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ABSTRACT 
 

 

Natural disasters like landslides and earthquakes are one of most common natural disaster in 

nature that have capability to cause threat to human life, infrastructure and economical damage. 

Both of these disasters are random which makes it difficult to predict and manage by providing 

early warnings. Traditional methods for disaster prediction are not that accurate and have 

limited ability to predict accurately and timely. So, this thesis addresses these issues or gap by 

providing advanced hybrid machine learning models which uses different technologies 

including computational and different type of data like real-time, remote sensing, and historical 

data to improve the prediction and forecasting of disasters. The aim is to improve disaster 

management system and make them more reliable by integrating these different ways and 

techniques, provide better early warning and enable more effective risk mitigations. The 

research primarily focuses on development of hybrid machine learning models designed for 

detecting and prediction landslide and earthquake. The main contribution is creating real-time 

landslide prediction model which collects data from real-time Wireless Sensor Networks 

(WSNs) in a laboratory setup, the sensors consistently monitor all useful factors such as soil 

moisture, vibration, temperature, humidity, angular acceleration, angular velocity other various 

other parameters. The data is processed using a predictive system which combines hybrid 

machine learning model such as Multiple Linear Regression (MLR) and Long Short-Term 

Memory (LSTM) to analyse this data in real time. Using this hybrid model for landslide 

prediction improves the accuracy by identifying patterns that provides insights that a landslide 

may occur and also offers early warning alerts for area prone to landslides.  

As progressing forward, landslide detection using remote sensing data is introduced with 

advanced segmentation and feature extraction methods. A deep learning model UNet-Pyramid  

is used to capture minute details in the images and also analyzing high resolution images to 

grasp the change in landscape like angle displacement, shift in vegetation cover indicating a 

risk of landslide event. To deeper analysis of remote sensing Object-Based Image Analysis 

(OBIA) is used for feature extraction, which works by forming groups of small pixels together 

to identify larger objects such as displaced soil cover or vegetation area. Moreover, the Swin 

Transformer architecture is applied, that helps to capture features in images more effectively 

using window-based mechanism and provides more detailed segmentation. The main benefit 

by using combined feature extraction techniques like OBIA, and Swin Transformer helps to 

handle high-resolution satellite images better and detect complex surface changes. This 
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cumulative technique including segmentation, feature extraction and applying hybrid models 

all together provides a detailed, accurate and reliable solution in identifying risky areas and 

detecting landslides events efficiently.  

Further, the complexity of seismic activities in earthquake prediction prompted the shift as 

earthquake being another frequent disaster in nature, so a hybrid model which combines the 

features of two different techniques such as SARIMA (Seasonal Autoregressive Integrated 

Moving Average) and XGBoost (Extreme Gradient Boosting) is applied. This hybrid model 

uses sequential data for earthquake prediction which contain both short-term and long-term 

seismic trends. Firstly, the SARIMA helps to capture seasonality trends and patterns which are 

commonly cyclic in nature in the time series data and then XGBoost supports to model complex, 

non-linear relationships between provided variables to improve the effectiveness of earthquake 

prediction. So, it starts with Exploratory Data Analysis (EDA), that is applied for understanding 

intrinsic patterns and insights of dataset. For feature engineering process, EDA helps in 

identifying the most useful features and data augmentation and feature engineering techniques 

are applied to further enhance the prediction accuracy, by integration of these techniques, 

provides more accurate earthquake forecasts by considering different kind of patterns in the 

data. As research progressed, it explores another hybrid model which combines CatBoost and 

Support Vector Regression (SVR) for earthquake prediction using LANL earthquake dataset. 

Here, CatBoost uses gradient boosting method to optimize and handle categorical data. The 

signal based LANL earthquake dataset comprises of acoustic data and Time to Failure (TTF) 

which uncover important patterns from acoustic data used to analyze significant features and 

patterns which contributes to accurate earthquake prediction. In CatBoost, multiple decision 

trees are built on top of other to improve the prediction accuracy by reducing error at each stage 

and Support Vector Regression (SVR) captures the residuals from CatBoost and further process 

them using its support vector-based mechanism to capture non-linear relationships in the data, 

that cannot be modeled by simple boosting approaches. Finally, a precise and reliable 

earthquake prediction system is developed using hybrid model that contributes in generating 

early warning systems and improves disaster preparedness methods. The integration of these 

hybrid machine learning models represents a substantial advancement in the field of natural 

disaster prediction. Finally, the prediction technique that combine real-time sensor data, remote 

sensing data, and time series analysis, provides with a comprehensive framework disaster 

prediction which is accurate, timely and lifesaving. Various models considerably improve the 

early warning systems for both disasters, by providing precise resource allocation, informed 

decision-making, and optimized disaster response strategies. The proposed model has deep and 
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far-reaching impact in disaster preparedness, as it could be applied to different natural disaster 

scenarios, minimizing the loss of life and infrastructure.  So, these data driven solutions provide 

a promising pathway for safeguarding lifestock and infrastructural damages from disaster 

events. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

Disasters are sudden catastrophic events that result in fundamental disturbances, loss of 

property, human lives, and the environment. These events can be caused by man, such as 

chemical leaks, nuclear accidents, and industrial accidents, or can be natural, like storms, 

floods, and earthquakes. Disasters affect local communities or have global consequences, and 

their impact differs depending on factors such as geographical position, population density, 

and readiness of the affected areas. They often lead to extensive destruction, health crises, 

economic loss, and long-term environmental damage, which makes effective disaster 

management. The coordinated strategy is used to manage disasters to avoid, prepare for, 

respond to, and recover from disasters by relieving readiness, reactions, and recovery. These 

are its four primary phases. Through measures such as the creation of robust infrastructure or 

forcing laws to minimize environmental damage, mitigation is to reduce disaster probability or 

its effects. Planning, teaching, and community education about the risks of disasters and 

effective. While the recovery phase focuses on reconstruction and returning to normal after the 

incident, the reaction phase deals with urgent measures taken. during the disaster to maintain 

lives and provide assistance. The disaster management requires cooperation between 

governments, local authorities, humanitarian organizations, and communities. The importance 

of disaster management cannot be overestimated because it minimizes the negative effects of 

disasters and guarantees a rapid and organized reaction. Appropriate planning and disaster 

reactions can save lives, reduce injuries, and reduce infrastructure and environmental damage. 

It also helps to maintain social order and stability due to a disaster, which allows communities 

to recover faster and return to normal activities. In addition, catastrophe management promotes 

resistance by preparing companies to better address future challenges, minimize the 

vulnerability of endangered populations, and support sustainable development. Investing in 

disaster management is necessary for the protection of communities and building a safer and 

more resistant world. A landslide is the movement of a rock, soil, mud, or debris on a slope, 

usually caused by natural events such as severe precipitation, earthquakes, volcanic activity, or 

gradual weakening of the earth's materials. Soil landslides can occur in various forms, such as 



2  

rockfalls, debris flows, or landslides, and differ in size from small to large movements of soil—

destructive events that destroy the whole community. These natural disasters are most common 

in mountain areas or in regions with steep slopes, where the stability of the country is easily 

endangered by external forces such as precipitation, seismic activity, or human activity such as 

deforestation and construction. 

