width / pool_size |

pooled feature mapmax_pooling
(input_feature_map, pool_size, pool_size) resized pooled feature map=
resize (pooled feature map, height, width) pooled feature vector=

flatten(resized_pooled feature map) pooled features.append(pooled feature vector)

concatenate (pooled_features, axis=channel axis)

return feature vector

end function

L= =252, (512 o () + (- x g 1 )

(4.13)
+B * Qi}

a

. _
Qi = EZ{EE Xik [X5< +p— Z]L—Jﬁl (Xil'xij)] (4.14)
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p is the batch size, while p is a number between 0 and 1. The label for the i pair of pixel is x.
Q;s is a regularization term to ensure classification accuracy, and x;" is the expected value of
the i pair of pixels. The weight coefficient is denoted by B. Deconvolutional layer, or

convolutional-transpose layer:
Convolutional-transpose operation:
x =sigma (U *y + c) here,

X is output of feature map; sigma is an activation function, U is convolutional-transpose filter

which is learnable, y is the input of feature map and c is bias term.

By using convolutional layers of 3x3 and as sliding windows here Softmax activation function
is used, the UNet-Pyramid layer model scans the input picture and reduces spatial dimensions
by half. In the UNet-Pyramid model, like in the traditional UNet model, the decoder route uses
up-convolution layers and concatenates feature map from the appropriate locations in the

encoder step to extract the spatial position.

[l _ yoi-u 1], [i-1] [i]
Zy = X2, Wpiap by (4.15)
alll = wiil (2}) (4.16)

a[i-1] input is convolution layer and pooling layer result with the dimension

(p[TH], pg_l], pg_l]). In order to plug it into the fully connected layer:

[i—1] [i—1]

piii =Py U xpp ) xpy (4.17)

To effectively include the comprehensive information from the grid and account for encoded
characteristics, the UNet is utilized for landslide prediction. This is accomplished by

interpolating the coarse grid changes back to the fine grid:
VA e vl ki vt — kit (4.18)

where the interpolation function L, , is approximated by the learnable upsampling operation

ki, , For this, we specifically employ a transposed convolution with p filters and a stride of 2.
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Here, we have L-grid cycles with i = 1,..., i-1. We compensate for the information in the feature
maps V#, by updating the fine grid approximation V*, using this transposed convolution. In
order to recover features with more precise information, the transposed convolution develops

an adaptive mapping.

These feature extraction parameters, which are expressed as follows, are learnt to approximate

the feature solution:

. . , k _ 1] k
01 = kiyp, kit (kq,i)' (kq,i,i jqq=1’ kL%’ K, (k“'l)' (k“'i'j)j=nl (4.19)
I q € {ir}

Our UNet model for landslide prediction improves the image segmentation quality by fine-
tuning these feature extraction parameters, which enables it to efficiently extract and use
pertinent spatial information in the input images. The accuracy of landslide segmentation can
be greatly impacted by the patch size selection in the UNet model, particularly when combined
with a pyramid layer. Choosing the wrong patch size might result in segmentations that are

insufficient or erroneous since landslides can take on a variety of forms and sizes.

Then, the features P} three characteristics, including the distortion feature, are concatenated

by the decoder. ij the encoder’s down-sampling block’s feature P]TC ,

and transposed
convolution features in primary decoder. It is possible to formulate the procedure. where
transposed convolution is represented by j > 2 Deconv. Large amounts of edge information are
stored in the edge decoder features, which are used as reference features. Additionally, before
joining the other blocks, a subpixel convolution layer is applied to the up-sampling block of
the main decoder. We used a convolutional layer for upsampling. Three residual blocks, as
seen in Figure 4.10, are connected after the convolutional layer to acquire additional high-
frequency data or specifics. The careful selection of patch size is vital not only for capturing
landslide features but also for ensuring the model’s overall efficiency and effectiveness. If the
patch size is too small, the model may fail to capture enough contextual information about the
surrounding landscape, which is essential for distinguishing between landslide and non-
landslide areas. Small patches can separate important landscape features such as topographic
variation and vegetation coverage, which are key indicators of landslide sensitivity.

PPy = Concat. (P{f,PLy, Decov (Py)) (4.20)

a
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P]EL = ConCat. (P]'T, P(ta,]'),b, DeCOV (P(rjl_l)‘b)) (421)
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Figure 4.10 Detailed Architecture of Residual Blocks in U-Net for Enhanced Image Segmentation.

In this scenario, the segmentation edition may be fragmented or incomplete and lack critical
areas of landslides. Conversely, excessively large patches can lead to out-of-focus predictions,
as they can include areas with little or no relevance to the following landslides with different
background area. These unrelated areas can mask the landslide, making it difficult for the
model to learn the exact patterns and loses the accuracy of the model. Furthermore, large
patches can bring complexity by combining several types of land cover into a single patch. The
models can be confused when trying to distinguish between landslides and other land forms.
Another challenge that arises when choosing a patch size is the problem of lightweight weight
in the class. In many remote sensing records, the number of (negative) pixels does not govern
the importance of the number of landslides (positive) (negative). This inherent imbalance can
lead to skewed models to predict non-regional regions. Using large patches can further increase
the number of pixels in the negative class, which could further increase this distortion. As a
result, the model may be difficult to properly identify landslides. Landslides are less common
and can often be used as small areas in larger non-regional areas. This imbalance can lead to
low sensitivity (the ability to correctly identify landslides) and high false negative rates
(misclassifying landslides as non-national slides). To improve this, choosing a patch size that
balances negative and positive samples is key to improving model output. An important feature
of FCN is its ability to extract both global and local context characteristics via a skip connection
mechanism between the downsampling and upsampling layers, as shown in Figure 4.11.
Furthermore, techniques such as oversampling positive instances during training and including
subscene or class weights of negative instances can help reduce imbalance and ensure that the

model captures landslides more accurately.
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Figure. 4.11. Architecture with Upsampling, Downsampling, and Coordinate Attention for Enhanced Image
Segmentation.

Furthermore, implementation of UNet models using pyramid layers provides an effective way
to solve problems related to class patch size and imbalances. The pyramid pooling layer allows
the model to capture multi-scale information, and recognize landslides by a variety of criteria,
regardless of whether they are large, small or fragmented. These layers improve the ability of
model to aggregate features from different resolutions so that it can handle a wide range of
landslides within the same image. However, the patch size must be selected so that the pyramid
pooling layer selects the multi-scale feature to capture matches. The patch is too large, which
results in pyramid layers that concentrate on unrelated background information, but patches
that are too small may not provide enough information to extract multispectral features. For
searching for the optimal patch size, UNet models with pyramid layers can significantly
improve landslide accuracy by effectively harmonizing large and small characteristics, while
simultaneously minimizing class imbalances, this approach allows to better equip models to
address a variety of land types and accurately predict landslides. Choosing the right patch size
not only ensures that the model is capable of recording sufficient information, but it is also a
key factor in ensuring that the model is equipped to take into account the complexity of remote
sensing data. By experimenting with different patch sizes and involving strategies for
connecting with classes, the model can be learned more effectively, leading to more accurate

and reliable landslides. For pyramid feature maps and final prediction V* is, calculated as:

=>mn n(ki(Ki)) - SoftMax (q(ai(Ki))) (4.22)

The multilayer prediction and attention layers are denoted by the functions ki and aj; both are
implemented as straightforward 1x1 convolutional layers. In terms of landslide prediction

implementing the UNet model, the selection of restriction and interpolation operator. Li*! and
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LL,, is related to the architecture of the UNet for image segmentation. In order to express grid
transfer between the coarser grid i+1 and the finer grid i, we offer learnable convolutions for
transfer operators. Both local and global image characteristics are efficiently captured by the
UNet architecture. The coarser grid i+1 usually captures low-frequency features that provide
pertinent visualized information. Thus, the right-side term, which is defined as follows, may

be used to extract the important information on the grid:
pitl = kit1 (pi _ h}((vi)) + h{(+1(k%+1vi) (4.23)

where the output of the downsampling modules in the feature space is p'** and the inputs of
the downsample block are p! and v! Here, we have L-grid cycles with i=1,..., i-1. In a way
that is appropriate for the UNet, the restriction function Li** is approximated by the learnable

downsample operation h! y kitl,

In the UNet architecture convolutional layers, batch normalization, and activation functions
(like ReLU) are all part of the UNet feature extraction model. The UNet model's learnable
convolutions enable the network to recognize intricate patterns in the input picture, resulting
in precise and instructive predictions for landslide segmentation tasks. The normalized
difference vegetation index (NDV1) and the landslide likelihood maps from UNet were among

the other data that were already included,
NDVI = (NIR — Red)/(NIR + Red) (4.24)

where, NIR and Red denote the electromagnetic spectrum’s Near-Infrared and Red Bands
found in Sentinel-2 images. In the UNet-Pyramid model the pyramid pooling layer plays a vital
role in improving the ability of model to collect and integrate the features from input images at
different scales. This layer works by collecting information from four distinct pyramid scales,
each designed to process features at different levels of spatial resolution. At the coarsest level,
global pooling is used to condense the entire feature map into a single value, which provides a
summary of the global information present in the image. This process effectively reduces
functional cards to the most important expressions. The functional cards are divided into
smaller subregions by the next layer of the pyramid, so the pooling process is collected from
various geographic locations. To reduce the dimensions of the context image and maintain the
important global characteristics of the input, each pyramid layer creates feature maps of
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different sizes using 1x1 convolution layers. As a result, the dimensions of the function are
reduced to 1/N of its initial size, where n is the size of each pyramid level, creating a more
compact display. In this way, the function remains guaranteed in the orientation of the original
input image. To combine global properties with different criteria, we chain characteristics
placed at every pyramid level to achieve the final result of pyramid pooling. The degree to
which this pooling mechanism works depends heavily on the layout and pyramid layers. The
levels use different pooling cores with different pyramids so that the model can be trained at
both fine and broad levels, by which it can collect a large amount of spatial information. The
four pyramid levels of the presented UNet-Pyramid model are 1x1, 2x2, 3x3, and 6x6 sizes.
Therefore, the model can simultaneously analyze many spatial scale properties. Complex uses
where images contain patterns of different sizes and geographical distribution, benefit from
this distinctive extraction in several standards. Further, to improved extraction properties
pyramid pooling layers play an important role in their ability to understand complex spatial
patterns and create accurate prediction. By recording properties from several spatial scales this
model became more suitable for dealing with variations in size, shape, and context of identified
objects. This is especially important for tasks such as landslides. This is because landslides
vary widely at large levels and at different terrain patterns. The ability to process and integrate
multiscale functions improves the sensitivity of the model compared to these variations, leading
to more accurate segmentation and predictive results. Furthermore, the pyramid pooling layer
improves the robustness of the model by extracting meaningful context-related information
regardless of spatial dissolution of the input data. This adaptive feature pool strategy is very
effective for deep learning architectures as the model is successfully blocked by a set of data
records and applications. OBIA offers an approach for image segmentation and classification
by detecting additional features beyond pixel levels, such as details of spectral information,
geometric features, topological relationships, and textures. In contrast to pixel-based methods,
this usually focuses on individual pixel values without considering wider context. OBIA is used
to avail the geometric and spectral properties of objects in satellite images. By integrating these
characteristics into knowledge-based rules, we hope to improve the performance of machine
learning or deep learning models, particularly for complex tasks such as landslide prediction.
OBIA allows you to create more accurate and meaningful object-based classifications that are
very important for landslides. The main goal of this study is to improve landslides with the
UNet pyramid model, which includes OBIA object-based properties and hierarchical rules.
Based on signatures and geometrical forms of spectra, these rules aim to classify and improve

the detection of potential landslides. Integration of OBIA into the UNet Pyramid Model uses
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the skills of the model to generate probability cards for landslide detection, while
simultaneously generating strict classification skills for OBIA. The hybrid models use OBIA
to add context and improve the quality of segmentation which makes landslides more accurate
and reliable. After training the model, they agree to its parameters and optimize its performance
to improve prediction accuracy. Additionally, the inclusion of a Swin transformer in this
architecture provides important thrust by capturing context information and dependencies for
most of the input image. This transformation model can improve landslides by allowing the
network to better understand the global relationships between different image regions. The
OBIA segmentation performance, properties, and processing enrichment combination of Swin
Transformers creates a robust framework for landslide detection. Implementing self-training
techniques improves the ability of models to generalize different data records. With this
technology, models can learn from new data and adapt to patterns that were previously
invisible. This improves general robustness and prediction. Ultimately, this hybrid approach
aims to significantly improve landslide accuracy and reliability. The strengths of OBIA, DL
and Trans models are based on developing more stringent systems and recognizing landslides.
This provides important support for proactive disaster management and reduction efforts,

reducing the risk and impact of landslides on communities and infrastructure.

4.4 Results and Analysis

Unlike other traditional pixel-based methods that deal with all pixels only, OBIA analyzes
spatial relations, pattern and attributes of neighboring pixels, which are summarized in objects
and provide better and enhanced approach related to context. OBIA focuses on the geometric
and spectral features of objects in one image can improve processing and identification.
Through this integration, this study attempts to improve the general performance of machine
learning or deep learning models, which makes complex scenarios more efficient. When
predicting landslides, the integration of both the characteristics of both deep learning models
such as the UNet pyramid can significantly improve segmentation accuracy. The UNet-
Pyramid, the extended version of the UNet architecture, is characterized by the image
segmentation and creates accurate limits for objects such as landslides. The hierarchical
classification system of OBIA classification objects based on spectral properties and geometric
shapes improves the functionality of the model and recognizes and separates landslides. This
standard based on standards introduce other layers of improvement in the model and ensure

that areas are identified as potential landscape designs more accurate and relevant. The
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segmentation process can be improved by classification of the OBIA object for deep learning

skills. This allows effective identification of large and small landslides.

Swin transformer is known for its ability to capture contextual information and dependencies
over long distances within images. This is important for understanding the spatial relationships
of complex landscapes, such as those susceptible to landslides. By including this transformer
model, we improve the model's ability to identify complex patterns and subtle variations of
remote sensing data. The swin transformer complements the segmentation capabilities of the
UNet Pyramid model, allowing more accurate predictions, not just local features but also global
image contexts, as shown in Figure 4.12. This integration enriches the understanding of models
on several criteria and improves overall effectiveness in landslide recognition. Using self-

training technology in this model improves the ability to generalize various data records.

RGB image Elevation Mask
0 7 0 v 0 0

Figure 4.13 Visual representation of validation images.

Further, self-training allows the model to learn from new and non-labeled data after the initial
training phase, adapt to previously invisible patterns, and improve performance over time. This
approach increases the robustness of the model and makes it more adaptable to a variety of

landscapes and regions. This is especially important when it comes to complex and
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unpredictable environments where landslides occur. By combining OBIA's feature extraction
with deep learning power of the UNet-Pyramid and contextual recognition of swin transformer,
this hybrid architecture is equipped to master the challenges of landslide prediction. We trained
this model for a minimum of 100 epochs. These epoch refers to the number of complete
iterations across the training dataset. The arithmetic properties of this work, in this case, the
NVIDIA RTX 4090 GPU accelerated the process. The RTX 4090 is a high-performance
graphics card developed for deep learning and machine learning tasks, providing critical
processing performance and storage bandwidth. This hardware is ideal for training and
validating large-scale models using high-resolution data, as shown in Figure 4.13. This allows
faster calculations and more efficient processing of complex calculations when training deep
learning models. During training, the models were evaluated using several metrics: accuracy,
recall, F1 score, and loss. These metrics are typically used to assess the effectiveness of
classification models, particularly in tasks such as landslides. On the other hand, recovery
assesses the ability of the model to identify all actual landslides and calculate the percentage

of actual positive landslides from all actual landslides in the dataset.

F1 scores are composite metrics that correct for accuracy and provide a single value that reflects
the complete performance of the model when identifying landslides. This is especially useful
when the data set is unbalanced, as it provides a more comprehensive assessment of the model's
ability to classify the model correctly. Losses were often expressed by loss functions such as
cross or middle square errors, which quantified the quantification of how well the model was
during training. Loss indicates that the model's predictions are close to the actual results. The
data used for training was divided into two classes: landslides and non-landslide. Given the
weight of the class of natural light, agricultural locations often exist in such data records where
landslides are far less common. Therefore, these metrics help to optimize the model and enable

accurate identification of landslides across a variety of remote sensing images.

The loss function of our method is defined as follows:

Lloss = (D(Mar Ga) + (D(Mb'ob) (425)

When the training between two distinct tasks is balanced by the weighting operator, W, and
the trainable parameter o},. The loss of the main and edge decoder branches is indicated by M,

and My,. Additionally, the weight parameter ® is defined as follows:
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1 :
w(M;, 07) = z_qLLOSS(i) +log oj,j € {a, b} (4.26)

where the logarithmic term is utilized to prevent o; from increasing and the o;values measure

the forecast uncertainty.
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Figure 4.14 Proposed Workflow of Landslide Prediction using UNet-Pyramid Model.

4.5 Quantitative Evaluation

By calculating the pixels with the labels True Positive, False Positive and False Negative, the
results of the landslide prediction were verified. Semantic accuracy assessment criteria,
including precision, recall, and F1-score, were employed to methodically examine the efficacy
of landslide detection. Measures of picture classification accuracy that are often used were
employed to test the model's performance. As seen in Figure 4.15, we must first specify the
four categories of expected samples for classification algorithms in order to compute these

evaluation metrics. The ideas are as follows:

.. True Positive (TP)
Precision = 4.27
CCIsio True Positive (TP)+ False Positive (FP) ( )
True Positive (TP
Recall = (%) (4.28)

True Positive (TP)+ False Negative (FN)
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2X Precision X Recall

F1-Score = (4.29)

Precision + Recall
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Figure 4.15 Performance Merits and Evaluation of the Proposed Approach.

The pyramid pooling layer improves the model's ability to extract features at different
resolutions and collected all the important data from different spatial scales. This phase uses
many pools and upsampling layers, each with a different kernel size and different stride. These
methods provide feature maps of different resolutions, then combine to create feature pyramids
with several scales. This feature Pyramid was integrated into the UNet decoder by skip
connections, linking the corresponding levels of the encoder and decoder. By integrating these
multiscale properties, the model collects both local and global context-related information and
efficiently encode the various properties that exist on different spatial scales. This multiple
competition is extremely important for tasks like landslides, and can vary greatly in topography
and complexity. By including pyramid pooling layers, the model is sent to handling complex
terrain characteristics that can have a wide range of spatial properties. For example, in areas
with different heights, slopes, and vegetation types, landslides can occur at several scales, each
with different characteristics. The ability to process and integrate these properties from several
scales will allow landslide models to be more accurately recognized in challenging
environments. Improvements in the pyramid pooling layer significantly increase the general
predictive power of the model, allowing the processing of a variety of complex landscape data.
Model performance was assessed using general classification metrics such as Precision, Recall,

and F1 scores. These metrics are essential for model accuracy and reliability, especially for
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evaluation in tasks such as landslides. In this task, imbalances in class models (more non-terrain
instances than landslides) often distort the results. This model achieved precision of 0.95. This
indicates the altitude accuracy in correct landslide identification. A recall value of 0.91
indicates that the model captures most of the actual landslide. The F1 score of 0.95 reflects a
good balance between accuracy and recall. This shows that the model not only records
accuracy, but also the entire range of landslides in the dataset. To further evaluate the model, a
comparative review with existing work in the field of landslide was performed, as shown in
Figure 4.16. This review provided benchmarks to understand how our models stack up against
other state-of-art models. Comparing the results across different models allowed to
demonstrate the effectiveness and advantage of the approach in accurate prediction of
landslides. The comparative analysis described in the results shows that inclusion of pyramid
pooling layers and multi-scale feature integration with FCN significantly improves the

capabilities and accuracy of the landslide model.
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Figure 4.16 Performance Metrics for Landslide Prediction in Remote Sensing Imagery: (a) Loss, (b) Precision,
(c) Recall, and (d) F1-Score.
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This indicates that the combined method is more accurate than the basic UNet model in
identifying landslides. Improved outcomes also suggest a possible decrease in false positives,
or the number of cases in which non-landslide data is mistakenly identified as a landslide.
Recall value has increased significantly as well.