Landslides have devastating effects, resulting in death, damage to property, and interruption of 

vital infrastructure, including motorways, railways, and communication systems. Soil 

landslides often avoid rivers, which leads to a flood or construction of temporary dams that can 

use and cause more damage downstream. Landslide events deeply affect places where the local 

economics, tourism and agriculture depends on slope stability specifically in rural areas.  The 

risk associated with these events needs an early detection method to save livestock, reduce 

injuries and infra structural losses associated with them. When identifying danger of extinction 

and understanding the triggers of landslides, authorities can perform specific strategies to 

reduce vulnerability and prevent disaster. In addition, the ML and DL models allow monitoring 

and appropriate real-time warning systems that immediately emphasize the populations that are 

in danger. 

This helps to protect communities, maintain infrastructure and reduce the financial burden on 

recovery efforts. In addition, landslides detects before they happen, it contributes to the overall 

more efficient management of disasters, improves response time and ensures that suitable 

sources are available, when and where they are needed. Early detection and proactive planning, 

supported by machine learning and deep learning technologies, are necessary to protect lives, 

protection of property and support sustainable development in areas susceptible to landslides. 

1.2 Motivation 

Landslide prediction is motivated by the need to lessen the destructive effects of these natural 

disasters, which can result in a large loss of infrastructure, property, and human life. Geological 

conditions, precipitation, seismic activity, and human activity are just a few complicated factors 

that could affect the occurrence of landslides that are often not expected. Due to the destructive 

nature of landslides, especially in vulnerable regions such as mountain or coastal areas, early 

detection and predictions are essential for saving lives, preventing injury, and reducing 

economic losses. Due to the dynamic and complex nature of landslides, it historically depends 
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on field observation and expert interpretation, which has often proved to be inadequate. 

Because ML and DL can process and evaluate a huge amount of different data, they have 

become effective tools for the prediction of landslides. To identify trends and predict future 

events, ML algorithms can learn from past layout incidents and environmental factors (such as 

slope, collision, soil moisture, and seismic activity). DL uses neural networks and 

automatically finds a comprehensive association in large data sets, which allows even more 

advanced analysis. The abundance data present requires proper processing and analyzing so 

that these advanced models can do continuously learning and adapting to new environmental 

condition. Also, rapid changes in these factors are observed, so by working on data from 

various sources such as real time, remote sensing data, historical data can allow model to 

provide precise predictions and timely alerts to authorities for issuing early warning and also 

initiate preventive measures. The main goal revolves around reducing economic losses and 

building durable communities to prevent risk of landslide with limited information of historical 

trends of landslide. Since these technologies are still progressing, they offer promising 

opportunities to improve our understanding of landslide dynamics and create a proactive 

approach to disaster management. One of the greatest risks for the local and global economies, 

as well as for human settlements, is geological risks. The most common geological dangers 

include landslides that include the movement of rock, dirt, mud, or debris. Natural occurrences, 

such as earthquakes or intense rains, can often cause landslides, especially in areas with 

hydrological, geological, and geomorphological characteristics. However, the mechanics of 

landslides also depend strongly on other key elements such as weather, soil head, and in situ 

tension. Topography, forests, soil characteristics (such as consistency, structure, density, and 

temperature), and infrastructure, such as roads and agriculture, can be significantly affected by 

landslides in mountain areas. The size of landslides determines how serious these effects will 

be. Finding vulnerable areas and understanding mechanisms of landslides over the past 20 

years has become more important in landslide research. This research has led to valuable 

knowledge about the analysis of geomorphological, tectonic, geological, climatic, and human-

induced factors. Historical records show that it experienced the highest number of deaths in the 

land of landslides, with a total of 132 deaths. Risk assessment relies strongly on the location of 

landslides and their risk assessment. Research on landslides has been significantly advanced in 

recent years using new technologies and techniques, especially in crisis management for 

mountain regions or those that are vulnerable to such risks. Number of quantitative techniques 

are tested and evaluated to create accurate and reliable model for improved landslide 

prediction. 
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1.3 Contributions  

The major contributions of this thesis can be summarized as follow: 

• Designing a threshold-based real-time landslide prediction system utilizing IoT 

networks: This system efficiently monitors key environmental parameters such as, soil 

humidity, slope displacement, and rainfall, providing real-time data and triggering 

alerts if hazardous thresholds are reached to enhance early warning capabilities for 

landslide-prone areas. 

• Developing an inexpensive landslide early warning system based on IoT for continuous 

landslide monitoring, especially in regions with constrained resources, our contribution 

offers a scalable and affordable approach that ensures real-time data collection and 

analysis for efficient risk reduction and disaster management. 

• Creating a semantic segmentation system using a UNet-pyramid architecture for 

landslide prediction. This framework improves the accuracy of detecting landslide-

prone areas by utilizing remote sensing data from the Landslide4Sense dataset, 

allowing for precise and reliable landslide hazard evaluations. 

• Integrating SARIMA and XGBoost for spatial earthquake forecasting. This hybrid 

approach improves earthquake prediction by accounting for both spatial and temporal 

dependencies in seismic data. This offers more accurate forecasts and better risk 

management for subsequent earthquake areas. 

• Improving landslide hazard mapping through deep learning-based semantic 

segmentation. The implementation of deep learning models for analyzing remote 

sensing data contributes to more reliable identification and classification of landslide 

hazards, , increasing the assessment of risks and land use in affected areas. 

• Contributing to disaster preparedness and mitigation through advanced early warning 

systems: The thesis provides advance methodologies and smart tools that allows 

accurate real-time landslides and earthquakes prediction, reducing the potential impacts 

of natural disasters and improving resilience in vulnerable communities. 

1.4 Thesis Outline 

This thesis consists of seven chapters, each of which focuses on different aspects of landslide 

and earthquake prediction using advanced machine learning and deep learning techniques. 

Chapter 1 represents the research topic and outlines the significance of predicting natural 
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disasters and the need for innovative methods. Chapter 2 presents an extensive overview of 

existing literature on landslide and earthquake prediction, focusing on hybrid models that 

integrate deep learning and machine learning approaches. Chapter 3 discusses a threshold-

based real-time landslide prediction system which is designed for hilly areas, along with the 

enhancement of a low-cost Landslide Early Warning System (LEWS) utilizing Internet of 

Things (IoT) networks for regions susceptible to landslides. Chapter 4 presents a novel 

semantic segmentation framework using UNet-pyramid for landslide prediction, using remote 

sensing data. Chapter 5 examines the synergy between SARIMA (Seasonal Autoregressive 

Integrated Moving Average) and XGBoost for spatiotemporal earthquake time series 

forecasting, highlighting the potential of combining statistical and machine learning models. 

Chapter 6 examines the LANL earthquake dataset and the hybrid CatBoost and SVR model for 

earthquake forecasting. By providing a summary of the main conclusions drawn from the 

simulation and experimental data, Chapter 7 sums up the thesis and proposes future study 

avenues in the areas of earthquake and landslide prediction. 
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CHAPTER 2 
 

RELATED LITERATURE AND BACKGROUND 
 

 

 

2.1 Introduction 

Recently, the most promising advancement in the disaster management field is introducing ML 

and DL. This demonstrated exceptional possibilities for good data analysis, disaster prediction, 

and resource optimization. The permeation of these technology processes has resulted in a field 

of dynamic and transformation-based data to remove the influence of disasters on infrastructure 

and human life. These tools and methods allow disaster management systems to improve 

proactive and adaptive strategies in the direction of risk assessment, early warning systems, 

and accurate disaster forecasting systems. These approaches are integrated into the key aspects 

of reaction to disasters such as evacuation planning, damage assessment, and logistics 

optimization, which provide efficiency and accuracy. By reviewing existing research, this 

study highlighted the enhancement and advancement in disaster management and remaining 

major challenges that still lack to provide better management results in disaster management 

and prediction, providing insight into the future abilities of these technologies in the domain of 

disaster management and identifying important opportunities for further progress in this critical 

area. 

2.2 Foundation of Landslide Prediction using Machine 

Learning  

The combination of DL and hybrid ML models with wireless sensors and Internet of Thing 

(IoT) has led to a revolutionary approach for the prediction of landslides and early alert 

systems.  Fundamentally, this new strategy aims to predict and reduce the catastrophic effects 

of landslides, which continue to be one of the most unexpected and devastating natural disaster, 

using the synergy of ML, DL and sensor network. With the possibility of more precise, reliable 

and real -time landslides prediction methods, this technological integration means a shift from 

conventional monitoring systems to more advance hybrid approaches. 
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By combining different methods and architectures, "hybrid models of ML and DL aim to 

improve the precision of prediction and detection by combining various sources and data 

models. The critical or important data for these models are provided by wireless sensors and 

internet devices of things that constantly monitor environmental parameters, including 

temperature, rain, soil moisture and soil movement. When combining these sensor networks 

with advanced computing methods we introduced a novel powerful framework for prediction 

of landslides. 

The core foundation of this approach is found in several key areas. Wireless sensors and IoT 

devices play a key role in data collection in real time distant and often dangerous areas. These 

sensors monitor vital parameters of the environment such as rain, soil moisture level and 

seismic activity, which are critical indicators of landslides. To evaluate big database and detect 

complex patterns, ML models like Decision Trees, Support Vectors and Random Forests are 

combined with DL architecture like convolution neuron network (CNN) and recurring neural 

network (RNN). By combining the best characteristics of both paradigms, this hybrid technique 

increases the accuracy and durability of the landslide detection. Among the techniques of deep 

learning, a fully convolutional network (FCN) has appeared as a powerful tool for predicting 

landslides, especially when working with remote sensing geospatial data, and very good in 

tasks such as segmentation, which means classification of each image or map in different 

categories. They are made to handle predictions at the pixel level. For the analysis of satellite 

images, topographic maps and other sources of geospatial data that are frequently used in the 

evaluation of earth landslides risk, this capacity makes FCN especially useful. Regions with a 

high risk of landslides can be identified with precision by using FCN, which consider 

environmental characteristics such as the type of soil, the steepness of topography and 

historical landslides events. The flexibility of the FCN in the processing of space data provides 

an additional precision layer to the models of prediction of landslides, particularly in complex 

and large -scale geographical areas. 

IoT sensors and machine learning models work together to process real -time data, allowing 

dynamic changes in early warning and risk assessment. This characteristic is crucial to give the 

appropriate authorities and communities so that they can take precautions before a crisis occurs. 

The integration of many data sources is one of the main obstacles in the prediction of landslides. 

Hybrid models can produce more complete risk profiles combining information from many 
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sensors, weather reports and geographic information systems (SIG). In addition, feature 

engineering methods help determine which factors are most important to the precise prediction. 

The IoT technology combination with ML and DL offers scalable solutions that can be 

implemented in vast and difficult to achieve. This allows monitoring large geographical areas 

continuously and efficiently, improving the general resilience of the regions which are prone 

to landslides. This literature survey aims to explore these fundamental aspects of the prediction 

of landslides through hybrid machine learning models, focusing on the integration of wireless 

sensors, IoT networks and advanced techniques such as FCN. When reviewing the current state 

of the investigation, we will highlight the advances, challenges and future opportunities in this 

field. Through this exploration, we seek to provide an integral understanding of how these 

technologies can work together to improve disaster preparation and response, offering new 

possibilities to save lives and minimize destruction caused by landslides. 

To achieve best output, the application of ML is used to analyze data through clear process 

using several phases. One phase begins with the collection and preparation of data as illustrated 

in Figure 2.1. Raw data is gathered from many sources like databases or sensors then, data 

cleaning is done to missing values or other outliers present in data. Further suitable model for 

training is taken into consideration.  

 

 Figure 2.1 Overview of the key stages in the machine learning pipeline 

After modelling, the next phase is visualization in which the data must be visualized using 

graphs or graphs to appear patterns or correlations. Then model evaluation is done using 

various metrics which determines the usefulness of model. Each phase of this process is 
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interconnected, and the decision made in one step affects the outcome biased in the following 

phases. 

N Casagil et al. [1] designed a model for detecting and monitoring landslides, which 

emphasizes the importance of remote detection techniques (RST) in control of the grounds 

associated with landslides. Landslides are generalized phenomena that can cause considerable 

damage, especially if they occur near inhabited areas and infrastructure. Precise detection, 

continuous monitoring and reliable prediction are essential for risk alleviation. The first, such 

as satellite -based observations, laser scanning and earthly interferometry, are helpful in these 

processes. Extrusion of landslides can be detected and measured on various spatial and time 

schedules thanks to a thorough overview provided by satellite RST. On the other hand, 

although they are focused on smaller regions, ground sensors such as Lidar, Doppler radar and 

interferometric radar, offer excellent accuracy, frequent data collection and customizable 

settings. The use of these systems for early warnings of landslides and monitoring in real time 

is growing. Special needs, including the size of the affected region, the type of landslide and 

possible risks, determine which first is the best. Each first has a unique set of advantages and 

disadvantages. Integration of multiple technologies is therefore often the most effective 

approach for laying and risk control. Better communication with residents in areas susceptible 

to landslides, deployment of intelligent sources and the use of large data are necessary for more 

efficient control of landslides. 

J Barman et al. [2] designed a model for creating landslide forecasting zonation in Lunglei 

Mizoram district using bivariate statistical techniques based on GIS. After a multicollinearity 

test for landslide susceptibility zonation, 17 factors were selected for the study. 234 occurrences 

of landslides, divided into 70% training and 30% of data sets were used to create a map of soil 

inventory. Nine main factors such as altitude, gradient, dimension, curvature, normalized 

difference vegetation index (NDVI), geomorphology, road length, distance from the line and 

river - it was found to have substantial weights for landslide susceptibility zonation using 

entropy index (IOE) model. It was found that other elements such as geology, collisions and 

soil and cover use were of very importance. Two models have been improved Scenario 1 and 

assessed nine factors, and scenario 2, which contained all 17 factors. The results indicated that 

16% and 14% of the district area was classified as very highly susceptible to the screenplay in 

the 1 and screenplay 2. Accuracy of model present, with area under the Curve (AUC) Values 

of 0.947 for Scenario 1 and 0.922 for Scenario 2, Indicating Better Performance for Scenario 
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1. Mapping landslide susceptibility zonation from Screenplay 1 is considered to be the most 

suitable for management of policy creation in land risk management with regard to these 

findings. 