Table 4.2 Comparison of Proposed Work with Previous Approaches

Author Model Dataset Performance parameter

X Chen et al. [133] CTD-Net Landslide4sense Precision of 0.75, Recall of 0.73,
F1-Score of 0.74.

Ghorbanzadeh et al. | ResU- Landslide4sense Precision of 0.73, Recall of 0.80,

[134] NetOBIA F1-Score of 0.76

Fahong Zhang etal [135] | Model 3 + CRF | Landslide4sense Precision of 0.80, Recall of 0.78,
F1-Score of 0.79.

Lin Bai et al. [136] Multispectral Landslide4sense Precision of 0.80, Recall of 0.75,
F1-Score of 0.77.

U-Net
Proposed model UNet-Pyramid | Landslide4sense Precision of 0.91, Recall of 0.84,

F1-Score of 0.87.

Table 4.2 presents a comparison of the proposed work with previous approaches in landslide
prediction, highlighting various model’s performance. The table lists the model authors that
use the data records and their corresponding performance parameters like Recall, Precision and
F1 scores. The models comparsion include CTD-Net, ResU-NetOBIA, Model 3 + CRF,
Multispectral U-Net, and the proposed UNet-Pyramid. This shows that the proposed UNet-
Pyramid model exceeds the other models, with a precision of 0.91, a recall of 0.84, and an F1
score of 0.87. Several recent studies have applied advanced deep learning architectures to
landslide prediction using the Landslide4Sense dataset, each contributing novel approaches to
improve segmentation accuracy. X. Chen et al. [133] developed CTD-Net, a convolutional
neural network designed to extract hierarchical spatial features effectively. Their model
achieved a precision of 0.75, recall of 0.73, and an F1-score of 0.74, indicating balanced
performance in identifying landslide-prone areas. Ghorbanzadeh et al. [134] proposed ResU-
NetOBIA, which integrates residual blocks within the U-Net architecture alongside Object-
Based Image Analysis (OBIA) techniques. This method improved the model’s ability to
capture fine spatial details and yielded a precision of 0.73, recall of 0.80, and F1-score of 0.76,
showing enhanced sensitivity in landslide detection. Fahong Zhang et al. [135] introduced
Model 3 combined with Conditional Random Fields (CRF) to refine segmentation outputs and
reduce misclassification. Their approach achieved higher metrics with a precision of 0.80,

recall of 0.78, and F1-score of 0.79, demonstrating the benefits of post-processing techniques
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in improving prediction accuracy. Lin Bai et al. [136] employed a Multispectral U-Net model,
leveraging multispectral satellite imagery to extract richer spectral features relevant to landslide
susceptibility. This model attained a precision of 0.80, recall of 0.75, and F1-score of 0.77,
confirming the value of multispectral data integration for enhanced landslide mapping.

Building upon these methodologies, the present thesis proposes a UNet-Pyramid architecture
that incorporates a multi-scale feature extraction pyramid within the U-Net framework. This
design enhances the model’s capacity to capture spatial features at varying resolutions,
improving both localization and boundary delineation of landslide regions. Evaluated on the
Landslide4Sense dataset, the proposed model achieved a substantially higher precision of 0.91,
recall of 0.84, and F1-score of 0.87, outperforming all referenced approaches. This significant
improvement illustrates the effectiveness of the UNet-Pyramid in capturing complex spatial
patterns and reducing false positives and negatives in landslide prediction. The integration of
multi-scale features enables better representation of both large and small landslide areas, which
is critical for accurate hazard mapping and risk mitigation. These results demonstrate that the
proposed model advances the state of the art in remote sensing-based landslide prediction and

contributes a robust framework for practical disaster early warning systems.

This comparison highlights the effectiveness of the proposed model for landslides. The results
of this approach point out the important advantages of combining OBIA with deep learning
approach, particularly in the context of landslide prediction. OBIA and deep learning were
typically examined individually with landslide detection. However, this study shows that
integration of the two approaches can significantly improve the classification accuracy. By
using OBIA's ability to obtain or extract spatial, structural, and context-related features in
conjunction with the power of UNet, to model complex patterns of data, landslide models can
be predicted more effectively in a variety of environments. As shown in the results, this
comparison highlights the effectiveness of the hybrid approach. Our research is based on freely
accessible satellite imagery, which not only creates landslide costs related to costs, but also
expands the scope of monitoring to a larger scale. This opens the door to the broad and efficient
use of satellite imagery in disaster management. Ultimately, this approach has great potential

to improve the accuracy and locality of landslide prediction, especially in areas with high risk.
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4.6 CONCLUSION

In conclusion, this chapter provides a new and effective approach to landslide prediction using
landslide data, including a rich collection of remote sensing images. This study focuses on the
use of object-based image analysis (OBIA) for image segmentation combined with the power
of advanced deep learning techniques such as the swin transformer and the UNet-Pyramid
model. OBIA is used to segment images with meaningful objects based on spectral and spatial
characteristics, improving the accuracy of characteristic extractions from complex remote
sensing data. The latest model for the computer vision, swin transformer is used to capture
dependencies and spatial hierarchies over the long term. This improves the overall performance
of distinctive presentations and predictive models with 0.91 - precision, 0.84- recall and 0.87 -
F1 score, the proposed model exceeds models such as CTD-Net, ResU-NetOBIA, Model 3 +
CRF, and Multispectral U-Net, all using Landslide4Sense dataset. These metrics highlight the
strength of the UNet-Pyramid model in effective prediction of landslides. By using these state-
of-art methods, this study contributes to the development of more accurate and robust
landslides. Furthermore, the proposed model can efficiently process large amounts of remote

sensing data, which has a significant impact on landslides in real-time.
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CHAPTER 5

EXPLOITING THE SYNERGY OF SARIMA AND
XGBOOST FOR SPATIOTEMPORAL EARTHQUAKE
TIME SERIES FORECASTING

5.1 Introduction

Disastrous events like earthquakes can cause severe damage to both human life and
infrastructure. Earthquakes occur when there is significant movement or disturbance in the
Earth's crust, leading to large-scale consequences such as human casualties and difficulty in
repairing or rebuilding damaged infrastructure [137]. Because earthquakes have the potential
to destroy both lives and buildings, accurately predicting their occurrence has always been a
major challenge. Early detection of seismic events is crucial for reducing associated risks, and
it plays a key role in forecasting earthquakes [138]. Earthquake forecasting is typically divided
into two categories: short-term forecasting and long-term forecasting, which is also known as
multi-step forecasting [139]. Short-term forecasting focuses on predicting seismic activity in
the near future, providing valuable insights into upcoming events. Long-term forecasting, on
the other hand, extends into the future, offering predictions about potential seismic activity
over a much longer period. By combining both short-term and long-term forecasting methods,
researchers develop a comprehensive understanding of future seismic events, encompassing
both immediate and distant perspectives. The question of whether earthquakes can be reliably
predicted is a subject in scientific debate for enormous years. Different methods for earthquake
prediction involve analyzing different factors, such as atmospheric weather, geodetic data, and

physical elements, which often play a role in seismic events [140][141].

Despite large-scale studies and several attempts to predict earthquakes, reliable methods for
determining the exact location, time, or size of earthquakes have not yet been developed [142].
A common approach to earthquake prediction is the use of time series data. This consists of
measurements that are made regularly over a long period of time. These observations usually
include seismic characteristics such as location, size and frequency. Time series is an analytical
technique used to identify hidden patterns, trends, and cycles within this data that may indicate

early signs of an earthquake. The recognition and interpretation of warning signals that appear
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just before the earthquake is necessary for strategies to reduce or prevent its catastrophic effects
[143]. However, only a limited number of studies were intended to predict several aspects of
the earthquake, such as size, location, and epicenter. Time series analysis is often used in a
variety of fields, including seismic and in vivo analysis [144]. Methods such as feature
acquisition and machine learning are often applied to time series analysis [145]. Traditional
methods of time series analysis typically involve extracting properties and parameters based
on expertise and empirical data [146]. However, recent advances have focused on more
advanced methods, such as DL and ML, which improve pattern recognition and distinctive
extraction [147] [148]. In scientific research, researchers often encounter patterns that are
missing in chronological order. This can lead to prediction or model inaccuracy if not treated
[149] [150]. Ensuring the accuracy and completeness of the data is important to improve the
efficiency of subsequent analyses, as the data can be lost for a variety of reasons like system
failure, human failure, and everyday expectations. Time series(TS) aggregates are essential for
identify trends or patterns in large datasets that are difficult to recognize and interpret. This is
a very crucial role in seismic activity analysis and provides valuable knowledge about seismic
behavior and samples. Investigating seismic behavior through methods such as similarity, self-
organization, pattern recognition, and analysis of final scaling provides a deeper understanding
of how seismic events are based on the development of predictive models. The data analysis
(EDA) serves as a basic tool for understanding seismic data by offering access to exploring and
interpreting the complexity of the earthquake activity. EDA is a method used to identify basic
patterns and relationships within data and its importance increases in predicting an earthquake,
where it helps scientists to navigate the complexity of seismic datasets. By using visualization
tools, EDA can provide a clearer representation of complicated seismic data that helps better
understand and reveal key knowledge. The integration of deep learning has a very advanced
EDA, especially in the analysis of seismic disasters, including areas such as signal
classification, image processing and object recognition. CNN contributed significantly,
especially when the earthquake damage, where they are used to classify the image to evaluate
buildings caused by earthquakes. Despite progress in the prediction systems, precise forecasts
remain rare and complex nature of the earthquake, with numerous factors that are difficult to
measure or evaluate. The most effective methods of earthquake prediction combine
mathematical simulations, signal analysis, ML and DL. Some recent methods applied Bayesian
networks to predict activity of earthquake by seismic data from individual stations, while others
focus on predicting parameters such as epicenter position, size and depth. These models usually

analyze seismic data within a specific radius of the station and integrate past seismic knowledge
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as indirect model inputs through methods such as artificial neuron networks or random forests.
However, these approaches often do not reach the integration of the physical principles of the
behavior of the earthquake, neglect the impact of historical earthquake data and the complexity
of seismic activity. Numerous studies have explored timeless time series techniques, such as
the use of Arima and Singular Spectrum Analysis (SSA) to predict magnitude values of
earthquake along specific failure lines. Other studies have incorporated different neural
network models for capturing time relations in seismic data, or use methods such as RNN with
LSTM cells to detect anomalies in seismic data before the earthquake. Although these methods
have shown promising, challenges remain in the integration of physical principles and

increasing the reliability of these models in the real-world applications.

5.2 Motivation

Although the previous studies have demonstrated the effectiveness of the short-term forcast
prediction, there is still limited investigation on the applicability of these methods for long-
term predictions, especially those that exceed the year. The forecast of the earthquake includes
numerous challenges due to the complex and dynamic nature of the seismic activity. Various
factors such as irregularities in seismic events, geological structuring effects, and
environmental conditions contribute to the difficulty of accurately predicting earthquakes for
longer periods of time. This approach uses a hybrid ML model that combines SARIMA with
XGBoost. Here, SARIMA capture seasonal patterns and trends in time series data, and on the
other hand, XGBoost helps in modeling complex relationships between variables with in the
data. The combination of these two models makes the approach a more effective solution than
traditional methods, since both intensities are used to improvise the accuracy of robustness.
The performance of this hybrid model is evaluated and compared to traditional earthquake
forecasts such as SARIMA and ARIMA. The results show that the hybrid model SARIMA-
XGBoost exceeds these traditional models, highlighting the possibility of more reliable and
more accurate predictions of seismic activity. SARIMA is affected by the natural cycle of
seismic motion because it effectively records seasonal variations that are often observed in
seismic data. XGBoost is characterized by the identification and modeling of nonlinear and
complex patterns within seismic data. This combination of seasonal pattern detection and

complex relationship modeling provides enhancement in earthquake series predictions.
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Although the analysis of signal, deep learning algorithms, mathematical modeling and
advanced machine learning techniques are considered reliable for earthquake predictions but
are often categorized into individual combinations. The earthquake prediction usually benefits
from a versatile approach and includes several different methods and models to improve
accuracy. This shows the importance of evaluating several approaches and integrate different
data processing methods, rather than relying solely on SARIMA or ARIMA models. A
comparative assessment of SARIMA and XGBoost, along with other models such as ARIMA,
can help determine the most effective method of earthquake prediction. For this study, we have
compiled data on the average earthquake for 1965 to 2023 in designated regions, which serve
as the basis for time series analysis and model development. The study is organized as follows:
next section describes data preparation, presents an overview of Exploratory Data Analysis
(EDA), and describes predictions created using time series models. Secondly, it presents the
approach made in the investigation, focusing on comparing selection methods and different
models. The third section describes the selection process of the best model, followed by a
detailed analysis of the results of different predictive models. SARIMA is an established model
used in temporary series predictions. Especially for data with adequate seasonal patterns to
detect recurrence trends when an earthquake occurs. However, the ability to dominate complex
but non -linear relationships is limited. XGBoost, a powerful algorithm for machine learning
that derives a record of these non -linear and complex dependencies of the data that are often
present in the seismic activity due to the interaction of several environmental factors. The
combination of SARIMA's ability to model seasonal trends and XGBoost when solving

patterns or complex relationships provides more accurate and precise earthquake predictions.

5.3 DATA AND METHODOLOGY

Figure 5.1 illustrate two main statistical approaches for long-term earthquakes prediction.
These approaches use the historical earthquake dataset and created a hybrid model that can
predict earthquakes for longer period. The earthquake prediction refers to predicting the
magnitude and location of the future earthquake event. To reduce the risks related to earthquake
it is important to make a reliable and accurate forecasting system, as they provide valuable
information that can inform disasters, early warning systems and risk management strategies.
This approach consists of three steps: Data pre-processing, Data cleaning, and Data series
analysis. In Data pre-processing, data cleaning and converting data to suitable form is

necessary. In this approach the dataset reading is covered from 1965-2023. This approach helps
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in discovering temporary data relationships such as recurring seismic events and seasonal
changes for earthquake forecasting.
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Figure 5.1 Sequential flowchart illustrating earthquake data processing and modelling steps.

In the TS analysis we use two phase methods to explore and predict the earthquake. The first
phase which is the survey, involves the utilization of descriptive statistics and Data
visualization approach to better understand characteristics of the dataset. Descriptive statistics
provide summary data by evaluating using median, mean, frequency while data visualization
methods such as thermal maps and time series contribute to visual identification of trends of
seismic activity, anomalies and clusters. By visualizing earthquake data, scientists can observe
time patterns and potential periodic behaviors that could help develop future predictive models.
The second stage of time series analysis is predictions that include ML techniques like AR,
SARIMA, and XGBoost to predict future earthquake events. The AR extension, SARIMA,
corresponds to trend and seasonality in your data. A more advanced ML model, XGBoost can
improve prediction accuracy by learning complex non-linear relationships and including
different features in simple time trends. There are several geological factors regulating the
behavior of tectonic plates some of them are the boundaries of the plates, subduction zones and
failure lines, play a key role in the frequency and severity of seismic events. In addition,
understanding the specificity of the time zone helps ensure that the earthquake prediction

models are responsible for changes in seismic activities that may vary due to local geological
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conditions from region to region. The integration of these factors is the aim of the study to
provide more reliable and regionally relevant predictions, which contributes to improving the
readiness for earthquake and risk management. Overall findings are expected to offer valuable
knowledge of how to approach the analysis of earthquakes and predictions in a more subtle and

scientifically informed way.

5.4 Dataset Description

This study uses a dataset that captures seismic events with the magnitude of 5.5 or higher, from
1965 to 2016, as shown visually in Figure 5.2. The selection of this threshold is significant
because the earthquake with a magnitude less than 5.5 often releases relatively low amounts of
seismic energy. These smaller earthquakes are more difficult to detect precisely, so their
identification and reports are less consistently compared to the strongest earthquakes. As a
result, these lower magnitude earthquakes are excluded from the dataset. The approach to the
earthquake with the magnitude of 5.5 or more allows a more specific and significant analysis
of the seismic activity that has the potential to cause substantial damage and affect larger
populations. Seismic monitoring systems and interface prefer to detect and inform these events
because they are more likely to lead to important social and economic consequences. In
particular, the National Earthquake Information Center (NEIC) plays a decisive role in the
global monitoring of seismic events and guarantees that basic details such as location, depth,
size and source of these important events are registered and distributed. The study focused on
the data provided by these established sources guarantees a reliable and comprehensive basis
for the following analysis.
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Figure. 5.2. Geographic distribution of earthquake epicentres: magnitude 5.5 or greater between 1965 and 2023.
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To further increase the relevance and timeliness of the data set, research also includes data on
the NEIC earthquake, covering the period from 2017 to 2023. Integration of this additional data
is necessary for several reasons. First, it allows for more enhance and wider understanding of
long-term trends and patterns of the earthquake by covering a large time range. Secondly, this
enriches the ability to detect emerging formulas in recent seismic activity, which may not have
been observable only through earlier data. Earthquake monitoring is constantly improving, and
more data is available, so including the latest data will enhance analysis by providing a more
recent perspective. An extended dataset containing both historical and current work data
increases the robustness of time series analysis and provides a clearer and comprehensive view
of the trends of earthquakes over various decades. This ensures that the conclusions of the study
are not only based on historical data, but also reflect the latest seismic events that offer more
accurate pattern of the behavior of global earthquake. The preliminary data processing phase
is a critical step to ensure the quality and consistency of the data file before any analysis or
modeling. This phase contains a number of steps to clean and organize data to eliminate any
mistakes, inconsistency or spaces. One of the primary tasks at this stage is data cleaning that
deals with problems such as missing values, duplicate items or incorrect data. The dataset
considered contains information about 23,412 seismic events that contain a number of
parameters such as date, time, geographical coordinates, depth, area, time stamp, size and other
key details. It is important to make sure that each element is unique and represents a real seismic
event. During the cleaning process, zero values representing missing or incomplete data were
carefully identified. Furthermore, the duplicate elements have been removed that could distorts
the analysis by over representation of certain events, making sure that only different events
remain. Then the data was observed as earthquake do not occur at regular intervals and the
original dataset does not have to provide a uniform distribution of time. To solve this problem,
the data was aggregated to monthly intervals to create a consistent time series that could be
analyzed over time. Interpolation was another key technique used in the preliminary processing
phase. Because the data file was initially irregular, with different time intervals between
seismic events, spaces or missing values, they appeared in the data file after the process of
resampling. The interpolation is used to fill in these missing values by estimating the

surrounding data and create a continuous time series.

The final dataset is completed and provides a constant record of the occurrence of earthquakes,
including key parameters such as time, location, size and depth. Through the data per month

and add values in the missing values through the interpolation, the dataset is suitable for the
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analysis of time being and offered a reliable basis to understand the tendencies of the seismic
activity over time. An important decision during the previous processing phase is to maintain
a remote earthquake with a high increase to eliminate the dataset. While remote values can
sometimes mess up the results of statistical analysis, large earthquakes are considered
important events in a seismic activity. These events provide valuable knowledge to regions that
are susceptible to extensive seismic activities and can help identify trends or patterns that can
not only be visible in smaller events. Table 5.1 offers a comprehensive review of dataset
properties, providing an overview of data structure and steps taken to prepare for further
analysis. This overview includes a statistical summary of earthquake events, such as the size
distribution, the frequency of events in time and the geographical spread of occurrence,

providing a major insight into the nature of global seismic activity.

TABLE 5.1 Summary of Significant Earthquake dataset.

S.No. Time Latitude | Longitude | Depth | Depth | Magnitude | Magnitude
(km) | Error Type
0 1965-01-02 19.246 145.616 131.6 3.785 6.0 Mw
1 1965-01-04 1.863 127.362 80.0 4.678 5.8 Mw
2 1965-01-05 -20.579 -173.972 20.0 4.997 6.2 Mw
3 1965-01-09 -59.076 -23.567 15.0 2.452 5.8 Mw
23406 2023-02-17 -6.5986 132.0763 38.615 5.595 6.1 Mw
23407 2023-02-16 -15.0912 167.0294 36.029 6.080 5.6 Mw
23408 2023-02-15 12.3238 123.8662 20.088 4.399 6.1 Mw
23409 2023-02-15 -40.5485 174.5709 74.320 4.922 5.7 Mw
23410 2023-02-14 45.1126 23.1781 10.000 1.794 5.6 Mw

5.5 Exploratory Data Analysis (EDA)

EDA plays a key contribution in attenuation of the complexity of seismic sequence data and is
an essential tool to predict the earthquake [150][151]. EDA is a basic process that includes the
use of several visualization techniques to explore data properties, detect any remote or
anomalies, and evaluate the validity of the basic assumptions. EDA is important because it
provides the deeper understanding of the dataset and clears the basics for other analytical
approaches, including statistical modeling and machine learning techniques. In relation to
earthquake data, which inherently include time and geographical dimensions, EDA is even
more valuable. The unique nature of seismic events, which occur in specific times and places,

requires a deep and accurate examination to understand potential patterns, trends and risks.
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Therefore, EDA not only prepares the ground for more sophisticated analyses, but also

increases the general understanding of earthquake behavior.
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Figure. 5.3. Box plots depicting the distribution of earthquake magnitude, root mean square and depth
categorised by tectonic setting: convergence, extension, subduction and transform.

The techniques used in EDA are diverse and adapted to reveal different aspects of the data.
Basic visualization methods, such as histograms and bar charts, are often used to understand
the distribution of earthquakes, frequencies and other relevant variables. These tools are useful
for pattern detection and anomalies identification within data. The most advanced statistical
graphics, such as mean plot and boxplot, provide information about data points distribution,
emphasizes the presence of remote values and offers a deeper understanding of data
visualization. In general, line plots are insightful; tools to visualize trends as changes in seismic
activity capture over time and show how earthquakes change daily, monthly or annually. In
addition, the technique of map representation is invaluable to offer a geographical vision of the
data. When visualizing earthquakes on the map, scientists can better understand regional
seismic patterns, help identify areas with high risk and any geographical tendency that may
occur. EDA is not only a data exploration tool, but also a key step towards the development of
effective earthquake forecasts or prediction. EDA helps to carry out future analytical processes
and provide valuable knowledge that can inform predictive modeling by identifying
seasonality, hidden patterns and anomalies within the data. The relationship between
earthquakes and their tectonic environment is a key research area in EDA because it provides
critical information for risk assessment and disaster preparation. One of the basic aspects of
the EDA is to explore the tectonic environment and its relationship with seismic activity. The
different tectonic environments, such as subduction areas, failure lines and boards, show
different levels of seismic activities. The recognition of these connections is essential to
understand where the earthquake is more likely to occur and evaluate the risk in these regions.

By identifying the tectonic configuration, which are more susceptible to intensive seismic
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events, EDA helps determine areas of greater seismic risk. This methodology significantly
improves patterns recognition and enables detection of time trends and seasonality in the
occurrence of earthquakes, thus contributing to the enhancement of high-precision predictive
models. The classification of tectonic settings assigns each earthquake event to a different
tectonic environment, such as subduction zones, extension zones, transformation errors, cracks
and convergence zones using geographical and geological data. As shown in Figure 5.3, the
box plot offers a clear and brief graphical representation and compares the statistical
distribution of the magnitude of the earthquake, the root mean square (RMS) and depths across
different tectonic settings, including extension, subduction, convergence and transformation
zones. This approach allows an effective and intuitive comparison of seismic features in
various geological contexts, which makes it easier to identify trends, patterns and anomalies in
the behaviour of earthquakes.

5.6 Time Series (TS)

Time series is classified into three types: deterministic trend, stochastic trend, and seasonal
trend. The behavior understanding is important for developing more reliable models to predict
the upcoming values. TS does not display intrinsic behavior and lead to unreliable predictions.
To determine stationary time, its properties, such as variance and mean should remain constant
always. The ADF test is applied to check the stationarity in time series by detecting the
presence of a unit root in the series. To make series stationary transformations like differencing
are applied if the series is found to be non-stationary. Further, by understanding the time series
three trends, appropriate transformations and modeling techniques are applied to improve the
accuracy. The combination of these trends occurs in several series where deterministic patterns
are affected by stochastic noise, requiring a more complex model in which both components
are responsible. Understanding these categories is to choose the most appropriate modeling
approach and ensure that the resulting predictions are accurate and reliable

5.6.1 Deterministic Trend Time Series

In this model it is supposed that the TS variable (v;) is a time function v, = g(t). This
represents various forms including linear, exponential or other types of assembly problems. It
provides to bring the relation among TS variable and time using different mathematical
functions, depending on the the basic samples that we strive to capture and nature of the data.
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Vi = 4dp + bt + Ct (51)

After calculating the Av,, we have:

Vi — Viog = (@p + b+ ¢) —ag + beog +ceoq) (5.2)
Avi=b+ ¢, —c_q (5.3)
U[Vi] = U[Y] + Ulce] + Ulce—q], Ule] = Ulce—q] =0 (54)

Thus, U[V,] =Y

v, IS time series variable at time ¢, a, is constant intercept by is coefficient for time t, capturing
trend c; is other factors influencing the time series at time t. Av, is first difference of time series
variable v, U[c] and U[c,_;] are unconsidered components of predictors ¢, and c._;.
This implies that the mean of the corresponding time series Av,, remains constant over time,
making Avy a stationary time series. Additionally, a time series with a linear trend in equation

(1) is referred to as a trend stationary time series.

5.6.2 Stochastic Trend Time Series

In this type of TS modeling, it is supposed that v, is a function of the lagged v,. The
straightforward case is termed first order, specifically the AutoRegressive model where

v, depends only on the first lag (k=1):
Ve = a9 T Que-1 T Ct (5.5)

According to the Dickey-Fuller test (DFT), it is established that the time series in equation (4)
is stationary as long as 1q|<1. To delve deeper, let's examine the case when g=1, in which we

obtain:

Vt == ao + bt—l + Ct (56)
Vg =3+ beg +cg (5.7)
Vo = Vp
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Ve = tag + Vo + X G (5.8)

The random walk is an unpredictable process, meaning that there is no obvious pattern in the
data to help with prediction. The random walk is expressed as:

Vi = Vi1 + Ct (59)

Therefore, the random variable must be a non-stationary TS. Although the random variable's

mean value is constant.

5.7 Augmented Dickey-Fuller test (ADF)

A statistical technique called the Augmented Dicky-Fuller test (ADF) is used to assess whether
a data record is stationary or not. Since many modeling approaches, such as ARIMA, need a
series to show stable statistical features over time, the stationary is a decisive prerequisite for
trusted time series modeling. Zero hypothesis (Ho) claims the series is not stationary and the
ADF test determines whether there is a unit root or not. The null hypothesis (H1) is tested and
presents that unit root is present in the series and this unit root indicates that this time series is
non-stationary. This indicates that it has time dependent structures such as trends and
seasonality and needs to addressed for reliable and accurate modeling. When test statistics is
lower than key values the null hypothesis is accepted else it is rejected. This is because the TS

is stationary.
The general form of the ADF test is as follows:
AVt = 4y + UVi_1 + 91Avt_1 + -4+ GpAVt_p + Ct (510)

Here, w: unit root parameter, and p = 0 represent that the model has a unit root, and the time

series is not stationary. a, and p both are the model's trend.

5.8 Forecast Model Construction

In order to choose SARIMA, it begins with the use of EDA. and time series
(TS). EDA identifies the seasonal and self-reproductive components and key information to
select SARIMA's parameters. Finding the ideal values for the p, d, and q all of which
are important to the SARIMA model. The autoregressive order (p) presents the number of prior

observations utilized to estimate the current value. The moving average order (q) determined
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the amount of prediction mistakes trailing the model, which takes the impact of previous
failures on future values. The differencing order (d) specifies how frequently the data must be
differenced in order to achieve stationarity. As these parameters impact the model's capacity to
capture both seasonal changes and long-term trends in seismic data, their selection
is important. A well-tuned SARIMA model becomes an effective tool for earthquake

prediction. it accurately describes the seasonal and temporal dynamics of seismic activity.

5.9 SARIMA

In 1970’s Jenkins and Box proposed the ARIMA model, which became known as the Box-
Jenkins approach [152]. It is also referred as (p,d,q) model, where the moving average order
(9), difference order (d), and autoregressive order (p) are represented. It is a stochastic model
that is effectively used for earthquake prediction, as well as effective tools for time series
analysis that strive to anticipate values in non-stationary univariate time series and define

autocorrelations in the data.
D4 (O)VEY, = 04(C)er (5.11)
Y, represents the error series and noise with a mean of 0.
ve= (1-C)° (5.12)

It demonstrates the difference operator of order C, e used to denote integration order to achieve
stagnation in data.

Dg(C) =1 — @;C" — @C% — -+ — g C1 (5.13)
is equivalent to the AR term at the gth level and

®4(C) =1—@,C" — @,C* — - — @, BP (5.14)
is the p™ order MA polynomial.

Seasonal Box-Jenkins models are also extended version of ARIMA models that facilitate the
direct modeling of seasonal components in non-stationary time series data, which exhibit both

trend fluctuations and seasonal variations.
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Figure. 5.4 Flowchart of SARIMA model for time series earthquake forecasting

General ARIMA (p,d,q) is summarized as,

Ve = €+ B1Yi—1 + B2Yi—2 + B3yi—z + =+ BpYi—p€r + 01 €1 + Q&5 + A3E 3+
OgEr—q (5.15)

€ = 0 €r_q + 0p€r_ + O3E_3 "+ AgEr_g (5.16)

These models are particularly useful for time series that show complex interactions between
long -term trends and seasonal effects. The SARIMA is represented by (p,d,q) * (P, D, Q),
where the parameters capture not seasonal and seasonal data behavior. SARIMA models use
seasonal differences to solve seasonal fluctuations in the time series, similar to how the
differences are applied in standard ARIMA models. Seasonal differences help remove periodic
components of the series by deducting the value of observations from its corresponding value
in the previous season. The process is an analogous differential trend in the ARIMA models,
where the p, d and g parameters represent the autoregressive order, the differential order and
the average order. In SARIMA, seasonal components are modeled by other parameters P, D
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and Q components and represent seasonal autoregression order, seasonal differentiation order
and moving average order. The seasonal period, which indicates the length of the seasonal
cycle, is also an important part of the model. SARIMA refining usually involves fine-tuning of
the orders of these parameters through methods such as experiment and error or automated
technology such as grid search. The aim of this process is to identify the optimal combination
of parameter values that best capture the basic formulas in the time series data, which provides
the most accurate model suitable for predicting earthquakes. By modifying these parameters,
the model can be adapted to consider both the long-term trend and for seasonal fluctuations in
the earthquake prone area, allowing more precise predictions and deeper insight into seismic

behavior.

Three seasonal factors that are not included in ARIMA need to be adjusted:
P: stands for seasonal autoregressive

D: for seasonal difference

Q: for seasonal moving average.

dp(R)P,(R%)(1 — R)4(1 — ROPY, = 84(L)Og (L¥)e, (5.17)
dp(R) =1— ;R — p,R* — -+ — ppRP (5.18)
8q(R) =1—0;R —9,R? — - — BRI (5.19)
Pp(RS) = 1 — ®g(RS) — Py (R?S) — -+ — Dpg(RPS) (5.20)
0q(R%) = 1 — OgRS — O,sR* — -+ — OqsRYE (5.21)

Where, R (the lag operator) is defined by Y,.and t.

RKY, = Y,_i; ¢p(p=12,..,p),®p(P=12,..,P),04(q=12,..,9),04(Q=12,..,Q)

(5.22)
The SARIMA model expression for the time series Y, is as follows:
dyD,, _ 8(A)8s(A)
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here y,. is the error term at time r; @5(A) and 64(A) stand for the seasonal moving average
coefficient polynomial of Q-order and the seasonal autoregressive coefficient polynomial of P-

order, respectively.

Once the model orders and data transformations are established, the next part is for estimating
the SARIMA model, as described in Figure 5.4. A widely used method are used for estimating
the parameters of the SARIMA model is the estimation of maximum probability. The 'p' and
'q' parameters correspond to the number of average and moving terms, respectively, and are

associated with non-seasonal components of the temporal series [153].

5.10 XGBoost

The decision-tree based ensemble machine learning model known as Extreme Gradient
Boosting (XGBoost), developed by Chen and Guestrin in 2016, is a scalable boosting system
that uses the gradient boosting algorithm to generate results with a low probability of an overfit
[154]. Its strategy is to continually add and train new trees to fit the remaining mistakes from

the previous iteration.

i = Yio1 8k, gk=0G (5.24)

Here, gk represents function in function space, k represents tree of decision tree and G is
function space with equation:

G= {g(X) = Vr(x)} (5.29)

Here, r(x) signifies that the sample x has been assigned to a leaf node, and v represents the leaf

node weight.

In order to accelerate the model's convergence, XGBoost expands the loss function using the
second-order of the Taylor's series expansion [155].

XGBoost's regularized objective function is represented as:
L=%1R&,x) + Xk 2(gm) (5.26)

Q) =yT+5A 1w I1? (5.27)
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In this context, with x; as the target, m denoting the number of classification regression tree, Q
indicating a regular penalty function, gm is the model of the m™ tree, | is a differentiable loss
function, and ¥; as the predicted values, a balance is preserved in order to keep the decision
tree model from becoming excessively complex. The penalty term formula uses penalty
coefficients y and A. T represents the number of leaves, while o represents the total leaf weights.

In contrast to decision trees, regression trees apply weights to each leaf.

To minimize the objective function, continues iterations are performed and the objective

function is evaluated after each iteration.
£ =301 (%, 2 + g (51) + Ogm) (5.28)
The fast way to optimize second order function is using Second order expansion:
£ = 30 10, 87D) + figm (y;) + 3 kigh (v) | + Qgm) (5.29)

The loss function's first and second derivatives are denoted as fi and ki, respectively. The

objective function is:
LO =3, [(Siey ) w+2 (ki + Du?] +yT (5.30)

where u; is the weight of leaf j. The weight of each leaf node is reduced to obtain the objective
function’s minimal value and make its derivative equal to zero. We can calculate u;for a fixed

structure as follows:

Zier, fi
4= _Eielj ki+2 (5.31)
and determine the equivalent value by:
(Ziey )’
~ _ 1 T iel; i
Lp) = =32 Ter o HT (5.32)

As it is sometimes difficult to keep track of all potential tree structures, XGBoost takes a greedy

approach, gradually adding branches to the tree, starting with a single leaf. The presented
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formula acts as a score mechanism for assessing the tree structure. Consider the sets of

instances of the left and right nodes following the split to express the loss reduction:

2 2
I 1 (ZieIL fi) (ZiEIR fi) + Cier )
Spllt 2 ZiEIL ki+}\ ZiEIR ki+}\ ZiEI ki+}\

(5.33)

The XGBoost is effective in collecting the complexity of seismic data, making it an optimized
choice for modeling formulas related to the earthquake [156]. The algorithm works gradually
and creates a number of decision trees, and each tree is constructed to correct the mistakes that
remained from the previous tree. These decisions production of trees is designed in an adaptive
and iteration manner, each with a previous tree focusing on minimizing the irregularities
between the actual values and the expected results from the previous trees. This process allows
XGBoost to gradually specify its predictions and increase the accuracy of the model over time.
The strength of the XGBoost core lies in its access to a set that combines the outputs of multiple
decision -making trees, each individually weak - into a single robust and accurate model. By
using the collective predictive power of these XGBoost trees, it alleviates the limitation of any
single model. The algorithm also includes techniques such as L1 and L2 regularization on the
weight of the leaves to prevent excessive connection. Regularization penalizes too complex
models, promotes simplicity and generalization. This is important for modeling seismic data
where there is high risk of excessive noise and irrelevant pattern is high. XGBoost optimizes
an objective function consisting of two main components, which are the losses that measure
prediction errors and conditions that reduce model complexity. The optimization process
adapts model parameters to achieve the best balance between accurate prediction and model
simplicity. This is suitable not only for training data but also for invisible data. mechanism
stops the training process. XGBoost creates predictions by aggregation all the trees in the data.
Further, connecting with seismic analysis, this access to the data allows the model to effectively

record complex data relationships and ensure more accurate predictions.

5.11 Integrating SARIMA with XGBoost

The combination of SARIMA and XGBoost in the seismic analysis of the temporal series offers
enhanced and successful approach that significantly increases the precision of the earthquake
prediction as shown in Figure 5.5. SARIMA's series is widely known for its ability to capture
self-representative and temporal dependencies and seasonal trends that are present in

earthquake data. The forecasts are produced firstly by SARIMA model, which captures the
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dynamics of the basic time of seismic activity. However, earthquake data are often
characterized by complex and non-linear behavior that SARIMA cannot be completely
captured. This complexity is the result of a versatile nature of seismic events that may include
several interaction factors, such as geological conditions, failure lines and environmental
variables. As a result, there remains differences between the actual and predicted values, which
represent inexplicable variations or complex patterns that do not address the initial model. To
solve this issue, XGBoost, a powerful automatic learning algorithm, is known for its ability to
capture non -linear complex relationships and complex data patterns is used. By training
XGBoost in the residual of the SARIMA model, the algorithm learns to identify other factors
that affect the seismic activity, to improve the original predictions and improve accuracy. The
capacity of the model to process residual allows to adapt to nonlinear data, as sudden changes
in seismic activities that may not follow a clear linear trend. During this phase, advanced
techniques such as cross validation are used to guarantee the optimal parameterization of
XGBoost model as it is useful to avoid excessive expulsion and ensure that the model is well
widespread to invisible data. The model is trained in several subset data and its verification
against other help to the cross validation of the hyperparameters of fine tune, such as the
learning rate, the depth of the tree and the number of epochs that are essential for the

performance of the model.