MT Riaz et al. [3] developed a model to use the efficiency of different techniques of 

distribution of landslides sensitivity modeling (LSM) and was used in the Pakistani district of 

Muzaffarabad. The model was used 961 landslide samples which further split into training 

samples of 70%, 672 and testing samples of 30%, 289. The training samples were processed 

using the average method of the nearest neighborhood index (ANNI), revealing a sliding 

distribution pattern for landslides. Among the training samples of 79% showed the behavior of 

the cluster, while 21% showed random behavior. With 17 parameters of geoenvironmental 

parameters, five machine learning algorithms were used in clusters and conventional random 

training samples to evaluate the prediction force of clustering. Using AUC-ROC, sensitivity, 

specificity, accuracy and index Kappa was evaluated model performance. With AUC-ROC 

values, it varies from 0.96 to 0.86, Kappa index between 0.76 and 0.60 and accuracy between 

0.90 and 0.83, the cluster distribution method showed greater predictive potential. On the 

contrary, the approach of random segmentation also did not work. AUC (0.962), accuracy 

(0.902) and Kappa Index (0.755) were highest for the Random Forest (RF) based on cluster 

training samples that overcome the XGBoost. The outcome demonstrate that the division of 

clusters enhances LSM precision, especially for complex Himalayan terrain, and emphasizes 

the potential advantages of using data sets based on cluster over the traditional random division 

in LSM. 

P. C Huang et al. [4] developed a model which integrates a seepage flow model and slope 

stability model to get the spatial and temporal shifts in areas. The input of the model, the 

dynamic cumulative shifted area, is derived from the seepage flow and soil slope stability 

analysis, ensuring that the physical meaning of the ML based model is preserved. The approach 

effectively predicts when landslides are likely to occur in different areas.The results show that 

only specific regions, which experience significant changes in instability during rainfall, need 

to be closely monitored. The model’s prediction accuracy is high, with the mean relative error 

of the predicted landslide periods (Ps) and initial time (Ts) controlled within 5.19%, and an R2 

consistently greater than 0.889. The model successfully predicted around 82.2 percent of the 

study area's recorded landslide incidents. 
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P Varangaonkar et al. [5] introduced an innovative framework that uses a long -distance 

survey to automatically detect landslides and localize regions. The system includes pre-

processing, segmentation, feature extraction, and classification. In the preliminary processing 

phase, the image is denominated by 2D medium filtering, atmospheric and geometric 

corrections are performed and excess areas are eliminated. ROI is then extracted by dynamic 

image segment. For the automatic extraction of the elements, convolutional neural network 

(CNN) layers are used and use the ResNet50 to enhance accuracy and minimize computing 

expectations. Long -term short memory and artificial neuron network classifiers are used to 

predict land landslides. The potential placement of landslide is identified in the subsequent 

processing step if landslides are predicted. According to experimental data, the proposed CNN-

LSTM model works better than current solutions in terms of accuracy, score F1, accuracy and 

download. It also reduces computational complexity by 35% and increases the overall accuracy 

of prediction by 2% compared to the latest techniques. 

Y A Nanehkaran et al. [6] introduced a model which implemented artificial neural networks 

to evaluate the risk of landslides along riverbanks. This model is alligned with the Sustainable 

Development Goals of the UN, specifically Goal 11: Sustainable Cities and Communities. The 

article examines how ANNs are increasingly being used to map landslide vulnerability in 

riverbank regions, emphasizing how well they outperform conventional techniques. Better risk 

management and increased community resilience to geohazards are made possible by the 

incorporation of ANNs into landslide assessments, which promotes sustainable and disaster-

resilient urban development. In order to promote sustainable development, better risk 

management techniques, the review focuses on the most widely used neural network algorithms 

for riverside landslide prediction. By expanding knowledge and creating safer, more resilient 

communities, the use of ANNs supports the SDGs. 

C Zhou et al. [7] designed a new, cost-effective framework for landslide prediction that 

combines a MT-INSAR with machine learning techniques. MT-INSAR is used in terms of 

extracting time series of shifts from the Corernicus Sentinel-1A SAR images. Then the 

displacement series is divided by means of wave transformation into trend, periodic and noise 

components. The trend and periodic shifts are predicted by the machine learning model known 

as the gated recurring units (GRU). These predictions are summarized to estimate the overall 

shift. GRU overcomes other algorithms such as long short -term memory networks and an 

extreme kernel -based learning machine, with an Adam algorithm. The results of the prediction 
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show low errors (the RMSE of 3,817 and 5.145 for Shuping and Muyubao landslides). The 

proposed framework effectively integrates MT-InSAR and machine learning and offers cost-

effective solutions for prediction of moving landslide on large areas. 

S Alqadhi et al. [8] developed a thorough strategy to improve the prediction of landslides by 

a combination of explaining approaches to artificial intelligence (XAI) with deep neuron 

networks, 1D convolutional neural networks and DNN-CNN. XAI increases the interpretation 

of deep learning and makes it easier to decide. To evaluate how the variables affect the 

prediction of landslides, the DNN model uses the game theory. The study identifies the 

sensitivity zones to a high and very high landslide and shows that the DCN model overcomes 

CNN and DNN with AUC of 0.97, compared to 0.94 for CNN and 0.9 for DNN. XAI reveals 

significant remnants at the back of CNN despite its high AUC. The key parameters for accurate 

prediction include precipitation, inclination, soil texture and line density, while the game theory 

emphasizes the line density as the primary influential factor, observed by a topographic 

moisture index, curvature and inclination.  

H Ishibashi et al. [9] proposed an approach for assessing the economic risk of structures 

impacted by collisions caused by landslides with a focus on increasing resistance to extreme 

rainfall events. The study used ML, specifically random forests and LightGBM, to develop 

models of landslides and include spatial division of conditioning and trigger factors. The 

precipitation index, which considers time differences in precipitation, was used to assess the 

intensity of precipitation and the risk curve was estimated by the generalized distribution of 

extreme value to represent the connection between the precipitation index and its annual 

probability of crossing. To evaluate the sensitivity to the landslide with landslides of landslides 

of landslides with landslides, the risk curve was created for economic loss of structural damage. 

The results showed that LightGBM exceeded the random forest in predicting a collision caused 

by a soil landslide. 

L.  Liu et al. [10] introduced a study to investigate the effiectiveness of classical models in 

predicting landslide failure-time using displacement monitoring data, with a focus on dynamic 

prediction. Since landslide monitoring continuously updates the data, predictions should be re-

evaluated in real-time. The study examined the limitations of classical models, using data from 

four real landslides. To improve prediction accuracy, an ensemble model was developed, 

integrating classical models through a machine learning-based meta-model. A new indicator, 

the "discredit index (β)," was introduced, where higher β values indicate poorer prediction 
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quality. Results showed that Verhulst and Saito models had higher β values, while GM (1,1) 

had the highest MAE. In comparison, ensemble models, particularly the decision tree 

regression-based ensemble, performed better and provided more accurate predictions. 