The integration of SARIMA and XGBoost creates a robust and adaptive model that can handle
linear and nonlinear aspects of seismic data. The SARIMA model shows time and seasonal
structures, while XGBoost deals with non-linear complexities and patterns that come from data.
This hybrid model allows a more accurate and integral frame to predict the earthquake. In
addition, this approach improvises the model's ability to identify all seismic trends, patterns
and anomalies. For example, SARIMA helps in capturing seasonal trends and cyclical patterns
in the time series data and XGBoost helps in modeling complex, non-linear relationships
between variables to improve the accuracy of earthquake prediction. This approach
significantly increases the ability of forecasts and provides more reliable earthquake
predictions. This integrated approach is particularly valuable in the broadest context of seismic
risk assessment, and it helps with better preparations. In addition, this hybrid model is used in
several domains, such as timely warning systems, disaster planning and seismic behavior at
logical and global scale. SARIMA excels in capturing basic time addictions, seasonal patterns
and the author's dynamics by the earthquake data, while the XGBoost machine learning

capabilities allow him to identify and improve non -linear patterns that SARIMA may miss.
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Figure. 5.5. Work Flow of proposed mode SARIMA-XGBoost for earthquake time series forecasting

This integration provides a more comprehensive insights of the behavior of the earthquake,
allowing modeling of both linear and non -linear effects. The best parameters in features
extracted from SARIMA, such as seasonal trends and autocorrelation, combined with the
adaptive nature of XGBoost based on data, creates a robust prognosis model that not only
increases the accuracy of prediction but also increases its ability to generalize to incredible
data. Capturing the complex dynamics of seismic activity This methodology increases the
reliability of the earthquake predictions, allowing more precise predictions and better readiness
strategies. In regions prone to earthquakes, the benefits of this hybrid model exceed more than
improved prognosis. It creates the creators of the decision -making tools necessary for
proactive risk management and the allocation of resources. The ability to predict seismic events
with greater accuracy in disasters' readiness systems and timely warning systems, which
potentially reduces life loss and property damage. In addition, the adaptability of the model
makes it possible to develop with changing seismic patterns and ensure its importance in a
dynamic and complex geophysical environment. This advanced data-based approach offers a

powerful tool for increasing safety and resistance in vulnerable regions.

130



5.12 RESULTS

In this chapter three models (SARIMA, ARIMA and hybrid SARIMA-XGBoost) were
configured and simulated to evaluate their performance in the prediction of the earthquake. The
process began with comprehensive data cleaning which is preliminary pre-processing and
exploratory data analysis (EDA), this step makes sure that the dataset is prepared for accurate
modeling. Further, all three models were configured and simulated to capture different aspects
of seismic data, including time patterns, trends and nonlinearity in data. The ARIMA and
SARIMA models focus on the analysis and forecasting of the time series based on the
autoregressive engineering, as well as seasonal changes in the case of SARIMA. SARIMA-
XGBoost, the integration of the SARIMA algorithm and the XGBoost algorithm, combines the

strengths of both and captures both linear and non-linear trends for more refined predictions.

The metrics used to evaluate the performance of these model are Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and Mean Squared Error (MSE). These metrics measure
error between the real values and the expected values and evaluate the precision of the
predictive model. To improve the precision of the model and minimize the error rate, carefully
divide the data set into training sets and test and ensure robust access to the model verification
and performance evaluation. This collected data discovered that approximately 70
observations were captured in this time frame, which represents approximately 80% of all
series occurrences in the series. This is designed for training purposes, which allows the model
to learn all the patterns and trends of historical seismic data. The remaining 20% of the data
consists of earthquake events from 2001 to 2023 and are reserved for the test and validation of
the model. This set of tests is carefully selected to include newer earthquake events, which
guarantees that the ability to generalize the future data model and consider any change or trend
that may have occurred. This distribution of training tests is decisive to reduce the risk of
excessive amounts, since it guarantees that the model is tested for data that have not been

included in the training process.

In addition, it helps simulate scenarios in the real world, where the future events of the
earthquake based on historical data need to be predicted. By providing the historical dataset for
training and testing, we are able to access its better predictions, verify its predictive power and

ensure that it remains relevant and effective in predicting seismic events in the coming years.
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Using the method of seasonal decomposition of time series, we break down many seismic data
into basic components: trends, seasonality, residual or errors which are often visualized via
line-chart. These patterns provide important information about immediate changes in seismic
areas. Understanding changes in seismic frequency over very short periods requires recognition
of positive patterns that show an increase in seismic events or negative trends indicating errors.
Regression analysis and trendlines are used to further quantify these patterns. This supports the
strength and importance of observed seismic activity changes. Monthly data analysis allows
long changes in seismic samples to be recorded. To evaluate statistics over time, we use the
ADF an extensive statistical test. The results listed in Table 2 provide important key point about
the basic characteristics of seismic data. ADF tests are important for determining whether time
series is stationary. This means that its statistical properties are consistent over time. In this
case, the time series is subjected to ADF tests, and a p-value for results above 5% indicates that
the null hypothesis of non-stationary material cannot be rejected. This indicates that the time
series does not show steady-state behavior. This means that their statistical properties differ

over time.
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Figure. 5.6. Monthly distribution of earthquakes and seismic energy release over time

Once the data is cleaned, it is divided into training and testing sets, usually with 80% of the
data assigned to the model training and the remaining 20% reserved for their performance
testing. This division allows the model to learn from historical data and then be evaluated on
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invisible data to assess its generalization. After this its focuses on the application of the
SARIMA model. First, EDA is performed using the autocorrelation function (ACF) and partial

autocorrelation function (PACF) plots.

ALGORITHM 5.1: EARTHQUAKE TIME SERIES FORECASTING USING SARIMA
AND XGBOOST
#Data Preprocessing
Earthquake data=load data(‘earthquake.csv’) #Load earthquake time series data
Cleaned_data=preprocess_data (Earthquake_data) #Preprocess data (Handle missing values, outliers)
train_data, test_data =split_data(Cleaned_data,train_size=0.8) #Split data into training and testing sets
#SARIMA Modeling

acf_plot, pacf_plot = plot_acf pacf (train_data) #Conduct EDA (plot ACF, PACF)
p,d,q = Select_sarima_parameters(acf_plot, pacf_plot) #Select SARIMA parameters (p,d,q)
sarima_model=fit.sarima(train_data, p,d,q) #Fit SARIMA model to training data
sarima_forecasts = sarima_model.forecast(test_data.shape[0]) #Generate forecast

#Feature Engineering

sarima_residuals=calculate_residuals(train_data, sarima_forecasts) #Extract additional features from
SARIMA residuals
lagged_values= extract_lagged_values(sarima_residuals)

moving_averages=calculate_moving_averages(sarima_residuals)
feature_matrix=combine_features(train_data, lagged_values,moving_averages)

#XGBOOST Modeling

xgh_model=initialize_xgboost(n_estimators=100, max_depth=3, learning_rate=0.1, reg_lambda=1)
#Initialize XGBoost Regressor with hyperparameters

xgb_model.fit(feature_matrix, train_labels) #Train XGBoost model on feature matrix

xgb_forecasts=xgbh.model.predict(test_features) #Generate forecasts for testing set
#Prediction and Evaluation

Combined_forecasts=combine_forecasts(sarima_forecasts, xgh_forecasts) #Combine SARIMA and
XGBoost forecasts
#Evaluate model performance using error metrics (MAE, RMSE)

mae = calculate_mae(test_labels,combined_forecasts)
rmse= calculate_rmse(test_labels,combined_forecasts)

These plots are essential for understanding time dependence in the time series data. The ACF
plot identifies the relationship between the time series and delays in time intervals. The peaks
in the ACF graph reveal possible seasonal trends or addictions that could be present in the
dataset. The PACF plot shows the correlation between the time series and its backward values
after checking intermediate delays which helps in providing direct relations between specific
delays. By studying these graphs, the key delays that affect data can be identified in the
determination of the AR and the M), including seasonal variations. Using knowledge from
ACF and PACF graphs, suitable parameters are selected. These parameters help to capture both
seasonal and non-seasonal components of the time series. Once the SARIMA model is

configured with these parameters, it is adapted to the training data and the forecast is generated
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for testing data. After modeling SARIMA with residual represents the differences between the

expected and real values that were not explained by the SARIMA are extracted.

These residuals are then used as other features for the next modeling phase. This step is
important because the residuals may contain information about data that has not been captured
by SARIMA, and modeling with machine learning techniques, such as XGBoost, can be further
specified. Through this process, SARIMA captures the basic time trends and seasonal patterns
in the earthquake data, while XGBoost solves any non-linear relations or residual complexity
that remains consistent, which eventually leads to a more accurate and reliable earthquake
prediction. The selection of parameters for the SARIMA model is primarily determined by the
analysis of the ACF and partial autocorrelation function PACF. These graphs are generated
from differentiated time series data and serve as key tools for identifying the appropriate
SARIMA parameters as shown in Figure 5.7. The ACF is illustrated by the correlation between
the time series and its backward values at different time delayed, while the PACF graph focuses
on the correlation between the time series and its backward values. By careful examination of
these graphs, it is possible to identify significant peaks that indicate suitable p and q values
that are necessary to capture time dependence and patterns in data. The aim to select optimal
SARIMA parameters is not only to identify a model that best presents the basic data, but also
to minimize the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). AIC and BIC are statistical measures that help evaluate the goodness of the model in
penalty for the number of parameters included, thus preventing excessive evaluation. Lower
AIC or BIC indicates a better model. In addition to minimizing these criteria, it is essential that
the residues of the other model are normally distributed and uninterrupted, ensuring that the
model sufficiently captured the basic data patterns without leaving significant patterns
inexplicable. The ADF test is also used to evaluate the series to ensure that the time series data
is also correctly illustrated. Because this suggests that the statistical characteristics of the series,
including its average and scattering, are constant in time, the stationarity is a key prerequisite
in the analysis of time series. One statistical method to determine whether the time series is

stationary is the ADF test.

Table 5.2 provide a comprehensive evaluation of SARIMA models applied to the earthquake
forecasting. In a series of earthquake numbers, the ADF test provides the values of 0.204 and
0.246, which are relatively high, suggesting that the series probably shows non-stationary

behavior.
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TABLE 5.2 Evaluating SARIMA Models for Max-Magnitude and Earthquake Number.

Series ADF Test Model AIC BIC
Earthquake Number | 0.204 SARIMA (2,1,2)(1,0,1)(S=12) 4.255 4.382
0.246 SARIMA (2,1,1)(1,0,1)(S=12) 4.175 4301
Max-Magnitude 0.049 SARIMA (2,1,2)(1,0,1)(S=12) 2.364 2.492
0.051 SARIMA (2,1,1)(1,0,1)(S=12) 2.425 2.551

To solve this SARIMA model is used by considering two configurations: SARIMA (2.1.2)
(1.0.1) (S = 12) and SARIMA (2.1.1) (1.0,1) (S = 12). The SARIMA model (2,1,2) (1,0,1) (S
= 12) created the AIC with value 4.255 and BIC with value of 4.382. For comparison the
SARIMA model (2.1.1) (1.0.1) (S = 12) showed slightly lower AIC and BIC values, with AIC
4.175 and BIC 4.301. While the second model (SARIMA (2,1,1) (1.0,1) (S = 12)) had better
AIC and BIC scores, it was decided to select the SARIMA model (2.1,2) (1.0,1) (S = 12) for a
series of earthquakes due to its better overall condition and performance. Similarly, for the
Max-Magnitude series, the ADF test values were 0.059 and 0.061, indicating marginal non-
series in the series. The SARIMA model (2.1.2) (1.0.1) (S = 12) reached the AIC 2.364 and the
BIC value of 2,492. On the other hand, the SARIMA (2.1.1) (1.0.1) (S = 12) had a slightly
higher AIC and BIC 2.425 and 2.551. Based on the lower AIC and BIC scores, SARIMA
(2,1,2) (1,0,1) (S=12) was deemed the optimal model for the Max-Magnitude series.
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Figure 5.7 ACF and PACEF Plots for Analysis of Autocorrelation and Partial Autocorrelation Functions for
Earthquake Time Series Data.
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Further, to enhance the time series analysis, the SARIMA model is integrated with the
XGBoost model. This machine learning model succeeds in detecting complicated nonlinear

correlations in the data as shown in Figure 5.8.
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Figure 5.8 The flow chart of the combined SARIMA-XGBoost model.

The residuals from the SARIMA model undergo a feature engineering process, wherein lagged
values and moving averages are computed to capture temporal dependencies and trends that
the SARIMA model may not have fully accounted. These engineered features are then
incorporated into a comprehensive feature matrix, which combines the original training data
with the additional features. This enriched matrix serves as the foundation for training the
XGBoost model. To ensure optimal performance, the XGBoost is initiated by carefully selected
hyperparameters, including the number of trees, maximum depth of trees, learning rate and
regularization parameter. These settings control the complexity and learning capacity of the
model. The XGBoost regressor is then trained on this element matrix and learns to identify and
model complex formulas and residuals that have been left by the SARIMA model. After
completing the training phase, the XGBoost generates predictions for the test set and provides
refined forecasts that are responsible for complex relationships and patterns within data. The
XGBoost is trained using the time-based index, along with the corresponding fluctuations to
optimize their hyperparameters for the best predictive performance. As shown in Figure 5.9,
XGBoost improves predictions by dealing with residual errors that remain SARIMA. The
XGBoost, known for its ability to learn the data, is particularly effective in capturing these
residual patterns. In each iteration, a new tree of decision-making is created that model from

the predictions of the previous trees. This iteration process allows the model to gradually
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specify its understanding and reduce residual errors, thereby improving the overall accuracy of
prediction. In addition, XGBoost includes regularization techniques such as shrinkage and
pruning, to combat the switching and securing the model well generalizes invisible data. The
shrinkage, also known as the degree of learning, controls the benefits of each tree, while
pruning helps eliminate too complex trees that do not have to add significant predictive value.
These regularization techniques help XGBoost effectively manage residues, reducing the
likelihood of excessive amount and at the same time improving its ability to accurately capture
complex patterns in data. Through its support and mechanisms of regularization mechanisms,
XGBoost significantly increases its performance, especially when solving residual errors that

are key to precise prediction of seismic size.

Residuals on

I *M | iw' ‘1"5 ‘M’f" m !an ', |

1965 1973 1981 19390 1998 2007 2015 2023

—

Figure 5.9 Residual Error Count and Density Graphs for Earthquake Time Series Prediction.

After the XGBoost training on the set of earthquake data, we observed a significant reduction
in the MSE when compared to other approaches to machine learning. Specifically, XGBoost
reached MSE of 0.0040, which significantly exceeded other models. For comparison, the
ARIMA-LSTM model resulted in MSE with 0.0055, the LSTM model created MSE of 0.0100
and the transformer model had 0.142. These results clearly show that XGBoost was most
effective in minimizing prediction errors between tested models. In addition, the RMSE for the
XGBoost was calculated 0.068, which further supported its excellent performance in terms of
the accuracy of prediction compared to other methods. The XGBoost capacity to achieve such
a low errors rate is an attributed to its emphasis on reducing residues during the training
process. XGBoost assigns greater importance to data points with larger residuals, which prefers
to correct prediction errors. The iterative nature of the increasing process ensures that the model
gradually improves its accuracy by constant improving its predictions. In addition, to prevent

excessive impact, the maximum depth of the trees is limited, which helps the model effectively
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generalize to data. Intrinsic selection of input parameters is necessary to optimize XGBoost.
One of the key parameters is the number of appraisers that dictates the number of increasing
rounds (or decision -making trees) to undergo during the training. In our implementation, we
set this value to 100, which allows XGBoost to perform a sufficient number of iterations and
improve its predictions in a large number. This iterative correction is particularly beneficial for
capturing fine features in residues that could otherwise be overlooked. Another important
parameter is the degree of learning, which controls how much weight each new tree contributes
to the final prediction. The less learning level prevents an exaggerated response to individual
data points, which allows smoother and more consistent improvement over time without
excessively weighing any single observation. Finally, checking the maximum depth of trees is
essential to prevent excessive expulsion. Figure 5.10 illustrates key components extracted from
the time series and represent a trend, seasonality and residuals. This visual representation helps
to clarify how the model solves these different aspects during the forecast process, which

contributes to its predictive accuracy.
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Figure 5.10 Magnitude Decomposition of Earthquake Time Series: Trends, Seasonal Patterns, and Residuals.

Trends and seasonality components are essential to report predictive models, such as the
SARIMA model, which predicts future seismic events. The trend component reflects long -

term movements or addresses in the data, while part of the seasonality corresponds to recurrent
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fluctuations associated with specific time intervals, such as months, seasons or even weeks. On
the other hand, the noise component represents random or unpredictable variations that cannot
be easily modeled. By separating these components, we can improve our understanding of
seismic patterns and improve the precision of predictions. The trend helps to detect the
directional changes in seismic activity and seasonality detect the cyclic patterns that are
repeated at regular intervals. Analysis of seasonality and trends in the sequential dataset of
earthquake is necessary to obtain a significant vision of seismic behavior over time. When
evaluating long-term trends and seasonal patterns it detects basic earthquake checks and make
more accurate predictions. Seasonality is particularly important because it captures shorter and
periodic fluctuations in seismic events that can be associated with environmental or geological
cycles. This information helps to create a more robust predictive model that allows precise
prediction of seismic activity. Further, the ADF test creates two hypotheses one is zero
hypothesis (Ho) which assumes that the data has the root of the unit and another one is the
alternative hypothesis (H1), which claims that the data is stationary and lacks the root of the
unit. This test results in primarily p-value, which is used to assess the data. If the value P
exceeds the selected significance level, which is usually 0.05, the null hypothesis cannot be

rejected, indicating that data is not if the data is not.

This step is essential to ensure that time series data is suitable for modeling. In order to solve
the non -stationarity and trends more efficiently, we use the rolling windows. The rolling mean
includes the calculation of the rolling diameter in the specified time window, smoothing short
-term fluctuations and emphasizing longer-term trends. The choice of window size is critical
because it determines a compromise between capturing meaningful trends and reducing the
impact of noise. The rolling mean extraction technique helps to emphasize wider, basic trends
in earthquake data, such as increasing or reducing seismic activity over time. In addition to
detection of trends, the rolling method also helps to reduce noise, which makes it easier to focus
on the basic formulas in the data and at the same time reduce the impact of temporary
irregularities. The visual representation of the time series, including the original earthquake
data and the rolling diameter, offers a clear and intuitive way to compare unprocessed data with
smoothed trends, as shown in Figure 5.11. These visualizations play an important role in the
help of researchers of the decision to understand the basic dynamics of seismic data and make
it easier to interpret complex time patterns in the earthquake.
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Figure 5.11 Rolling Mean and Standard Deviation vs Monthly Seismic Energy and Earthquake Counts.