H. Harsa et al. [11] developed landslide prediction models in Indonesia using artificial 

intelligence algorithms and ML. These ML models were trained using precipitation data from 

global satellite observations and landslide occurrence data provided by the Indonesian National 

Board for Disaster Management. The model was trained with two distinct approaches, leading 

to the creation of 52 and 72 model candidates for each approach. The best-performing models 

from each method were selected, with the generalized linear model excelling in the first method 

and DL outperforming others in the second. The top models achieved AUC values of 0.828 

and 0.836, with log-loss values of 0.156 and 0.154, respectively. The second method, which 

included data transformation, yielded superior results. 

Z Chang et al. [12] introduced a study to forecast the LSP using slope units retrieved by the 

multi-scale segmentation (MSS). They dealt with the question of neglect of heterogeneity of 

conditional variables in slope units, which can lead to incomplete input variables in LSP 

modeling. The authors introduced a new approach that includes internal variations of 

conditional factors (diameter, standard deviation and range) into slope units. Using the Chongyi 

Country as a case study, the study has expanded 15 original conditional factors to 38 

considering their internal variations. The authors compared models of machine learning, 

including random forests (RF) using slope units with and without internal variants, as well as 

conventional grid -based models. The finding revealed that the models representing the internal 

variations within the slope units overcame models based on the grid, which shows greater 

directional and practical usability. This approach emphasizes the importance of incorporating 

the heterogeneity of conditional factors into slope units for more accurate and thorough 

modeling of the sensitivity of landslides. 

L. Nava et al. [13] introduced the evaluation of seven DL algorithms to predict landslide shif

ts. This study compared 1D CNN and LSTM architectures CONGLSTM combining 1D CNN

 and LSTM architectures via multilayer shortterm memory, repeating units, 1D folding netwo

rks, 2XLSTM, bidirectional LSTM, and slides from four countries with different geographic 

and geographical conditions. Two of these landslides were affected by artificial reservoirs, w

hile the other landslides were driven by precipitation. The results showed that MLP, GRU, an

d LSTM models were reliable in all scenarios. This allows the CONPLSTM model to be best 
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run on seasonal Baishuiheslides. MLP was excellent at predicting top shifts, while LSTM and

 GRU models were effective at lower shift peaks. These results recommened that these DL m

ethods can significantly improve landslides. 

Y. Shen et al. [14] proposed a new type of landslide model of machine learning, neuronal net

works, and topography indexes to improve accuracy. A study conducted in Western Baijan, Ir

an evaluated 16 factors related to geology, environment and geomorphology and analyzed 16

0 landslides. A 30:70 training ratio of the test data was used with four support vector algorith

ms and an artificial neural network. The results showed that over 80% of landslide areas were

 extremely sensitive. Geological factors such as trends, increases and precipitation played an i

mportant role with sensitivity of 100%, 75.7%, 68%, and 66.3%. This study assessed the perf

ormance of the model using AUC, classification matrix and sensitivity, accuracy and specifici

ty metrics, and found that the algorithm surpassed other methods for machine learning. The S

VM and Kernel-Sigmoid algorithm achieved the highest accuracy with a performance value of 

1. 

Z. Chang et al. [15] introduced a new methodology to examine the uncertainty in the selection 

of sensitivity sample for LSP, which does not include landslides. In order to create LSP models 

and calculate various soil sensitivity indices, this framework uses machine -based machine -

based models in which samples of non -domestic soils are randomly selected many times (n = 

1, 10, 100, 500, 1000, 5000) from places outside the soil. The maximum probability analysis 

(MPA) is used to lower the unpredictability of identification of the ideal sensitivity level for 

each slope unit, while the statistical analysis is used to display landslide susceptibility indexes 

uncertainty based on different selections. A study conducted in China Chongyi County in China 

used LR models and SVM with 16 conditioning factors. The power of the model was evaluated 

by the accuracy. The results showed that landslide susceptibility indexes monitored normal 

distribution instead of constant value and was effectively represented by uncertainty when 

choosing a sample without land.  

L. Achu et al. [16] developed a new methodological system for quantification of uncertainty 

in the prediction of the landslide sensitivity by means of files by eight machine learning 

techniques (MLT). This framework has been tested in the southern western Ghats area in 

Kerala, India, a area susceptible to frequent landslides. Fourteen factors of landslides have been 

identified and correlated with 671 historical landslides. Four models were used in the study: 

Committee diameter, weighted probability diameter, median probability and probability 
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average. Based on the operating functions of the receiver, real skills and areas under the curve, 

the weighted probability average was determined as the most successful model between them. 

A variation coefficient was used to analyze the uncertainty and a confident map was created to 

show the zone of the sensitivity of landslides with different scales of uncertainty. The results 

revealed that 74% of past landslides fell into high uncertain zones with low susceptibility. The 

study concluded that using such a micro -level zone could increase the efficiency of soil 

sensitivity maps and provide planners valuable tools for formulating adaptation strategies of 

landslides. 

Y. Wie et al. [17] introduced an improved method to assessing the soil sensitivity by 

integrating ML, including random forest, a tree decision -making tree and logistics regression, 

with interferometric synthetic radar technology. This combined approach was compared with 

the original models and the results showed improved accuracy of prediction with reduced FN- 

false negative and FP- false positive mistakes. The LR-InSAR has shown the best performance, 

especially when identifying areas with high susceptibility, both in regional and smaller scales. 

The results of the modeling were verified by means of data from the unmanned aerial vehicle 

(UAV) flights.  

L. Chen et al. [18] developed a better technique of landslide -based landslides that integrates 

the machine learning models into the spatiotemporal Knowledge graph. This method deals with 

the difficulty of integrating data from multiple sources of long -distance survey and creating a 

consistent prediction process, which is often the disadvantage of contemporary models. This 

technique chooses the best ML model to forecast landslides in places with a smaller figure 

when it takes into account environmental similarities between areas. Compared to conventional 

machine learning techniques, experimental results showed 93% improvement of processing 

efficiency and 29% increase in score F1. In addition, this approach has solved the problems of 

Subpar prediction, which caused a lack of data, especially for forecasts performed at the region 

level. Especially in regions with limited data, this strategy offers thorough information to create 

more effective techniques of landslide. 

C. Chen et al. [19] examined the effect of selection of contributing factors on the precision of 

landing sensitivity forecasts using machine learning and deep learning models. The study has 

explored four methods of selection of factors: the ratio of information profit, recursive 

elimination of elements, optimizing particle swarm, least absolute shrinkage and operators’ 

selection and optimization Harris Hawk, along with an auto -gap factor for deep learning. The 
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results showed that the selection of significant assisting factors enhanced the accuracy of 

models. But the result of the DL models has improved when the autoencoder architecture was 

used to select factors. The study concluded that the choice of factor selection method was more 

significant than specific factors providing to increasing the precision of the permission 

sensitivity. 