The visual representation of the earthquake time series data, which includes both the original
data file and the rolling mean, plays a key role in the detection of formulas that can be hidden
in raw data. By smoothing the time series using rolling techniques, it is easier to detect trends
and fluctuations that were previously covered. This visualization increases the depth of our
analysis by allowing us to observe fine trends or variations that can be decisive for
understanding basic seismic activities. Using the average extraction of rolling on data set in the
time series of earthquakes, we observe only small fluctuations of average rolling values,
without apparent long-term trend. This observation suggests that the data can show stationary
data, which means that its statistical properties such as average and scattering do not change
over time. Although it provides an initial indication, statistical testing is necessary to assess
whether the data is actually stationary. To ensure more reliable evaluation, we perform
improved ADF test, a widely used statistical method for testing stationary testing. The ADF
test compares the test statistics obtained from data to a set of critical values that correspond to
different levels of significance. In our case, it was found that the test statistics fell below 5%
of the critical value. This result suggests that with a 95% certainty, null hypothesis of non-
stationary can be rejected. This provides strong quantitative evidence that the earthquakes are
stationary, which is confirmed by our visual evaluation. Placing the ADF test statistics in the
rejection area is a clear indication that the earthquake data does not show the root of the unit,
which further supports the conclusion that the time series is stationary. This strict statistical
confirmation increases confidence in the analysis and strengthens the overall understanding of
the behavior of the time series, which allows more accurate modeling and predicts seismic

events.
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5.13 DISCUSSION

Our real-time earthquake study has been carried out using up to 12 high-performance cloud
computing instances, each equipped with dual GPU NVIDIA GeForce RTX 4090, which are
specially optimized to handle machine learning calculations. These cloud instances are
essential for the effective training and evaluation of our hybrid SARIMA-XGBoost. Examples
are equipped with Intel Core i9-13900K processors, known high number of core and advanced
multi-rolls, which is suitable for managing dataset with large data and intensive calculations.
These processors allow the system to process multiple tasks that are decisive for data
preliminary work, analysis and workflows. In addition to the Core 19 processors, we also used
the AWS EC2 with the NVIDIA A100 GPU and provided scalable sources of computer
technology on request. The hybrid model SARIMA-XGBoost was implemented using
Tensorflow and XGBOOST frames. For its robust support of neuron networks and other
advanced machine learning techniques, it was ideal for handling comprehensive modeling
processes involved in the earthquake prediction. On the other hand, the XGBoost was chosen
to increase the performance of the model through advanced trees-based algorithms, which
further increases prediction accuracy. The implementation involves the use of SARIMA for
modeling data from earthquakes. The dataset is resampled regularly. The train-test split
includes assigning 94% of the resampled data to the training set and remaining 6% to the testing

set, shown in Figure 5.12.

In our study, we carefully divided the data into separate sets of training and testing to optimize
performance and effectively evaluate the SARIMA model. The initial data distribution focuses
on the allocation of a significant part for training, allowing SARIMA to learn the basic formulas
and trends built into seismic data of time data. This phase of training is essential because it
allows the model to capture complex seasonal and trend components present in the data that
are necessary for precise predictions. By training this larger set of data, the SARIMA model
can specify its ability to predict future seismic events based on the samples that are identified.
Once the model is trained, its performance is then evaluated using a smaller, reserved part of
the data that corresponds to the remaining 6%. This reserved test set plays a decisive role in
evaluating the possibility of generalizing the model. By testing data that the model do not fulfill
during training, we can determine how well it can make predictions on invisible data, ensuring

that the prediction generated by the model is reliable and robust.
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Figure 5.12 Training and Testing Split in relation to Monthly Seismic Energy Released for Earthquake Time
Series Prediction.

To fine-tune the SARIMA model, we configure some important parameters that control its
training process. First, we set the epoch to 100, that defines the number of times how many
times the entire data file for training goes through during the training phase. This ensures that
the model has enough opportunities to learn from data and adjust its parameters for optimal
performance. The batch size is set to 32, which means that the model processes 32 samples at
the same time before updating the model's weight. This will affect the balance between training
efficiency and the model's ability to learn effectively from data. In addition, the premature
termination of school attendance 0.3 to prevent excessive filling is used. The supplement
includes a random dropping or 30% of neurons during each training step, helping to prevent
the model from relying too much on any particular feature or set of functions, thus promoting
generalization. The learning rate is set to 0.001, which checks how many weights of the model
are modified during each update. The small learning rate ensures that the model can learn
effectively without making drastic, unstable weight changes, which could lead to poor
performance or exceed the optimal solution. To ensure that the model does not overcome
training data and can be generalized to new data, we implement a 0.2 verification distribution,
which means that 20% of the training is earmarked for verification during the training process.
This allows to monitor the performance of the model in real-time on invisible data and helps
to adapt as needed to avoid excessive impact and improvement. Table 5.3 outlines a specific
configuration used for SARIMA-XGBoost, including key parameters such as number of time
steps, batch size, number of epochs, learning levels and data distribution. This comprehensive
setting ensures that the SARIMA-XGBoost hybrid model is correctly tuned to optimal
performance, allowing it to generate accurate prediction.
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TABLE 5.3 Optimal model hyper-parameters used in SARIMA-XGBoost model.

Optimal Model Hyper-parameters Values
Time steps 10
Batch Size 32
Epoch 100
Dropout rate 0.3
Learning rate 0.001

Table 5.4 presents the configurations for three different time series forecasting models:
ARIMA, SARIMA, and SARIMA-XGBoost. The ARIMA and SARIMA models share similar
order parameters, specifically (p, d, q) = (0, 1, 1), which denotes that the ARIMA model does
not include any autoregressive components p = 0, applies a first-order differencing d = 1 to
make the data stationary, and incorporates a moving average term with a lag of q = 1. This
configuration is typically used for datasets where the data exhibits trends but no significant
autocorrelation over multiple lags. For the SARIMA model, which extends ARIMA to account
for seasonality, additional seasonal order parameters are introduced. These seasonal parameters
are denoted as (P, D, Q, s) = (0, 1, 1, 12). Here, (P) represents the seasonal autoregressive order,
(D) is the seasonal differencing order, (Q) is the seasonal moving average order, and (s) is the
number of periods in each season—set to 12 to capture a yearly seasonal pattern. This
configuration allows the SARIMA model to better handle seasonal variations in the data,
particularly in cases where seismic activity follows annual patterns or other cyclical behaviors.
In the SARIMA-XGBoost hybrid model, the ARIMA-based parameters (p, d, q) and seasonal
parameters (P, D, Q, s) are kept consistent with those used in the SARIMA model to retain the
temporal and seasonal components. However, the SARIMA-XGBoost model also incorporates
settings for the XGBoost algorithm, a powerful machine learning technique that enhances the
predictive capabilities of the model. The XGBoost settings include 100 estimators (i.e., 100
decision trees in the ensemble), a learning rate of 0.05 to control how much each tree influences
the overall prediction, and a maximum depth of 5 for each decision tree, which limits the
complexity of each individual tree to prevent overfitting. These configurations allow XGBoost
to effectively model residues or inexplicable scattering with the SARIMA component, which
improves the accuracy and robustness of the hybrid model using traditional statistical methods
and modern teaching techniques. By combining these two methodologies, SARIMA for
statistical handling of time series data and access XGBoost of machine learning approach. Now
focuses on the hybrid model SARIMA-XGBoost to provide more accurate predictions,
especially when capturing non-linear patterns and complex relations that cannot be fully solved

by SARIMA.
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TABLE 5.4 SARIMA-XGBoost hybrid model input parameters.

Model Parameter Values
ARIMA Order (p, d, q) (0,1,1)
SARIMA Order (p, d, q) (0,1,1)
Seasonal Order (P, D, Q, s) (0,1,1,12)
SARIMA-XGBoost Order (p,d,q) (0,1,1)
Seasonal Order (P, D, Q, s) (0,1,1,12)
XGBoost Estimators 100
XGBoost Learning Rate 0.05
XGBoost Maximum Depth 5

The hybrid SARIMA-XGBoost has shown exceptional performance in capturing both time
patterns and complex non-linear relations within the earthquake data. Once the model is trained
on seismic data, it effectively identifies and model basic trends, seasonality and non-linear
dynamics that characterize the data file. After the training process, the model was used to
generate predictions for the coming years and results, as shown in Table 5.5, reveal a significant
improvement in accuracy compared to other forecast methods. These metrics of increased

accuracy emphasize the ability of the model to provide more accurate forecasts.

Table 5.5 Comparison of MSE, MAE and RMSE of the SARIMA-XGBoost Model.

Authors Models MAE MSE RMSE
Mohd Sagib et al. [157] ARIMA-LSTM 0.271 0.0055 0.0746
Oncel Gekim et al. [158] LSTM 0.0618 0.0100 -

E. Abebe et al. [159] Transformer 0.271 0.142 0.376
Proposed Model SARIMA-XGBoost 0.038 0.0040 0.068

Several notable studies have contributed to the advancement of seismic time-series forecasting
using different modeling approaches. Mohd Saqib et al. [157] developed a hybrid ARIMA-
LSTM model that combines the strengths of ARIMA for capturing linear and seasonal trends
with the Long Short-Term Memory (LSTM) neural network’s ability to model nonlinear and
long-range temporal dependencies. This approach successfully leveraged statistical and deep
learning methods, achieving an MAE of 0.271, MSE of 0.0055, and RMSE of 0.0746,
reflecting its competency in predicting seismic activity with reasonable accuracy. Oncel Cekim
et al. [158] focused solely on an LSTM-based architecture, a recurrent neural network variant
well-suited for sequential data. Their model excelled in minimizing the Mean Absolute Error
(MAE) to 0.0618, demonstrating the LSTM’s strength in modeling temporal dynamics of

seismic signals. However, the study did not report RMSE, which limits direct comparison on
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that metric. E. Abebe et al. [159] explored the application of the Transformer architecture,
which has gained popularity due to its attention mechanism and ability to model long-range
dependencies without recurrence. While Transformers have achieved success in various
sequential tasks, in this specific context, the model recorded comparatively higher errors—
MAE of 0.271, MSE of 0.142, and RMSE of 0.376—indicating challenges in effectively
capturing seismic time-series patterns using this architecture alone, possibly due to the limited
data size or noise in the dataset. Building on the strengths and limitations of these previous
works, the present chapter proposes a hybrid SARIMA-XGBoost model. SARIMA, a classical
statistical method, excels in modeling seasonality and trends in time-series data, providing a
robust baseline for predictable linear components. XGBoost, an efficient gradient boosting
algorithm, complements this by capturing nonlinear interactions and complex feature
relationships that classical models often miss. The integration of these models enables more

accurate and robust earthquake prediction.

The proposed SARIMA-XGBoost model was rigorously evaluated on the same seismic
datasets as the referenced works and achieved a significantly improved performance with an
MAE of 0.038, MSE of 0.0040, and RMSE of 0.068. These results outperform those of Mohd
Saqib et al., Oncel Cekim et al., and E. Abebe et al., demonstrating the effectiveness of
combining classical time-series analysis with modern machine learning techniques. This hybrid
approach successfully balances the strengths of each method, resulting in a model that is both

interpretable and powerful in handling the complexity of seismic data.

The comparison of different models is based on metrics, such as MAE, MSE, and RMSE that
provide a comprehensive view of the precision of prediction. Among the tested models, the
hybrid SARIMA-XGBoost model permanently overcomes others and demonstrates the lowest
error values in all three metrics. Specifically, SARIMA- XGBoost reaches MAE 0.038, MSE
0.0040 and RMSE 0.068. These results emphasize its excellent accuracy compared to
alternative models such as ARIMA-LSTM and transformer that show a higher level of errors.
The success of SARIMA-XGBoost can be attributed to its integration techniques SARIMA and
XGBoost. This combination allows SARIMA-XGBoost to manage both linear and non-linear
aspects of the earthquake time series, making it a more robust tool for the prediction of the
earthquake. Comparative analysis strengthens the main role of SARIMA-XGBoost in the
accuracy of the forecast and builds it as a valuable model for progress in the predicational

capabilities of the earthquake.
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Figure 5.13 True and Predicted Values using the SARIMA-XGBoost Model.

Figure 5.13 provides detailed visual representation of the accuracy of the model prediction and
effectively shows the accuracy of the hybrid model SARIMA-XGBoost. In this graph, the x-
axis represents years, which allows a clear understanding of the temporary time of the
earthquake over time. The Y axis reflects the size or magnitude of the earthquake and provides
a quantitative scale for the predicted and compared values. The full line on the graph
corresponds to the actual amount of earthquake observed in a given time period, also referred
to as "TRUE" value. This line represents recorded data of seismic activity over the years. On
the other hand, the interrupted line represents the estimated earthquake generated by the
SARIMA- XGBoost model. These predictions are based on the model training using historical
data, which include both seasonal patterns and non-linear trends. The narrow alignment
between fixed and intermittent lines throughout a wave of similar pattern is a clear indicator of
the model accuracy. Because the lines follow a similar trajectory, it means that the model
effectively captures the formulas of the earthquake size over time, both in terms of their size.
This high level of alignment between the assumed and actual values suggests that the hybrid
model SARIMA-XGBoost has successfully learned from the underlying data and precisely
predicts future events. The fact that predicted values closely monitor the trend of actual values
means that the model effectively monitors these fluctuations, including any seasonal or cyclic

trends, as well as charge any deviations or anomalies in data.

Figure 5.14 provides a comprehensive visualization of the probability of earthquake over time,
indicating a significant improvement when a hybrid SARIMA-XGBoost is used. This graph
present forecasts generated by a model to release seismic energy for a specific period.
SARIMA-XGBoost uses the strengths of two different methodologies one is SARIMA model

which is effective in capturing cyclic and seasonal patterns in data and XGBoost manages

146



integral relationships of non-linear dataset. The trend of future seismic activities is carefully
identified by examining the slope of the predicted line. The graph contains green waves pattern
which stand out to represent a period in which earthquakes are predicted by SARIMA-
XGBoost. These green areas provide key information about when the model expects the
seismic energy release peak, indicating a greater probability of earthquake. The result is a
clearer understanding of possible seismic patterns and provides valuable information on the

future earthquake prediction.

SARIMA-XGBoost implementation significantly increases the preparation and response of the
earthquake. The combination of SARIMA’s advantages in time series with advanced ML model
XGBoost’s advantages this study provides the potential for more precise predictions of time,

location and magnitude of earthquake in future.
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Figure 5.14 Forecasting Graph illustrating predicted earthquake magnitudes over time using the SARIMA.-
XGBoost model.

These improved forecasting techniques allow terms to act more actively and provide them with
the ability to implement resources like when to evacuate and also activate early alert systems.
This proactive approach significantly reduces the risk of coincidence during the earthquake by
providing the critical information. By understanding patterns and the potential impact of future
earthquakes, local administration and organization may be more informed about the approach

to relieve and protect public safety.
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5.14 CONCLUSIONS

In conclusion, the earthquake forecasting is an important research area that helps in monitoring
seismic activities and give early warnings to prevent these disasters. In this chapter, we
represent a novel approach to predict the magnitude and forecast the probability of future
earthquake using a sequential earthquake dataset. In this approach the key contribution is
integration of the XGBoost algorithm with the SARIMA model and make a new more accurate
and reliable hybrid machine learning model. This hybrid model is specially designed to reduce
the residual errors, reduce loss at the time of validation and increase the accuracy of the time
series prediction. The efficiency of the model is demonstrated through performance metrics
like MAE and MSE and on the basis of the result this model confirms its improved and
enhanced predictive outcomes. SARIMA-XGBoost hybrid surpassed traditional models such
as ARIMA and SARIMA in terms of prediction precision.

This study also emphasizes the challenges of reliable prediction of the magnitude of the
earthquake. Despite the significant progress in predominant technologies, the natural
complexity of seismic events makes it difficult to achieve precise predictions. However, the
excellent performance of SARIMA-XGBoost in terms of prediction offers a promising solution
to some of these challenges. The results show that SARIMA's integration with XGBoost
exceeds some of the restrictions on traditional models and provides a more reliable and efficient

method for the prediction of future earthquakes.
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CHAPTERG

HYBRID CATBoOST AND SVR MODEL FOR
EARTHQUAKE PREDICTION USING THE LANL
EARTHQUAKE DATASET

6.1 Introduction

Earthquake is one of the most devastating natural disasters. Despite the constant efforts of the
seismological community, it is still a big challenge to predict earthquake more accurately.
Currently, the primary tool used to detect an earthquake is using a seismograph that record
seismic activity [160]. However, these tools are not enough to prevent large damage
infrastructure or economic assets as they provide only a few seconds warning when the
earthquake occur. The main challenge in earthquake prediction is the complexity and non-linear
nature of seismic data. Seismic data are difficult to interpreted and show irregular patterns that
make it difficult to conclude accurate prediction [161][162]. In this chapter a hybrid model is
examined which combines two powerful machine learning techniques one is CatBoost and
another one is support vector regression (SVR) to create a hybrid model which increase the
earthquake forecasting. In this approach data from the Los Alamos National Laboratory

Earthquake Dataset (LANL) is used [163].

When working with the LANL data set, it is important to consider several restrictions and
potential distortion that can affect the generalization and reliability of the findings. One of the
key problems is the geographical distortion of the data set, since it focuses on specific regions,
the conclusions of these data may not be applied to areas with different seismic characteristics.
For example, if the data mainly come from the tectonic limits of the active fault joints or lines,
the behavior of the earthquakes in regions that experience less seismic events may not
accurately represent the behavior of the earthquake in the regions. Another limitation is the
time gaps in the dataset. The data distribution is uneven over time, which makes the analysis
of long-term trends difficult and complicate. If the data contain noise or missing values
detection of meaningful patterns is difficult and leads to wrong prediction or false positive. If

the collected data is insufficient or contain noise or incorrect labels this may cause false positive
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or wrong early warnings of the main earthquakes and can have significant impact on prediction
models. In connection with the prediction of time in failure (TTF) in controlled laboratory
environments, researchers usually use machine learning framework (ML) that rely on different
features and functions. These categories include a) AE -controlled features AE, which are
directly derived from the signals of continuous acoustic emissions (AE), capturing fine details
of the structural reaction and behavior of the material; (b) geodetically controlled properties,
extracted from geodetic measurements, offer insight into the characteristics of material
deformation and spatial dynamics, thereby illuminating its mechanical integrity; and (c) The
catalog -controlled element, originating in the catalog of earthquake or seismicity, provides

historical data on seismic events and their related attributes.

Despite the limitation present in the LANL dataset, our hybrid CatBoost-SVR model provides
better results with an effective solution to these challenges. The CatBoost algorithm, known
for its robustness in handling categorical features and the ability to solve noisy and incomplete
data, increases the ability of the model to identify important patterns in seismic events. By
reducing excessive filling and improving CatBoost's generalization, the model ensures that the
model remains precise in the presence of distortion, such as geographical or time imbalance.
On the other hand, the SVR component helps capture complicated data relationships, especially
to model nonlinearities that could occur due to the different sizes and the depth of the
earthquake. Together, hybrid models use the strength of both algorithms, reducing the effect of
incomplete or noisy data, and ultimately provide more reliable predictions. In addition, the
combination of CatBoost functional engineering and precision functional functions allows the
model to provide information even in limited data records, improving the general precision and

robustness of earthquake prediction.

This novel hybrid approach combines CatBoost with SVR. CatBoost increases the gradient
boosting, and SVR increases the accuracy of the failure time (TTF). In this approach the LANL
dataset is used for earthquake prediction. This hybrid model uses strengths of both algorithms
and make a more enhanced and reliable model which provide more precise and accurate
earthquake prediction. CatBoost is suitable for dataset with complex relationship as it manages
the categorical functions and automatic missing values and also captures the complex patterns.
On the other hand, the SVR, the regression algorithm, used in modeling nonlinear relationships
and is particularly effective in capturing fine and complex relationships that are present in
earthquake data, such as changes in magnitude or depth which eventually leads to more precise

and reliable estimates of TTF.
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6.2 Methodology

We implemented a comprehensive methodology in this study that combines advanced machine
learning techniques with LANL dataset to increase the accuracy of earthquake forecasting
methods. This methodology begins with the key step of data preprocessing, which is necessary
to ensure that the dataset is correctly prepared for training and testing the model. This step
includes careful cleaning to solve the missing values and remote values that can introduce
distortion and further distort the ability of the model to learn meaningful formulas. Along with
cleaning, engineering techniques are used to extract valuable statistical properties from the data
of the raw acoustic signal. These qualities provide a deeper insight into the dynamics of seismic

activity, enrich the data file and make it informative for prediction purposes [164].

Once the dataset is adequately pre-processed, the next step includes training of individual
predictive models. This starts with CatBoost, a powerful algorithm increasing gradient known
for its efficiency in the processing of heterogeneous data, including categorical variables.
CatBoost is trained on a processed data set for generating predictions related to timing. This
model provides best results in capturing complex relationships and patterns that are difficult to
detect in seismic data, its also have ability to effectively handle large and diverse sets. At the
same time, the SVR is trained independently to remove the remaining residual errors that are
left by the initial CatBoost model. This approach of two-stage modelling is designed to use the
strengths of both algorithms: CatBoost's ability to identify complex, high-dimensional patterns
and SVR expertise in modeling non-linear relations associated with seismic data. The
integration of these two models increases the overall accuracy of prediction. By combining the
ability to recognize CatBoost patterns with the ability to clarify the forecast through residual
modelling ensures that complex and fine patterns in seismic data are captured. This additional
approach allows more precise predictions of the occurrence of earthquakes because each model
contributes to the overall prediction process. This methodology eventually offers a robust
framework for the prediction of an earthquake that moves the boundaries of what can be

achieved by machine learning in the seismic event [165].

After the individual models is trained, the methodology proceeds to the integration step, where
the properties of the generated CatBoost and the residuals obtained from the SVR are combined
and creates an augmented set of features. This augmented feature set further serves as an input
for training the hybrid model Catboost-SVR. This hybrid CatBoost-SVR model is evaluated

using metrics such as Mean Square Error (MSE), which provides a comprehensive comparison
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with CatBoost and SVR models. This comparison assesses the advantages of hybrid models in
predicting earthquake occurrences. This is because it allows for a detailed evaluation of how
well the combined approach exceeds the model itself. After evaluation, the analysis phase is
performed to interpret the meaning of functions that offer information about how individual
features and algorithms contribute to the predictive performance of the model. This step is
essential for understanding the model prediction mechanisms and for identification that
represents the most important role in the prediction of the earthquake. It also provides valuable
feedback for the refining of the model and helps to determine potential areas for further
improvement of future iterations. Cross validation techniques are used to ensure the reliability
and generalization of the model, which further increases the robustness of the model by
providing an impartial assessment of its performance across different data subsets. In addition,
the CatBoost-SVR model is applied to the tuning of the hyperparameter to optimize its suitable
parameters, ensuring that the hybrid model works with the highest potential for accurate

earthquake prediction [166].
6.2.1 CatBoost Model

In our research using the LANL dataset with CatBoost as shown in Figure 6.1 emerges as a key
part of our predictive modeling task. CatBoost, known for its strong gradient boosting
capabilities, is useful in detecting complex patterns associated with heterogeneous acoustic
signal data that characterizes the dynamics of seismic activity. CatBoost efficiency is enhanced
through pre-processing data which includes comprehensive cleaning and feature engineering,
ensuring that the dataset is well prepared to use maximum abilities of the model. This step of
pre-processing focuses on the extraction of the most important statistical features from raw
acoustic signals called feature extraction, which detects the occurrence of earthquakes. During
the modeling phase, CatBoost is trained on a pre-processed dataset to create initial predictions

for earthquake occurrence.

Understanding these key concepts of the training data and the indicator function
y,g = ylj , allows us to define the formula for the encoded value }7}, of the j categorical variable

of the I'" element in D as follows:
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Figure 6.1 Architecture of CatBoost.

One of the key strengths of CatBoost is to provide meters of importance that offer valuable
knowledge of the basic factors that control the seismic activity. In addition, CatBoost
knowledge is necessary when handling categorical functions, as it allows a wide range of
information, including categorical variables. This ability makes sure that all important features
are used during the training process which further contributes to the overall predictivity and
accuracy of the model. One of the significant advantages of CatBoost is its ability to provide
metrics based on meaning that are necessary for understanding the basic factors and parameters
that control seismic activity. These metrics allow us to find out which feature of acoustic signals
and predict the occurrence of earthquakes. As a result, this process increases the predictive
performance of the model and ensures that it is based on the most influential data for accurate

earth predictions.

153



6.2.2 SVR Model

The support vector regression (SVR) shown in Figure 6.2 stands out as a fundamental
component within our predictive modeling frame, with the aim of taking advantage of the
complexities of the LANL earthquake data set for greater precision of earthquake prediction.
SVR offers a powerful methodology to capture non-linear relationships inherent to the
dynamics of seismic activity The SVR is based on the basic principles of support vectors
machines, it is an effective method to identify and capture non -linear relationships within the
seismic activity [167]. The main advantage of SVR lies in its ability to model complex and non
-linear units, which are often associated with seismic event time patterns. It works mapping
input data in a upper dimensional function space, where it seeks to determine the optimal
hyperplane, which better represents the basic data structure. The hyperplane is selected to
maximize the range between data and hyperplane points, which is necessary to ensure that the
model is well generalized to invisible data. This approach allows SVR to model integral

relationships in acoustic signals collected during a simulated laboratory earthquake [168].
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Table 6.1 Parameters of SVR.

Parameter Value

Kernel Radial Basis Function (RBF)
C 1.0

Epsilon 0.1

Gamma auto

Degree 3

Coefficient 0.0

Shrinking True

Tolerance 0.001

The SVR offers considerable flexibility in modeling a wide range of functions, especially
through their core, which allows to capture non-linear dependencies that predominate in
seismic data. This ability is particularly valuable in attempting to model complex interactions
between features of acoustic signals and occurrence. The features of the core allow the
transformation of input data to a higher dimensional space where linear models can be
effectively applied to non -linear relations, which increases the ability of the model to detect

comprehensive formulas, which is otherwise difficult to recognize in the original space [169].

By adopting a soft-margin approach similar to that used in SVM, slack variables £ and £*¢*

is introduced to protect against outliers.
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Through extensive experimentation and strict evaluation of the model, this research seeks to
demonstrate the effectiveness of the SVR in the approach of hybrid modeling for earthquake
prediction. Using the ability of SVR to master non -linear relationships, the model is better

equipped to specify the predictions and capture of fine dynamics present in seismic data.
6.2.3 Hybrid Model

Our research introduces an innovative approach of developing hybrid model that integrates the
regression of the CatBoost vector and supports vector regression (SVR), as shown in Figure
6.3 to significantly increase the accuracy of the earthquake prediction. This hybrid approach
uses the unique strengths of both models to achieve excellent performance in predicting seismic
events. The architecture of the hybrid model is designed to combine the strengths of the robust
capabilities of increasing the CatBoost’s gradient boosting with SVR, which aims to maximize

predictive accuracy by drawing from the additional characteristics of both algorithms.

CatBoost is known for its ability to capture global patterns and interaction within integrating
comprehensive data. This also provides the basic layer of the hybrid model by generating initial
predictions and identifying the most influential characteristics that control the seismic activity.
Its access to the increasing gradient excels in managing several data and heterogeneous
datasets, such as the LANL earthquake, effective learning of large patterns and localized in the
data. On the other hand, the SVR is used to specify the power of the model and focuses
specifically on capturing residual errors of the initial CatBoost forecasts. Tuning the model
output, especially in areas of functions where CatBoost predictions can be less precise, but on

top of that the SVR increases the accuracy of the model by handling non-linearities.

The integration of these two different modeling techniques aims to overcome the limitation that
each individual model can face when applied to the prediction of the earthquake. Although
CatBoost is strong in the detection of trends and broad data, it does not have to capture more
fine and more located patterns that affect time. SVR compensates for another improvement
layer that solves such gaps, especially in non-linear data. The combination of CatBoost and
SVR strengths is a hybrid model is a more robust and versatile approach to earthquake forecasts
and changes the limits of traditional prediction methodologies.The hybrid model not only
exceeds its individual components in terms of predictive precision, but also shows greater
robustness and generalization. These strengths make it a more reliable tool for the prediction
of seismic events, especially in scenarios where other models can try to capture a complex

earthquake dynamic.
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Figure 6.3 Flow diagram of CatBoost-SVR model for earthquake prediction.

This excellent performance emphasizes the potential of a hybrid approach as a promising
solution for the development of earthquake prediction methodologies and offers a more precise

and resistant framework to face complex challenges associated with seismic prediction.

The rationale for selecting the hybrid model combining CatBoost and Support Vector
Regression (SVR) is grounded in the complementary capabilities these two algorithms offer
when addressing the complex and multifaceted nature of earthquake prediction. CatBoost, a
state-of-the-art gradient boosting framework, is particularly adept at capturing global patterns
and complex interactions within heterogeneous datasets, such as the LANL earthquake dataset
used in this study. Its advanced gradient boosting technique, coupled with efficient handling of
categorical and numerical variables, enables CatBoost to generate robust initial predictions.
More importantly, it excels at identifying the most influential features that govern seismic
activity, thereby providing a comprehensive baseline understanding of the underlying seismic
processes. The ability of CatBoost to effectively learn from large-scale data with heterogeneous
characteristics ensures that broad trends and significant patterns in seismic behavior are well

represented in the model outputs.
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Despite these strengths, CatBoost has inherent limitations in modeling more localized, fine-
grained, and highly non-linear temporal patterns that are often present in seismic data but may
be less pronounced in the global trends captured by gradient boosting trees. These subtle
dynamics are critical in earthquake forecasting, where minor variations and nonlinear
interactions can significantly impact prediction accuracy. To address this, SVR is employed as
a secondary modeling layer designed specifically to capture the residual errors that remain after
CatBoost’s initial predictions. SVR’s kernel-based approach is highly effective at modeling
complex non-linear relationships, making it well suited for refining the forecast by learning the
intricate residual structure that CatBoost may not fully capture. This two-stage modeling
approach leverages the strength of SVR in residual correction and non-linear mapping to

improve the overall accuracy and reliability of the earthquake prediction.

The integration of CatBoost and SVR constitutes a hybrid modeling framework that
strategically overcomes the limitations associated with each individual method. While
CatBoost provides a strong foundation by detecting broad seismic trends and feature
importance, SVR complements this by focusing on localized residual variability and non-
linearities in the data. This synergy results in a more robust and versatile predictive model that
exhibits superior performance compared to standalone models. Empirical evidence from
validation studies demonstrates that the hybrid model not only surpasses the predictive
precision of CatBoost or SVR alone but also shows enhanced generalization capabilities across
different seismic events and varying data conditions. This robustness is particularly valuable
in the context of earthquake prediction, where the data is inherently noisy and patterns can be

highly variable.

When compared against other baseline models such as linear regression, random forests, and
single-method gradient boosting algorithms (e.g., XGBoost, LightGBM), the CatBoost + SVR
hybrid model presents several distinct advantages. Linear regression models, due to their
inherent linearity, are insufficient to capture the complex, non-linear dependencies prevalent in
seismic data. Random forests, while capable of modeling interactions, may not effectively
address the residual errors or localized temporal dependencies that SVR can handle. Similarly,
although other gradient boosting frameworks provide competitive performance, CatBoost’s
superior handling of categorical features and prevention of overfitting through ordered boosting
techniques give it an edge as the foundational model. Neural networks, while powerful for
complex pattern recognition, often require extensive hyperparameter tuning and larger datasets

and can be less interpretable. The hybrid approach balances interpretability, computational
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efficiency, and predictive accuracy, making it particularly well-suited for seismic forecasting

tasks that demand both broad trend identification and precise residual modeling.
6.3 Dataset Description

The scientists of the National Laboratory of the Alamos (LANL) made an advance in the
prediction of a slow sliding earthquake (SSE) in controlled laboratory conditions designed to
simulate natural seismic activity. The team developed a method in which the computer system
was trained to detect and analyze acoustic signals and seismic signals emitted during fault
movements. Through further processing of large datasets, it is able identify different audio
patterns that are previously rejected as a background noise but then found a reliable indicator
of detect earthquake. This emphasized the importance of fine acoustic signals, which are often

overlooked, but could be essential to predict seismic events.

Scientists focused on a small-time window of 1.8 seconds of data to predict the time remaining
before the laboratory earthquake. Using random forest regression and quasi-periodic data
analysis, they achieved an impressive 89% of the determination coefficient, showing the
potential of this method for precise forecasts. Seismic sounds created by the interaction
between blocks with rocky material-rinse simulation of real-world behavior have been recorded
by accelerometers. This breakthrough is the first successful prediction of the occurrence of
laboratory earthquake. While the results are promising, the LANL scientist acknowledges that
there are inherent differences between shear stress associated with laboratory experiments and
natural earthquakes. Despite these differences, scientists actively work to verify their findings
in real conditions. The aim of their continuing efforts is to clarify the model so that it is
applicable to natural seismic events, which could eventually lead to better readiness and more

reliable forecasting methods.
6.4 Data Exploration

The LANL dataset for the earthquake is a detailed collection of signals of acoustic emissions
recorded during laboratory simulated earthquakes. This dataset serves as a valuable source for
studying seismic activities, as each item represents an image of acoustic data captured at
specific time intervals. Importantly, each sample is paired with a target value that indicates the
time left before another laboratory earthquake. This time information is critical for
understanding the dynamics of seismic events and exploring the predictive approaches of

modeling to predict the occurrence of earthquakes. By analyzing these time series, scientists
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have gain a deeper insight into the formulas and behavior that precedes the earthquake,
allowing the development of more precise prediction models. The acoustic data in the data file
is divided into discrete segments, each of which lasts 0.0375 seconds and recorded at 4 MHz.
This high -frequency sampling results in a large and rich data file that consists of a total of
150,000 data points. Each segment is carefully annotated by the "time for failure", which
corresponds to the duration until the laboratory failure is measured, measured by voltage
applied to the system value as shown in Table 6.2. These values of time into properties are
necessary for training predictive models because they provide a clear indication of the
relationship between acoustic signals and the real failure time. The acoustic signals themselves
show remarkable fluctuations, especially at times leading to any event of failure as shown in
Figure 6.4, with significant changes indicating the impending rupture of the failure. A deeper
view of time graph shows that the main oscillation of acoustic signals serves as time to failure.
For example, Figure 6.5 shows that significant oscillations on a 1.572 second occur just before
failure, although it does not equal exactly with the event itself. Before this main oscillation are
visible sequences of intensive signal fluctuations, indicating the accumulation of seismic

activity.

1000000 2000000 3000000 WO 000000 00000
Figure 6.4 Acoustic Data and Time to Failure Analysis: Subset Representing 1% of Total Dataset.

These fluctuations appear to be formed towards larger, more significant oscillations and signal
potential failures. Smaller oscillations are observed after the main oscillation, indicating the
continuation or consequences of the seismic event. This detailed time chart shows that,
although there is a large oscillation shortly before the fault, it does not happen immediately

before them, indicating that seismic signals can provide valuable traces to predict earthquake
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events with a slight delivery time. The ability to detect these fluctuations and oscillations
provides a more intrinsic understanding of the dynamics of the earthquake, which could have
significant consequences for applications in the real world in seismology and analysis of time

to failure.

Table 6.2 Dataset: Seismic Activity (v) and Time to Failure (s)

Seismic activity (v) | Time to failure (s)
12 1.4690999832

6 1.4690999821

8 1.469099981

5 1.4690999799

8 1.469099988

8 1.469099977

9 1.4690999766

7 1.4690999755

-5 1.4690999744

The dataset consists of sequences of intensive oscillations that occur before the main
oscillation, followed by minor oscillations of the peak after it. The dataset originally structured
data frame was divided into 150,000 individual samples, each corresponding to a specific time
to failure value. This segmentation facilitates the development of predictive models by pairing
each sample with an accurate time to failure time. It contains a data range of 2,626 pre -
designed acoustic segments, which are specially reserved for model testing. This careful
organization allows scientists to evaluate the performance and reliability of the model in

predicting an earthquake based on acoustic signals.
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Figure 6.5 Zoomed-in-time-plot.

Instead, there are sequences of intense oscillations that possesses large oscillations, as well as
minor oscillations of peaks that follow it. Subsequently, after a series of minor oscillations,
failure might occur. Dataset, originally structured as data frame and the segmented it into
150,000 individual samples. Each sample is associated with the appropriate failure time,
making it easier to train and verify predictive models. In addition, the data file contains another
2626 pre-designed acoustic segments set aside specially for model testing. This careful data
file organization allows scientists to perform a robust evaluation of the performance of the
model and efficiency in the tasks of an earthquake prediction. Seismic signals are captured by
a piezoceramic sensor that generates the voltage in response to deformation caused by
incoming seismic waves. This voltage, referred to as an acoustic signal, serves as a primary
input for our analysis. The acoustic signal represents the recorded voltage, expressed as

integers.
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Figure 6.6 The distribution of acoustic signals analyzed individually
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Seismic signals are captured by a piezoceramic sensor that generates the voltage in response to
deformation caused by seismic waves. The voltage generated by the sensor is recorded as an
acoustic signal that forms the main input for analysis. The acoustic signal is expressed in full
values, with an average of 4.52. When examining the distribution of these values, the diameter
is clear about the diameter, indicating that most of the values are recorded on average. However,
distribution also reveals distant values in both directions, suggesting that there are cases of
unusually high or low signal values. These formulas are clearly visible in Figure 6.6, where the
form of distribution and the presence of remote values is demonstrated. The range of acoustic
signals, from -5515 to 5444, represents a complete spectrum of voltage fluctuations, from the
most unpleasant value to the most positive. These fluctuations reflect the variable intensity of
seismic waves. Negative values is reduction in voltage which is caused by compression or
damping on the other hand positive values is an increase in voltage due to voltage or
amplification. The wide range of these signals reflects significant variability of seismic activity,
influenced by factors such as the strength of seismic waves, the distance of the source, the
conditions of the environment and sensitivity of the sensor. The proper management of these
remote values is important to enhance the precision and quality of the prediction of seismic

events, since they represent a unique or extreme seismic event that most of the time stay hidden.

Time to Failure

Figure 6.7 The distribution of time to failure analyzed individually.

TTF is a critical measure quantifies the remaining duration, in seconds until an immediate
landslide failure event occurs. This metric is a key indicator of the immediate start of failure
that allows scientists to implement early interventions or new research events. The minimum
value recorded for time until the failure is extremely close to zero, namely, up to 9,55039650E-
05 seconds, indicating cases in which the fault occurred almost immediately after the

observation. On the other hand, the maximum value of time provided that the fault is extended
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in 16 seconds, which means cases in which the failure has been predicted with a significant
time. The design is governed by the correct distortion pattern as shown in Figure 6.7. This
skewness indicates that most observations are clustered towards the lower end of the time scale
with significantly less cases that are longer before the failure. This distribution pattern is
essential to understand the dynamics of the failure of the stick-slip events because it emphasizes

its own variability at intervals that lead to the failure.
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Figure 6.8 Time series relationship between first 1000 rows.

When analyzing data of temporary series, the first 1000 rows are examined, where the orange
lines represent seismic activity, marked with the acoustic signal characteristics, while the blue
line corresponds to the failure time and illustrates the duration to the earthquake. This graph
reveals a clear linear trend at the time of the failure, suggesting that the failure time is constantly
changing over time. This trend means a potential relationship between seismic signals and a
time of failure, which guarantees greater survey in the predictive abilities of these signals in
events of failure. The analysis of temporary series, shown in Figure 6.7, emphasizes the
importance of evaluation of acoustic signals and failure time. These assessments are essential
for understanding how these properties develop and interact and provide more accurate ideas

of the sliding process mechanics.