N. Nocentini et al. [20] developed a dynamic approach to analyze the susceptibility of 

landslides by combining the static sensitivity index with dynamic variables using the random 

forest algorithm (RF). This methodology integrates the likelihood of spatial landslide (static) 

with dynamic factors such as seasonality and precipitation in different periods to increase land 

landslide forecasts. The RF model was applied in the metropolitan city of Florence in Italy, 

where the importance of variables and verification of the consistency of the model with 

observed trigger mechanisms used out-of-Bag errors and charts of partial dependence. The aim 

of the study was to fulfil dataset of training and test datasets with space -time data, identify 

relevant variable precipitation for timing and location of landslides, and test the dynamic RF 

application for forecasts. The results showed that the dynamic model precisely reflected the 

triggers of physical landslides, especially short and intense precipitation, and identified 

promising configurations for future regional applications in the assessment of the probability 

of landslides and early warning systems. 

T. Xiao et al. [21] developed an innovative framework of ML to predict the landslides caused 

by rain in space and time that dealt with the challenge of incomplete landslides, especially the 

lack of accurate timing of landslides. This study systematically compared various methods 

based on data-based, statistical and machine learning-for soil landslides and introduced a 

probability model of landslide, which can be used even when timing data is missing. The 

integrated model provides a useful tool for timely warning systems and real -time decision -

making accurately estimated the risk of soil and predicting the spatial development of 

landslides during rain storms. The model beat previous data -based approaches in terms of 

accuracy and predicational ability after being verified against 35 years of data on Hong Kong. 

K. Doerksen et al. [22] designed a method using machine learning techniques (ML) and deep 

learning (DL) of artificial intelligence (AI) for predicting landslides in Nepal at the level of the 

district with 7, 10- and 14 days of time resolution. This approach uses an open source, space 

data, including calibrated precipitation and geomorphic data. The study showed predictive 

power of random forest and U-Net models to predict land landslides and provided scientific 
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knowledge through the analysis of significance. This method improves predictive abilities and 

offers valuable tools for disasters and solves the challenges of a complex causal chain of 

landslides in Nepal, where large earthquakes and intensive monsoon collisions are common 

triggers. 

H. Hong et al. [23] designed five integration models that combine locally weighted learning 

(LWL) with various classifiers such as radial basis function classifier, decision tree, credal 

decision  tree, quadratic discriminatory analysis, Fisher linear discriminatory and classifier with 

radial basis. The study conducted in China in the Yongxin district used 364 landslides and 15 

environmental factors. The results showed that the LWL-RS-ADT has surpassed others in 

terms of reliability and stability. Among the environmental factors, NDVI, lithology and 

altitude were identified as the most important in predicting the sensitivity of landslide. The 

proposed integration models have been induced as effective tools for the prediction of soil 

landslide. 

S. Aldiansyah et al. [24] designed a model of foresting sensitivity, which combines the 

techniques of resampling, including cross validation, bootstrap and random subsampling, with 

a series of machine learning models such as support vector machine, random forest, generalized 

linear model, maximum regression tree Discriminating discriminatory disgraceful analysis, 

flexible discriminatory analysis, flexible disgraceful analysis, flexible disgraceful analysis, 

maximum regression tree, and regression. Probability and maximum entropy. The 

methodology was used in Kendari, an area affected by destructive erosion. The predictive 

accuracy of the model was assessed using metrics like AUC, TSS, COR, NMI and CCRTHE, 

achieved impressive power metrics with AUC of 0.97, COR of 0.99, NMI of 0.50, TSS of 0.97 

and CCR of 0.93. The study concluded that these integrated models provide promising results 

to predict the landslide sensitivity and could be successfully applied in other regions. 

M. Dahim et al. [25] focused on predicting the sensitivity of landslides in the area of Saudi 

Arabia by means of machine learning and deep learning algorithms, along with the sensitivity 

and analysis of uncertainty. The study took advantage of a random forest as a model of machine 

learning and a deep neural network as a model of deep learning, both of which were 

enthusiastically tuned through the grid search. The operating characteristics of the receiver, 

score F1 and F2, the Gini value and the accuracy curve were used to verify the models. Analysis 

of sensitivity and uncertainty made using the DNN model revealed the impact and uncertainty 

of various parameters on the occurrence of landslides. The results indicated that the RF and 
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DNN models predicted 35.1-41.32 km² and 15.14–16.2 km² of high and very high soil 

sensitivity zones. The DNN model reached 0.96, while the RF model won 0.93. The sensitivity 

analysis emphasized that the most important factor is collision, followed by the topographic 

wetness index, curvature, inclination, soil texture and lines density. 

N. Sharma et al. [26] developed a probability framework for mapping sensitivity to landslides 

that deals with limitation of existing maps, such as small-scale data, heuristic methods, low, 

small study areas and spatial resolution. The framework combines the techniques of handling 

the imbalance and techniques of machine learning by means of support of vector machine 

synthetic oversampling technique to solve class imbalances and generate smaller representative 

data for model training. The technique of mixing file is used for lower uncertainty, which 

includes support vector machines, random forests and hyperparameter tuned ANN. This 

methodology is provided by the probability and class of landslides. With a resolution of 0.001 

° (~ 100 m), the frame was used to create the first Indian landslide maps of landslides at the 

national level and was divided into five levels. The map achieved of sensitivity With a 

sensitivity of 97.08%, accuracy of 95.73% and correlation coefficient Matthews 0.915 on test 

data showed an excellent generalization, robustness and accuracy. The model found new high 

-risk regions, including the Eastern Ghats regions that were not previously reported. The Indian 

map of sensitivity to landslide will be assumed to help model prediction models and reduce the 

risks of disaster. 

T. Zeng et al. [27] investigated the impact of grading factors in landslide prediction modeling, 

addressing the subjectivity and randomness typically linked to this method. Focusing on the 

Wanzhou section of the Three Gorges Reservoir area, the research evaluated the performance 

of various machine learning models under different grading strategies, including non-grading, 

equal intervals, and natural breaks. The results indicated that the optimal grading strategy varies 

depending on the model used. For instance, the SVM model performed best with level 8 

grading using natural breaks, while decision tree models were more effective without any 

grading. Deep learning models, such as Multi-Layer Perceptron Neural Networks and 

Convolutional Neural Networks, showed better results with natural breaks grading beyond 8 

levels. Gated Recurrent Unit and Deep Neural Networks performed more effectively with 

equidistant grading of over 12 levels, while Long Short-Term Memory Networks excelled with 

equidistant grading exceeding 16 levels. 
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P. Priyanka et at. [28] proposed a model for soil movement prediction in areas susceptible to 

landslide Himachal Pradesh in India, where climate change intensifies the risks of landslide. 

The study has used models like long short-term memory, a convolutional neural network long 

short-term memory, convolution LSTM, encoder-decoder LSTM and the new model of the 

ensemble, Multi-LSTM-SVM, which is critical for understanding for landslides. Research, 

which was carried out in the Kamand valley with extensive monitoring systems, found that the 

SoilSense Multi-LSTM-SVM has reached 88.1% accuracy, overcame other models such as the 

LSTM and CNN-LSTM, which achieved 82.26% accuracy. adaptation. The study suggests that 

the refining of the fine models can further improve predictions and eventually help to reduce 

the risks of landslides and investigate lives and property in vulnerable areas. 