Two specific functions are provided to facilitate the analysis of these functions. The first feature
generates a plot that shows both acoustic data and the corresponding failure time to a certain
extent of indexes, allowing visual representation of their relationship. The second feature
allows to compare two different index ranges and offer the opportunity to see how these

functions behave in different data set segments.
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Figure 6.9 Time series relationship between first 10,000 rows.

In the example, the first function for generating the plot of the first 1000 rows is used, while
the orange rows represent an acoustic element and a blue line indicating the target function,
which is time for failure. The resulting plot clearly illustrates the linear trend at the time of
failure, suggesting that further analysis is guaranteed to better understand the behavior of the

data file to a larger line range.
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Figure 6.10: Time series relationship between first 600k rows.

After analyzing the initial 1000 rows, further exploration on progressively larger subsets of the
data set is carried out. These include the first 10,000 rows shown in Figure 6.8 and the entire
data file that contains 600,000 rows shown in Figure 6.9. These wider analyzes reveal
consistent trends across data. Especially the time to failure decreases rapidly to almost zero
seconds as the earthquake event approaches, signaling the immediate onset of seismic activity.
This observation emphasizes the potential of acoustic data in the prediction of earthquake
events because it shows a clear TTF just before the appearance of seismic events. After
generating the graphics of the temporal series, an in-depth analysis is performed, which obtains

significant knowledge of data behavior. This process is used to identify the recurring patterns,
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determine sudden changes or anomalies, and the evaluation of the general trend in the data.
The interpretation of temporary series graphics achieves a deeper understanding of the basic
dynamics that regulates seismic activity and how acoustic data is related to failure time. This
knowledge is useful for improving predictive models by revealing significant patterns in time
series, which testifies immediate failure events. In summary, the time series analysis plays an
essential role in the detection of relationships and time patterns in seismic data and provides
critical information reported on the development of more precise earthquake forecast models.
In our analysis, we focus on a data file that contains 629 million rows, although the main
approach focused on a subset containing 600,000 rows. A specific objective was to understand
the moment of seismic events, especially the values of time that varied from almost zero
seconds to a maximum of 12 seconds. This scope of time emphasizes several delivery times
between the detection of seismic activities and the appearance of earthquakes, thus offering
valuable knowledge to the forecast window for imminent failure. This large number of data
files provides a solid basis for a more detailed examination of the factors that affect seismic

behavior, and time series analysis offers a more refined understanding of dynamics.

Cumulative Distribution Function

Figure 6.11: Cumulative distribution of the time to failure with high signal.

The time patterns in the dataset examined the cumulative distribution function (CDF) of the
target function, which is a TTF. This analysis provided a clearer understanding of the frequency
with which the events occurred in a time range of 0 to 12 seconds. After setting the display
accuracy and loading the dataset visualized the distribution of acoustic data. The CDF Plot of
the target element, as shown in Figure 6.10, revealed a significant pattern: approximately 85%
of the events occurred within just 0.3 seconds of predicted time into failure. This finding
emphasizes the rapid onset of seismic events, suggesting that only a short interval is preceded

by most failure occurrences. The observation with high share of events occurs near 0 sec is
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important for the understanding dynamics of timing in seismic activity. It highlights the
importance and need of this exact models for prediction almost in real-time that predicts such
rapid events and improve the efficiency of early warning systems in earthquakes prediction

system.
6.5 Feature Engineering

Data pre-processing is an important role in the preparation of a LANL earthquake for accurate
training and validation which lead to more accurate model. This step includes various steps to
enhance the quality of the dataset and make sure that it is clean and informative for further
analysis. The LANL earthquake contains acoustic emission signals captured in the simulated
laboratory earthquake. These signals are registered at different time intervals, are combined
with the appropriate time values to the accompanied, indicating the duration to another seismic
event. Once the data is loaded, several data cleaning procedures are implemented to treat any
inconsistency or error in the data set. The missing values that can interrupt the precision and
reliability of the model training are processed through advanced printing techniques, ensuring
that the data set remains complete and usable. In addition, peripheral values are carefully
identified. This step implies the use of statistical methods to detect abnormal values and the
use of corrective measures to avoid these remote values in the distortion of the analysis. After
the cleaning process, the functional engineering data set suffers the transformation of
unprocessed data into adequate format for modeling. The main engineering includes the
creation of new and informative characteristics that can help the model to better understand the
basic patterns in the data. This could include aggregation or transformation of existing
functions to emphasize relationships that are decisive to predict earthquake events. The careful
improvement of the data set in this way are the data that contribute to the precise and robust

training of the model and place the foundations for effective earthquake prognosis models.

The process of cleaning and preparation of the dataset for the LANL earthquake included a
series of critical steps designed to guarantee the quality and consistency of a data set before it’s
used to train a hybrid model. The first step in the process was to identify and solve missing or
incomplete data. This has been done using appropriate imputation techniques to complete the
missing values. In cases where excess gaps were in the data, records were eliminated to avoid
the insertion of distortion in the data set. In careful missing data processing, we ensure that the
dataset is maintained complex and representative for basic seismic events. Then similar values

are identified and removed for the uniqueness and better training of data, which can
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significantly affect the performance of machine learning models and avoid errors or loss. Since
seismic data sometimes include irregular values due to sensor failures or other environmental
factors, it is important to detect and manipulate these remote values were necessary to maintain
the accuracy of the model. In addition, the normalization and scaling of the data is used to
standardize the functions and ensure that the variables with different units and ranges have
affected the performance of the model. Categorical variables, such as types of events or
geographical locations, have been processed using coding techniques such as unique coding or
label coding. These methods have ensured that categorical data could effectively integrate into
the CatBoost algorithm to effectively manage categorical functions. Temporary characteristics,
such as the date and time of seismic events, were also carefully processed. This allowed the
extraction of valuable patterns, including trends or seasonal variables, which could increase the
performance of the model by providing additional context information. Finally, functional
engineering is used to create new features, which could further improve the predictive
capabilities of the model. It was a calculation of time between the following events or
aggregation of data to different time intervals that offer new knowledge about seismic activities

that could help with more precise earthquake forecasts.

In this study, feature engineering focused specifically on the extraction of key characteristics
of the AE data, which is an important source of information for TTF. The main objective of this
process is to identify features that could effectively capture the basic patterns and trends or
dynamics of AE signals, because these patterns or trends indicate the behavior of the system
when they address the fault. The feature engineering in AE data is in the form of peaks or
anomalies and have valuable information which is used to predict failure. Based on this idea,
the study assumed that both the frequency and intensity of these AE peaks is correlated directly
with the remaining system, acting as well as reliable indicators of the failure time. To capture
these critical dynamics, the engineering process focused on deriving statistical properties that
could encapsulate the characteristics of AE signals. A set of 18 statistical properties was
calculated from each AE which comes out to be 150,000. These features included basic
statistical metrics such as diameter, standard deviation, skewness, which are commonly used
to describe the form and distribution of dataset. These statistical features have been
demonstrated in previous research to reflect the key aspects of AE signal, such as its overall
behaviour, variability and distribution. When capturing these functions, the model could learn
and identify AE data that preceded the failure of events, and eventually improved the accuracy

and reliability of time predictions.

168



In the statistical basis, more advanced features are calculate such as the ratio of diameters of
standard deviations and more detailed distribution elements, such as percentiles such as 1, 5,
25, 50. These distribution metrics were included because they provide more detailed and more
specific understanding of AE signal behaviour. This is necessary because it allows the model
to better recognize the formulas related to the onset of failure that could omit simpler metrics
such as medium or standard deviation. While many features were derived from AE data, not
all were eventually used in the final model. For example, although maximum and minimum
values were originally considered potential features, they were excluded from the final set. This
decision was based on observing that these values were too sensitive to extreme events - remote
values that tend to represent a signal disturbance rather than meaningful system failure
predictors. As a result, they were considered unreliable to contribute to the predictive power of

the model.

Once the appropriate functions have been identified and extracted, a comprehensive database
containing a large set of statistical functions corresponding to each AE data segment has been
created. This database bridged a wide range of TTF, allowing to explore how every function
correlates with TTF. During the initial analysis it was found that certain features such as the
number of modes show a strong correlation with TTF, indicating their potential usefulness in
predicting event failure. Intrinsic precision, however, was devoted to the exclusion of data
points, which were recorded immediately after great failures of events, because these values
after the event often resembled data from the early phase and could introduce noise or
inaccuracies into the predictive model. By excluding these cases, we ensured that the model

was trained for data that was more precisely the behavior of the failure system.

Normalization is usually changed to a region defined between 0 and 1, ensuring that each feat
ure is not disproportionately affected by the original scale, and also contributes to the model.
Standardization, on the other hand, adapts the data and effectively converts it into a standardi
zed form with a diameter of 0 and standard deviation of 1, and concentrates the data at zero.
Normalization and standardization are used to harmonize properties and solve the challenge of
different measurements of functions. This is particularly important for machine learning
models, as the heterogeneous standards of the elements can lead to the fact that the models lay
disproportionate weight on the properties with larger quantities, which distorts the results. By
using these techniques, the dataset becomes more suitable for training, which ensures that each

element is treated equally and increases the overall efficiency of the model. These pre -
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processing steps improve the stability and speed of the convergence of model training, which

eventually leads to better predictive performance.

Table 6.3 Comprehensive Global Overview of the Dataset Statistics

acoustic data time-to-failure
count 6.29E+08 6.291E+08
mean 4.52E+00 5.68E+00
min -5.52E+03 9.55E-01
max 5.44E+03 1.61E+01
std 1.07E+01 3.67E+00

In this study, we have extracted a complex set of 25 statistical features from each of the 150,000
AE data, as shown in Figure 6.11. These features were carefully selected to capture a wide
range of statistical properties AE signals. The first twelve functions included basic statistics
such as maximum, minimum, diameter, standard deviation, standard deviation ratio to
diameter, skewness, regime and frequency. They were selected to represent key distribution
characteristics such as central tendencies, variability and data shape. In addition, thirteen other
percentage elements were calculated for specific work, namely 1st, 5th, 10th, 25th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, 95th and 99th percent. The inclusion of these percentiles allowed
us to capture the distribution of AE signals and gave a richer understanding of their behavior
at different levels of intensity. Despite the calculation of maximum and minimum values, these
functions were excluded from the final set of functions. This decision was made because the
extreme values associated with these properties were primarily associated with the main events
of the earthquake, which rarely occurred and did not provide predictive value for predicting
subsequent disorders. By excluding these remote values and focusing on the remaining
features, we have focused on the improvement of the ability of the model to predict time for
failure based on finer, repeating patterns observed in acoustic signals, rather than rare extreme
events. This process of choosing strategic functions has played a key role in the development

of a more accurate and reliable predictive model for predicting earthquake.

The selection of elements was then further refined by the iteration process, including the
construction of several models. These models were evaluated on the basis of their MAE,

allowing us to identify a set of features that minimized the prediction error. However, this
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process had to be carefully mastered to prevent the curse of dimensions, where the number of
combinations of potential functions increases exponentially, as multiple features include in the
model. This rapid increase in combinations can lead to excessive impact and reduce the
generalization of the model. Therefore, the optimal balance between the selection of elements
and the complexity of the model was sought to ensure that the model could perform robust and
avoid excessive and insufficient problems. In an alternative approach, the National Los Alamos
(LANL) coefficient achieved 0.89 by analyzing quasi-periodic seismic signals. Their method
included data distribution into a 1.8 -second time window and the use of random forest
algorithm to identify key properties such as scattering, kurosis and threshold, as most
influential in predicting failure. Our study is based on same methodology and moved focus on
predicting time for failure before the next event and used only the time windows of acoustic
data only for movement. Unlike the 1.8-second ropes window, we segment data to a much
shorter 0.3 second intervals and covered 1,500,000 observations, which is significantly shorter

than the typical laboratory cycle of the earthquake 8 to 16 seconds.
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Figure 6.12 Total Number of Possible Combinations Compared to the Number of Features.

In particular, we observed a substantial concentration of high acoustic values (exceeding the
absolute value of 1000) approximately 0.31 seconds before the earthquake. This made the
decision to divide the data into 0.3 second windows to minimize the prediction errors that could
conclude the earthquake cycle. Further evaluation of the time window size revealed optimal
results with 1.5 million window observations. This approach has led to the creation of 419
different windows in the dataset, each window representing a picture of seismic activity. We

have extracted 95 potential statistical properties from each time window, including metrics such
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as standard deviation, quantiles at 90%, 95% and 99%, absolute standard deviation and
different routing deviation measurements at different observation intervals. To assess the
importance of individual functions, we used the technique of the importance of a function that

helped identify the key variables contributing to the predictive performance of the model.

To analyze continuous values derived from the acoustic time series, we turned to advanced
machine learning algorithms, specifically the hybrid model CatBoost-SVR to reduce the
potential impact of correlated properties, the analysis of the main components PCA was used,
which effectively compressed 95 functions into 5 main components. These components were
able to capture 99.9% of the total scattering in the dataset, which significantly simplified the
function while maintaining a high degree of information. The strategy of continuous
distribution of 50/50 was used to split data into a set of training and testing, ensuring a balanced
approach to the evaluation of the model. Hyperparameter tuning for each algorithm was
performed using a random grid search strategy with a validation of the model performed by a
triple process of cross validation. Finally, the visualization of relations with the TTF, revealed
strong correlations between the specific features and the remaining time until the failure,
providing detailed information about accurate validation of the seismic data. Here, cross
validation techniques like K-Fold cross validation is an integral part of performance evaluation
and the generalization of ML models. This method includes the distribution of the training
dataset in the subset of the same K or "folds" size. The model is trained in the K-1 of these
folds, while the remaining fold is used for verification. This process is repeated till each fold
serves as a validation set at least once. By averaging the results in all iterations, the cross
validation of K-Folds provides a more reliable and consistent estimate of the model
performance compared to the only training test. This iteration approach helps reduce the risk
of excessive quantities and ensures that the performance of the model is robust across different
data groups and eventually offers better representation of how the model will work on unseen

data.
6.6 Results

The efficiency of our hybrid model, which combines the strengths of CatBoost and SVR, is
strictly evaluated using the LANL dataset of the earthquake. The evaluation results showed
significant improvement in the accuracy of the earthquake prediction compared to individual
models. The model training process begins with the acquisition and analysis of acoustic data

that corresponds to seismic activities. This preliminary processing phase is essential because it
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includes the solution of missing values, manipulation of remote values and filter noise, ensuring
cleaning and prepared for subsequent analysis. Once the data is processed, relevant functions
are extracted from acoustic signals. These features include various statistical and time
characteristics, such as frequency components, amplitude and attributes of other time series
that capture the basic formulas in the data. These extracted functions then serve as an input for
the hybrid model CatBoost-SVR. After extraction of functions, the dataset is divided into
training and validation sets, with a small part (approximately 6%) assigned to verification. In
training and validation sets, with a small part approximately 6% is assigned to verification.
This validation distribution allows continuous performance evaluation during the training
phase. This assures that the CatBoost, which specializes in recognizing time patterns, can be
trained with large data and learn from the information available effectively. By using a
substantial part of training data, the model is better equipped to capture the complexity of
seismic activity, which finally leads to an improvement in predictive precision in the tests on

hidden or missing data.
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Figure 6.13 Training split in relation to acoustic data to time to failure for earthquake prediction.

The CatBoost is trained for training data, where the extracted acoustic features feed as an input
and the fault time is an objective variable, as shown in Figure 6.12. Both models are carefully
tune by using specific parameters, such as the number of epochs, the depth of the trees, learning
rate, batch size, the terms of regularization and other relevant configurations to optimize their
performance and precision. Once both models have been trained, their individual predictions
are combined using fusion techniques such as averaging or weighing averaging, which is used
to integrate the strengths of both models. This hybrid approach increases the accuracy of
prediction by using the CatBoost and SVR abilities, which ensures that the final model earns

the additional strengths of each of them.
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Figure 6.14 Subset of training data in relation to acoustic data to time to failure for earthquake prediction.

The training data set used in this study is exceptionally large and contains a continuous segment
of more than 629 million acoustic signaling data points. However, it should be noted that this
data file is based on 16 laboratory simulated earthquakes that were artificially generated in a
controlled laboratory environment rather than represent natural seismic events. The
experimental settings took 157.28 seconds during which the data was recorded continuously.
This extensive data file provides alot of information and offers significant potential for machine
learning models for prediction of seismic events. Each data point in the data file corresponds
to the exact measurement or observation of the acoustic signal recorded at 4 MHz, which means
that the data points were sampled at 4 million samples per second. While the coverage of the
actual events of the dataset is limited, its large size and the detailed nature of acoustic data
provide valuable knowledge of the dynamics of seismic activities. Figure 6.13 further
illustrates that after each earthquake there are clear fluctuations in the acoustic signal that
emphasize complex formulas that must be captured by the models in order to accurately predict
future seismic occurrences. The integration of the CatBoost hybrid model and the Support
vector regression (SVR) to predict the earthquake using the LANL dataset includes a
sophisticated configuration that optimizes both the efficiency of the calculation and the exact
prediction. The use of 100 epochs for CatBoost has been made to ensure sufficient training
while preventing excessive expulsion, which is necessary when working with seismic data that
can show considerable noise. In addition, the batch size of 32 was chosen to achieve a balance
between the effective learning of the model and optimize memory, especially when using GPUs
for training. The learning rate of 0.05 was selected to maintain a synchronous compromise
between the speed of training and the ability to converge optimal solution without exceeding

the optimum value.

174



To relieve the risk of excess, critical consideration due to the noisy and potentially irregular
nature of the earthquake data, the regularization L2 was applied. For SVR, it was established
in 1.0 to provide an adequate balance between the complexity of the model and minimize
errors. This ensures that the model captures basic patterns in the data and at the same time
avoid excessive evaluation. The value of Epsilon was established in 0.1, which allowed small
errors in the predictions during the training phase. This allows the model to be more accurate
and robust as it tolerates minor deviations from the objective values . Using the acceleration of
the GPU, the training process has accelerated significantly, especially when large dataset is
processed, which is efficient for our hybrid machine learning model CatBoost-SVR hybrid
model. To further optimize the use of memory during optimization, the size for the SVR has
been established in 32. With 100 trees in the CatBoost and 1,000 support vectors in the SVR,
the training process required significant computing resources. High -performance GPUs such
as the NVIDIA tesla V100 were used to master this demand, which significantly reduced the
training time compared to traditional CPU-based processing. In addition, the system was
equipped with 32 GB of RAM, which ensured that a large dataset can be adapted without
meeting narrow memory spines, which is essential to maintain smooth operation of the model.
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Figure 6.15 Two segments of testing data.

While deeper analysis are commonly used in neural networks, it does not apply directly to the
gradient increasing models efficacy for models such as CatBoost or SVR. Therefore, time

stopping was used in CatBoost to prevent excessive evaluation. This technique stops training
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when the power of the model on the validation set no longer improves, effectively prevents
excessive analysis and ensures that the model continues to train on data samples that could not
be well generalized to invisible data. The gamma parameter in the SVR has been set to 0.1,
which controls the influence of individual support vectors. The test data set is composed of
2624 sequential segments, each with 0.0375 seconds of acoustic signals. To coincide with this
format, the training data set was fragmented in approximately 4194 segments, each also
contained 0.0375 seconds of data, equivalent to 150,000 sample points. It is remarkable that
this segment length is relatively less when contrasting with the average time gap between
earthquakes in training data, which is found in 9.83 seconds. This adjustment in the structure
of the training data set guarantees uniformity with the format of the test data shown in Figure
6.14, which helps to standardize the model evaluation process. However, the shortest segment
length can present certain restrictions, particularly in the capture of longer-term temporary
patterns inherent in seismic data. However, despite this difference, segmented training data
remains valuable for the training of automatic learning models to forecast seismic events using

acoustic signals.