A. Saha et al. [29] developed a model which used susceptibility of landslides combining the 

statistical model AHP and ML model SVM to predict landslides in Darjeeling district, West 

Bengal, India. The study identified 114 placement of land shells and divided them into training 

sets (70%) and validation (30%). Ten training factors were assessed, including rain, soil 

texture, waiting and geomorphology for analysis. The AHP-SVM using linear, polynomial, 

radial bases (RBF) and sigmoid algorithms generated four maps of the sensitivity of ground 

landslides. Among them, the AHP-SVM. Sigmoid showed the highest prediction performance 

and achieved a prediction capacity of 86.2%. This study concluded that the AHP-SVM Sigmoid 

model is a promising technique for mapping sensitivity to landslides that offers valuable ideas 

for local planning and decision-making and can be used for other regions for similar studies. 

Q. Ge et al. [30] investigated how different elements of element selection techniques affect the 

productivity of machine learning model in prediction of offspring soil deposits in a deposit area 

of China. The research focused on the landslides of shuping and Baishuihe as case studies and 

evaluated four automatic learning algorithms: backup neuronal network, support vectors, short 

-term memory and closed recurring unit. Three characteristic engineering approaches were 

used: unprocessed multi-variation timing, autocorrelation functions of the maximum 

information coefficient and partial coefficient and relational analysis of GRA-PACF. The 

results revealed that static automatic learning models have improved significantly with the 

selection of suitable characteristics, while dynamic models such as LSTM and GRU, which 

inherently represent temporary formulas, showed only a slight improvement with engineering 

other features.  
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Y. Wang et al. [31] introduced various machine learning models for accessing the sensitivity 

in the Wushan region using models like random forest, logistics regression to compare the 

results and best model. The mentioned dataset uses 19 conditional parameters and train & test 

split is done is 80:20 ratio for further analysis. Different performance metrics were 

implemented to calculate the accuracy of model.  The results provide insights that random 

forest outperformed all other models with 0.848 accuracy, 0.904 for area under curve, F1 score 

as 0.740. The research summarized as the random forest provided most efficient results and 

that proved to be one of most useful approach to assess the sensitivity and other parameters of 

landslides. 

H. Wu et al. [32] the study included factors such as landslides, triggering factors and dams, 

and developed six predictive models using logistics regression, K-nearest neighbours, Support 

Vector Machine, Naive Bayes, decision tree and random forest. These models considered five 

factors, including the parameters of the geometry and attribute properties, and were compared 

with the dimensionless blockage index (DBI). The results showed that while the machine 

learning models corresponded to the accuracy of DBI, they provided benefits in situations 

where DBI cannot be used. Among the models achieved random forest with the highest 

performance, with 89% accuracy, 7% error rate, 15% false alarm rate and without uncertainty.  

H. Shahabi et al. [33] evaluated the efficiency of three machine learning algorithms, such as 

decision  tree (DT), random forest (RF) and support vector machine (SVM) to map the 

sensitivity of landslides, focusing on Kamyaran -Sarvabad Road in Iran and Kurdistan, and an 

area that was often influenced with Landslides. Fourteen factors of landslides, including 

inclination, aspect, height, river density, disorders and topographic indexes, were used as inputs 

for the MLA. The study identified 64 landslide seats using 70% for model training and the 

remaining 30% for verification. The model of the decision -making tree reached the highest 

area under the operational characteristic curve of the receiver 0.94, exceeded random forest 

(0.82) and support vector machines (0.75). 

G. Tang et al. [34] developed a AutoML-based framework for global landslide sensitivity 

prediction (LSP) in two spatial resolutions (90 m - 1000 m), reaching the area under the 

operational characteristics of the receiver (AUC) over 0.96. Global prediction results were 

validated using regional landslides from three countries, three provinces and two prefecture 

data files. In addition, global LSP results at 90 m were used to increase regional predictions by 

incorporating areas with low and very low susceptible as samples of non -domestic soils. The 



21  

model has shown improved performance compared to the original global predictions. This 

study emphasizes the potential of intelligent learning methods for reliable global LSP 

applications. 

S. Meng et al. [35] developed a deep learning framework that integrates the LSCDBN-WOA 

with Laplace function sparse regularized continuous deep belief network. This model addresses 

issues such as feature homogenization of continuous input variables, limited samples of 

landslide, and local optima during the training phase. Using a comprehensive database of 18 

landslide conditioning factors, the study demonstrated that the LSCDBN-WOA model AUC = 

0.964, RMSE = 0.174 outperformed the LSCDBN-GWO model AUC = 0.952, RMSE = 0.182 

and the standalone LSCDBN model attain AUC = 0.913, RMSE = 0.291. The proposed 

LSCDBN-WOA framework also surpassed traditional machine learning models SVM, BP, RF, 

and LR and deep learning models RNN, CNN. The outcome highlights the effectiveness of the 

LSCDBN-WOA framework for landslide susceptibility assessment. 

C. Chen et al. [36] proposed a deep learning model, Deep-Attention-LSF, designed for 

mapping of landslide susceptibility. This model assigns relevance scores to input contributing 

factors at local levels, improving the understanding of the factors influencing landslide events. 

DeepLIFT was implemented as an attribution branching network to interpret the relationship 

between the factors and landslide events. The model, which combines convolutional neural 

networks and long short-term memory networks, was tested on the Three Gorges Reservoir 

Area, using 18 landslide-related factors. The Deep-Attention-LSF model achieved high 

performance with accuracy - 0.9645, precision - 0.9676, recall - 0.9583and F1-score - 0.9522, 

outperforming other models such as self-attention LSM, random forest, and gradient boosting 

decision tree. 

C. Yang et al. [37] developed the Bayesian optimization technique to maximize the sample 

ratio of landslide to a non-landslide assessment to assess the soil sensitivity based ML. The 

study focused on the edge of Anhua in Hunan province in China, which is the area susceptible 

to landslides. Three ML models, such as random forest, support vector machine and gradient 

increase, were used to assess sensitivity to landslides. The use of Bayesian optimization 

algorithm identified the optimum sample ratio, which improved the performance of the model. 

The finding has shown that higher power was the result of an optimized P/N ratio, with the RF 

gaining maximum or AUC 0.840, followed by GBDT 0.831 and SVM 0.775. In the LSA Study 
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models, the Bayes optimization technique works well to maximize the P/N sample ratio, while 

RF and GBDT are more suitable for solving imbalance problems. 

M. A. Hussain et al. [38] updated the inventory of land landslides along the Karakoram 

highway (KKH), a critical route connecting South Asia, Central Asia and China, which is 

highly sensitive to landslides due to extreme geological conditions. The study was used by 

SBAS-InSAR and PS-InSAR technology and processed Sentinel-1 data from June 2021 to June 

2023 to identify and measure slope deformation (Vslope). Among the 571 landslides that were 

found were 24 new landslides and some of the pre -defines the existing existing ones. The soil 

-sensitivity model was developed using an updated inventory that combined land landslides to 

causing factors. To evaluate deep learning models such as deep learning models such as CNN 

2D, RNN, RF and XGBoost, 70% of training and 30% test part were used. The mapping was 

considered a total of fifteen elements causing landslide. The CNN 2D made the best and a map 

of landslide susceptibility that has been produced offers a useful risk control and risk 

prevention tool and helps to assess and alleviate risks. 