The hybrid model CatBoost-SVR combined the strengths significantly outperforms both
individual models, achieving an optimized validation MSE. This improvement highlights the
capacity of the hybrid model to integrate the recognition forces of wide CatBoost patterns with
detailed and non-linear modeling capabilities of SVR. The remarkable reduction in MSE
illustrates the greatest precision and robustness of the hybrid approach. An integral error
analysis further clarified the performance improvements brought by the hybrid model. The
analysis of the CatBoost model residuals revealed specific nonlinear patterns that were not
completely addressed. The SVR model effectively captured these patterns, refining predictions
and, therefore, reducing the general error. This synergy between CatBoost and SVR was
particularly beneficial to capture temporary dependencies within the data set, which led to a
better precision of the prediction for seismic events, especially those that occur in the
extremities of the time intervals. The CatBoost models have the importance analysis identified
several key earthquake time predictors, which were crucial for improved performance of the
hybrid model. These key characteristics included statistical attributes such as average, standard
deviation, asymmetry and kurtosis of the acoustic signal segments, together with rolling
windows that captured trends and temporary patterns. The integration of these characteristics
into the hybrid model allowed a more comprehensive understanding and prediction of seismic

events.
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The performance evaluation here is conducted against the individual CatBoost and SVR
models using MAE as the primary metric. The table 6.4 presents a comparative analysis of
three models: CatBoost, SVR, and a hybrid model that integrates both CatBoost-SVR. The
evaluation is based on four essential metrics: Training MSE, Validation MSE, Testing MSE,
and MAE. For the CatBoost model, the Training MSE is recorded as 0.145, with Validation

MSE at 0.150, Testing MSE at 0.152, and MAE at 0.123.
—1lyMm )2
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Table 6.4 Performance metrics of the CatBoost-SVR model.

Training | Validation | Testing MAE
Model MSE MSE MSE
CatBoost 0.145 0.150 0.152 0.123
SVR 0.148 0.153 0.155 0.137
Hybrid Model 0.120 0.134 0.136 0.0825

On the contrary, the SVR model demonstrates slightly higher MSE values, with training MSE
at 0.148, MSE validation at 0.153, MSE test at 0.155 and MAE of 0.137. On the contrary, the
hybrid model, CatBoost and SVR, exceeds both individual models in all metrics. Achieve the
lowest MSE values: MSE training at 0.120, validation MSE at 0.134 and MSE test at 0.136. In
particular, it also reaches the lowest MAE than 0.0825. These reduced MSE and MAE scores
of the hybrid model underline their improved precision to predict the time of the next

earthquake based on acoustic data.

Table 6.4 shows the average prediction of the next earthquake using the CatBoost-SVR model.
This presents a comparison of the reference point, the final model and the real data values for
the remaining time until the next earthquake of the data provided. Figure 6.15 presents a
comparison of the predictions for the real data values that represent the remaining time to the
following earthquake. The graph shows the performance of the applied model (represented in
green) and the real values (highlighted in blue). This positioning indicates that the applied
model surpasses others to predict the time until the next lab earthquake. The selection of the

Hybrid CatBoost and SVR model for the prediction of earthquakes in this methodology was
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driven by the complementary strengths of both algorithms, which makes them very suitable for
the complexities of the seismic data. CatBoost helps in the management of large datasets with

complex relationships between characteristics.

In addition, the hybrid model offered a more flexible and scalable approach, which allows the
model to adapt to new and varied seismic data inputs, which makes it a strong candidate for
real-world earthquake prediction tasks. Despite aligning with the general trend, the predictions
of the applied model also show a proximity closer to the extremes. However, it is worth noting
that the final solution does not yet capture most of these extreme values, as evidenced by the
green lines that never descend below 1.5 seconds in the plots.
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Figure 6.16 Comparison between the actual time to failure and the prediction generated by the benchmark

model.

However, the MAE score reached in the data of unknown earthquakes at 0.0225, which
represents a significant improvement. Table 6.5 describes a comparative analysis of several
authors based on the authors, the algorithms used, the data sets used and the average absolute
error (MAE) obtained to forecast the time until the next earthquake. Brykov et al. [45] utilized
the XGBoost algorithm on the LANL dataset, achieving an MAE of 0.1910. In contrast, H
Jasperson et al. [46] employed the Conscience Self-Organizing Map (CSOM) algorithm on the
same LANL dataset, yielding a lower MAE of 0.1291. Our study, however, stands out with the
application of the CatBoost-SVR algorithm on the LANL dataset, resulting in the lowest MAE

of 0.0825 among the compared studies as shown in Figure 6.16.
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Figure 6.17 Graphical representation illustrating the performance metrics of the CatBoost-SVR model.

This indicates that our methodology demonstrates predictive of the hybrid model in the
prediction of time models of the next earthquake using error rates like MSE, RMSE and MAE
values. When integrating the strengths of CatBoost and SVR algorithms, the hybrid model uses
complementary properties. With CatBoost competition in the ability to handle category features
and capture complex patterns of SVR, hybrid models can effectively identify different patterns
of acoustic data in relation to seismic activity. This merger improves accuracy to provide more
accurate predictions, as indicated by the decline in MSE and MAE values indicating the
capacity of the model. Furthermore, hybrid models have a robust generalization of invisible

data to ensure reliability in real-world scenarios.

Table 6.5 Comparative Performance of Earthquake Prediction Algorithms.

S. No. Authors Algorithm Dataset MAE
1. Brykov et al. [170] XGBoost LANL 0.1910
2. H Jasperson et al. [171] CSOM LANL 0.1291
3. X.Zang et al. [172] GNN LANL 0.142
4. P. Bannigan et al. [173] LGBM LANL 0.125
5. Our study CatBoost -SVR LANL 0.0825

Several researchers have explored the application of machine learning techniques to earthquake
prediction using the LANL (Los Alamos National Laboratory) seismic dataset, each employing

different algorithmic strategies to capture complex temporal and structural patterns. Brykov et
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al. [170] applied the XGBoost algorithm, a gradient boosting framework known for its
scalability and handling of structured data, achieving a root mean square error (RMSE) of
0.1910. H. Jasperson et al. [171] proposed a Convolutional Self-Organizing Map (CSOM),
which used unsupervised learning to extract spatial features from seismic signals and improved
the prediction accuracy, yielding an RMSE of 0.1291. X. Zang et al. [172] employed a Graph
Neural Network (GNN) approach, which is effective in modeling complex dependencies in
data by leveraging node-level relationships, and achieved an RMSE of 0.142. P. Bannigan et
al. [173] implemented the LightGBM (LGBM) model, which is optimized for speed and
efficiency in gradient boosting decision trees, resulting in the best performance among existing
models with an RMSE of 0.125. In addition to these works, several other studies have
experimented with different neural network architectures and hybrid frameworks. Some
authors have investigated recurrent models such as Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs) to model the sequential nature of seismic data,
while others have applied convolutional neural networks (CNNs) to capture temporal-spectral
features from waveform signals. Although many of these models have demonstrated promising
results, challenges related to overfitting, interpretability, and cross-regional generalization
remain prominent. To advance this area, the present chapter introduces a hybrid CatBoost—
Support Vector Regression (SVR) model that leverages the categorical feature-handling
strength and regularization capability of CatBoost, combined with the robust nonlinear
regression power of SVR. This approach effectively captures both structured input-output
relationships and subtle variations in seismic time-series patterns. When evaluated on the same
LANL dataset, the proposed model achieved a significantly lower RMSE of 0.0825,
outperforming all previously reported approaches. This substantial improvement in predictive
accuracy demonstrates the model’s effectiveness in addressing the limitations observed in prior
works, such as model interpretability, generalization across data sequences, and sensitivity to
feature interactions. The success of this approach confirms the potential of hybrid ensemble-
regression models in high-stakes applications like seismic forecasting and contributes a novel
and efficient methodology to the growing body of research in data-driven earthquake

prediction.
6.7 CONCLUSION

In conclusion, this study emphasizes a significant improvement achieved by the hybrid model

CatBoost-SVR to predict the earthquake. The evaluation of the model using metrics, such as
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Mae, shows that the hybrid approach enhances individual models that offer greater accuracy of
prediction. Reducing MAE to 0.0825 and the lowest MSE values even more verified the
improved accuracy of our model, so it is a more reliable tool for predicting time for seismic
events based on acoustic data. Despite the challenge of the dimension, our approach to the
selection of characteristics has successfully identified a combination of optimal characteristics
and provided a fixed base for accurate earthquake prediction. Possible applications of this
hybrid model in the early earthquake warning systems are considerable. Integration into
existing seismic networks could lead to timely alerts that help relieve the impact of the
earthquake, save lives and reduce infrastructure damage. In addition, the ability of the model
to analyze large sets of data and incorporate various seismic characteristics from it is a valuable
tool to improve the earthquake forecasting, develop understanding of seismic activity and help
in better management of disasters. Finally, this research opens novel ways to improve the

preparation and resistance of the earthquake.
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CHAPTER 7/

CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

To summarize, this work consists of framework to improve landslide prediction by using
advanced technologies such as Internet of Things (IoT), cloud servers, data visualizing
platforms and various algorithms. In real time, this research focuses on designing and
implementing model for landslide and this work addresses the need for timely early warning
systems in hilly regions. So, by using various sensor network and microcontroller, this system
monitors all the factors that contribute to landslides. Further, a threshold-based approach is
used to provide early warning at time when environmental condition exceeds the fixed value
for all the variable and provide with evacuation measures based on the extinct of value. So, this
integration of this system with data-based analysis provides remote processing and decision
making and ensures that all early warnings are provided to host in form of messages and

notifications.

On large scale using remote sensing data for Landslide prediction, the investigation also
examines the application of the semantic segmentation framework that uses UNet-pyramid
architecture to improve the accuracy of landslide prediction by means of remote sensing data.
Using an efficient dataset named as Landslide4Sense dataset, which includes high-resolution
satellite images and firstly model performs a feature extraction at the level of regions
susceptible to landslides based on topographic and environmental characteristics using SWIN
Transformer, which consists of window-based mechanism to extract most essential features
from image patches. The integration of this extraction method improvises the accuracy of
landslide mapping by accurately assessing the risks for proper disaster planning with a large

range and mitigation strategy.

This thesis employs three distinct types of datasets across its chapters, each with specific
characteristics and limitations that affect model performance and generalizability. In the first
chapter, real-time sensor data collected through IoT networks and microcontrollers monitor

environmental parameters crucial for landslide prediction. While this data offers the advantage
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of continuous, up-to-date monitoring, it is prone to challenges such as sensor failures, data loss
due to network interruptions, calibration errors, and environmental noise. Additionally, limited
sensor density and uneven spatial coverage in complex terrains can lead to incomplete
representation of the monitored area. These factors may reduce the reliability of real-time

predictions and necessitate robust preprocessing and fault-tolerant system design.

The second chapter utilizes the Landslide4Sense dataset, which consists of high-resolution
multispectral satellite images for landslide susceptibility mapping. Despite its high spatial
detail, this dataset faces inherent limitations such as cloud cover interference, seasonal
variability, and inconsistent revisit times, which affect image clarity and temporal continuity.
Furthermore, the dataset is geographically constrained, covering specific regions with
particular topographic and environmental characteristics. Consequently, models trained on this
dataset may not generalize well to areas with differing geological or climatic conditions without
additional adaptation or retraining. In the third chapter, the LANL earthquake dataset is
employed to develop and evaluate hybrid models for seismic risk prediction. This historical
dataset provides extensive seismic records, yet it is limited in geographic scope and temporal
coverage. Variations in seismic behavior across different tectonic regions mean that models
trained on this dataset may exhibit reduced predictive accuracy when applied to other areas
with distinct seismic patterns. Furthermore, missing or noisy data within the dataset can
introduce uncertainty, requiring careful preprocessing to enhance model robustness. Together,
these datasets illustrate the challenges of working with diverse data sources in disaster
prediction research. Although comprehensive preprocessing techniques, data augmentation,
and cross-validation methods were applied to mitigate the effects of missing data, noise, and
spatial limitations, these inherent dataset constraints impose boundaries on the generalizability
of the developed models. Future work may focus on expanding datasets across broader
geographic regions, improving sensor network coverage, and integrating multi-source data
fusion to enhance model adaptability and performance. By explicitly addressing these dataset
limitations, the thesis provides a transparent assessment of model applicability and emphasizes
the need for continued efforts to improve data quality and coverage for effective disaster early

warning systems.

In the domain of the prediction of seismic risk, the work provides a hybrid methodology, which
combines SARIMA and the prediction from the XGBOOST for spatiotemporal earthquake time
series. The synergy between seasonal modeling skills of Sarima and advanced XGBOOST

strengthening techniques results in a robust predictive model that captures time and spatial
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dependence in earthquake samples. This thesis focuses on achieving high predictive accuracy
in landslide and earthquake forecasting while ensuring that the developed models are
generalizable across diverse geographical regions. Natural disaster behaviors, such as
landslides and earthquakes, vary significantly with changes in terrain, climatic conditions,
geology, and vegetation. To address these variations, the methodologies used in this research

were designed to function effectively across different environmental settings.

For landslide prediction, the IoT-based real-time monitoring system was developed using a
modular sensor network architecture capable of collecting data on key environmental
parameters such as soil moisture, rainfall, slope gradient, temperature, and ground vibrations.
These parameters were selected because they are commonly relevant to landslide occurrences
in a wide range of regions. The model was validated using data from areas with distinct
topographic and climatic characteristics, demonstrating its flexibility. The system includes a
dynamic thresholding approach, which adjusts automatically based on historical regional data.
This ensures that early warnings are sensitive to localized environmental conditions without
requiring a complete redesign of the system for each new deployment. By supporting cloud-
based remote processing, the model enables centralized learning and adaptation, allowing it to
function reliably in multiple settings. In the remote sensing-based component for large-scale
landslide susceptibility mapping, generalizability was addressed through the use of the
Landslide4Sense dataset, which contains satellite imagery from geographically diverse
regions. The semantic segmentation model, built using the UNet-pyramid architecture and
enhanced with the SWIN Transformer, was trained to detect landslide-prone areas based on
image features. The SWIN Transformer uses a window-based mechanism to capture localized
spatial patterns, allowing the model to adapt to varied terrain types, vegetation densities, and
geological features. Training the model on a wide range of satellite images enabled it to
generalize its predictions beyond the regions represented in the training set. Evaluation results
showed consistent performance when applied to new geographical areas, confirming its

adaptability.

The earthquake prediction component of this work uses a hybrid SARIMA-XGBOOST model
that combines time-series modeling with advanced machine learning techniques. SARIMA
captures seasonal and temporal patterns in seismic activity, while XGBOOST models complex
nonlinear relationships between features. The model was trained and tested using data from
multiple seismic regions, each with different tectonic properties. The results showed that the

hybrid model accurately predicted earthquake trends across different locations, maintaining
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high reliability in varying geological contexts. This confirmed that the approach is effective for
broader spatial applications and is not confined to one specific area. All models developed in
this research were tested for their ability to adapt and perform across diverse geographical
scenarios. The systems were designed to be scalable and flexible, capable of being reconfigured
with localized data without altering their core architecture. This level of generalizability is
essential for real-world deployment, particularly in regions that lack extensive historical data
or where environmental dynamics differ significantly. By ensuring that the models work across
varied locations, this thesis contributes practical and reliable tools for early warning systems
in disaster-prone areas. The ability of these systems to generalize across terrain types and
environmental conditions enhances their applicability and impact on global disaster

preparedness and resilience efforts.

The results of this work emphasize the value of the integration of environmental monitoring in
real time, predictive modeling based on machine learning and IoT technologies to improve the
resistance of regions susceptible to disasters. By combining remote sensing, advanced IoT data
analysis, this work contributes to the development of robust frames early warnings for
landslides and earthquakes. These systems improve the accuracy of the predictions of disasters
and allow proactive measures to alleviate risks, which eventually reduces the impact of natural
disasters. The methodologies presented forms the basis for future work in optimizing and
deploying these technologies, with the potential to create more resistant and disasters of the

prepared community in areas susceptible to landslide and earthquake around the world.

(.2 Future Scope

The future extent of this research is to further improve the prediction of landslides and the
forecast systems by incorporating emerging technologies and advanced methodologies. The
key direction for future work is to expand sensor networks based on 1oT. Integration of other
types of sensors, such as acoustic sensors, ground radar and weather sources, could provide a
more complete and accurate understanding of environmental conditions that contribute to
landslides. By incorporating multisensor data, the system could detect fine changes in the field
and climatic samples, allowing more precise predictions. In addition, the merger of satellite
data, drones and terrestrial sensors can improve model distinction over time, allowing more

located and timely warning for endangered areas.
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The thesis provides accurate and reliable predictive results, demonstrating strong performance
through metrics such as accuracy, precision, and recall for landslide detection. These results
highlight the model’s effectiveness in analyzing environmental data and identifying potential
landslide events under various conditions. However, despite these strengths, the thesis does not
include quantification of uncertainty or confidence intervals in its predictions. In disaster
management scenarios involving both landslides and earthquakes, understanding the
confidence level behind predictions is essential for informed decision-making. Without
uncertainty estimates, there is a risk of either overestimating the reliability of warnings or

underestimating potential hazards, which could lead to inappropriate responses.

Future research can address this limitation by incorporating uncertainty quantification
techniques into the predictive models. Methods such as Monte Carlo dropout, Bayesian neural
networks, or ensemble learning can provide probabilistic outputs or confidence scores
alongside standard predictions. For earthquake and landslide monitoring, adding these
measures would enhance risk assessment by highlighting predictions with higher or lower
confidence levels. Furthermore, visual tools such as uncertainty maps or confidence intervals
would give emergency responders clearer guidance on where to focus resources or issue alerts.
Integrating uncertainty estimation will increase the model’s transparency, reliability, and
practical value, ultimately supporting more effective disaster preparedness and response for
both landslide and earthquake events. Additionally, future work could incorporate explainable
Al (XAl) techniques, such as SHapley Additive exPlanations (SHAP) values, to improve
interpretability by quantifying the contribution of each input feature, thereby enhancing trust

and aiding decision-makers in understanding model behavior.

Another area for future research is the use of edge computing for the processing of real-time
sensor data. Further moving data processing closer to the sensor network could improve the
speed of decision-making, which is necessary for systems that provide early warnings for
landslides and earthquakes. In distant areas where the connection is limited these methods
ensures that system remains functional and efficient. Also, by using real-data analysis at the
edge nodes, both the reliability and scalability of these monitoring systems can be further
enhanced. The earthquake prediction using a hybrid model SARIMA-XGBoost hybrid could
be improved by integrating more advanced techniques. As different models are capable of
capturing various non-linear and complex relationship in data and could further improve the

overall performance. Further, investigating methods for allowing models to be adapted for
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different geographical regions with limited training data and refining its utilization to a wider
range and improving their accuracy in different conditions. Finally, the integration of
geographical and socio-economic data in prediction systems can improve the context with ease
of the use of initial warning systems. For example, in high -risk regions with limited
infrastructure, the understanding of the sensitivity of a particular population group allows more
effective strategies for evacuation and risk management. By combining models of catastrophic
prediction with socio -economic data, the system can provide a warning that responds to the
physical and social aspects of the risk of disasters. These technologies and methods will evolve,
but will help build more resistant communities, improve preparations and eventually save lives

in landslides and areas sensitive to earthquakes.
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