Y. Liu et al. [39] developed a method of assessing the sensitivity of landslides, which combines 

information models with machine learning (ML) for more accurate forecasts and solves the 

problem of sample selection outside Landslide. The study focuses on the selection of samples 

without the land of the first screening of influential factors using a correlation analysis and then 

using a model of the value of the information value (IV) to define low and relatively low 

sensitivity. IV-ML models, such as IV-Logistic regression, IV-Random forest, IV-Support 

vector machine and IV-artificial neural network, were used to assess the sensitivity of 

landslides in the province of the province of Dabie in Anhui province. Compared to traditional 

ML models such as LR, RF, SVM and Ann, IV-ML models have shown significantly better 

performance in terms of accuracy, with improved ACC, AUC and Kappa values. This 

emphasized the increased efficiency of the proposed method for evaluation of soil landslide. 

D. Sun et al. [40] focused on mapping of landslide sensitivity using interpretable machine 

learning, specifically exploring topographic differentiation. The study area included two 

different regions in Chongqing: zone I (corrosion layered high and middle mountain areas) and 

zone II (middle mountain area with strong regional feet). Bayes optimization was used to 

increase the parameters of the LightGBM and XGBoost models, with the most accurate model 

selected for soil sensitivity mapping. The SHAP (Shapey additive explanation) was applied to 

examine the molding mechanisms in both regions. The results showed that LightGBM 
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overcame XGBoost, with AUC values 0.8525 and 0.8859 for zones I and II. Common dominant 

factors for the occurrence of soil in both zones included altitude, soil use, section depth, 

distance from roads and annual collision.  

This literature survey examines the application of ML and DL hybrid models to predict 

landslide using remote sensing images and data in real time collected from several sensors. The 

integration of satellite images, LiDAR, radar data and other technologies remote detection with 

sensor networks plays an essential role in the identification and predictions of areas susceptible 

to landslides. An overview emphasizes how hybrid models combining traditional algorithms, 

including support vector machines (SVM), random anticipation and K-nearest neighbors 

(KNN), along with advanced deep learning techniques such as deep beliefs networks (DBN), 

fully convention networks (FCN), offer improved prediction capabilities for landslide 

prediction and detection and risk assessment. In addition to remote exploration data, the 

overview focuses on data collection in real time of various sensors located in regions 

susceptible to landslides. These sensors capture key environmental factors such as soil 

moisture, rainy intensity, soil relocation, seismic activity and atmospheric conditions. Real 

time data is collected by ground sensors, meteorological stations and, among other things, 

unmanned aerial vehicles (UAV) and then feed on hybrid models of machine learning. 

Incorporating real -time sensor data improves the ability to monitor dynamic environmental 

changes and detect possible landslides and provide valuable information for early warning 

systems. Further advances are essential for improving early warning systems and efforts to 

prepare disasters. Table 2.1 provides a detailed summary of review of literature on landslide 

prediction using hybrid models of automatic learning and deep learning with sensor data in real 

time and remote sensor images. 

Table 2.1 Summarization of literature review for Landslide Prediction 

Author Technique Problem 

Statement 

Performance 

Analysis 

Limitation 

N. Casagil et 

al. [1] 

Remote Sensing 

Techniques (RSTs) 

Landslide detection 

and monitoring 

using satellite and 

ground-based 

sensors to manage 

landslide risks 

Multiple RSTs offer 

effective monitoring 

with high spatial 

and temporal 

flexibility. Ground-

based systems offer 

accuracy for small 

areas 

Integration of 

multiple RSTs is 

complex and 

resource-intensive 

J. Barman et 

al. [2] 

GIS-based Bivariate 

Statistical Approach, 

Index of Entropy 

(IOE) 

Landslide 

susceptibility 

zonation (LSZ) in 

Lunglei, Mizoram 

Scenario 1 (9 

factors) 

outperformed 

Scenario 2 (17 

Limited by the 

geographical scope 

of the study, 
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to predict landslide-

prone areas 

factors), with AUC 

of 0.947 (Scenario 

1) and 0.922 

(Scenario 2) 

overlooking other 

factors 

M.T. Riaz et 

al. [3] 

Machine Learning 

Algorithms, 

Clustering 

Partitioning 

Evaluate alternative 

partitioning 

techniques for 

landslide 

susceptibility 

modeling in 

Muzaffarabad 

Cluster-based 

partitioning method 

improved predictive 

accuracy with AUC-

ROC values up to 

0.962 for Random 

Forest model 

Specific 

geographical 

features of 

Muzaffarabad may 

affect 

generalizability 

P.C. Huang et 

al. [4] 

Neural Network 

Algorithm, 

Clustering Method 

Predict shallow 

landslides using 

geomorphological 

features and 

clustering methods 

High prediction 

accuracy (mean 

relative error: 

5.19%), with R² > 

0.889 and 82.2% of 

observed landslide 

events predicted 

Relies heavily on 

geomorphological 

data, limiting 

generalization to 

other regions 

P. 

Varangaonkar 

et al. [5] 

Remote Sensing, 

CNN, LSTM, ANN, 

SVM 

Automatic landslide 

detection and 

region localization 

using remote 

sensing images 

CNN-LSTM model 

outperformed 

traditional methods, 

improving accuracy 

by 2% and reducing 

complexity by 35% 

Requires 

computationally 

intensive resources 

for real-time 

applications 

Y.A. 

Nanehkaran et 

al. [6] 

Artificial Neural 

Networks (ANNs) 

Assess riverside 

landslide 

susceptibility for 

better urban 

planning and 

disaster resilience 

ANNs improved 

risk management 

strategies for 

riverside areas, 

supporting 

sustainable urban 

development 

Limited to riverside 

areas, unsuitable 

for non-riverside 

regions 

C. Zhou et al. 

[7] 

Multi-Temporal 

InSAR, Gated 

Recurrent Units 

(GRU) 

Cost-effective 

displacement 

prediction for 

landslides using 

InSAR and machine 

learning 

GRU model 

provided high 

accuracy in 

displacement 

prediction with 

RMSE values of 

3.817 and 5.145 

Dependent on 

satellite imagery, 

which may be 

inaccessible or 

expensive in some 

regions 

S. Alqadhi et 

al. [8] 

Deep Neural 

Networks (DNN), 1D 

CNN, DCN, XAI 

Enhance landslide 

prediction by 

integrating deep 

learning and 

explainable AI 

DCN model 

achieved AUC of 

0.97, outperforming 

DNN (AUC: 0.9) 

and CNN (AUC: 

0.94) 

XAI increases 

complexity and 

computational 

demand 

H. Ishibashi et 

al. [9] 

Machine Learning 

(Random Forest, 

LightGBM), Rainfall 

Hazard Curve 

Assess economic 

risk from rainfall-

induced landslides 

and improve 

resilience of 

structures 

LightGBM 

outperformed 

Random Forest with 

higher accuracy for 

rainfall-induced 

landslide 

susceptibility 

Does not account 

for non-rainfall-

induced landslides 

in areas with 

different triggering 

factors 

L.L. Liu et al. 

[10] 

Classical Models 

(Verhulst, GM (1,1), 

Saito), Ensemble 

Models 

Predict landslide 

failure time using 

displacement 

monitoring data 

Ensemble models, 

especially decision 

tree regression-

based, outperformed 

classical models in 

prediction accuracy 

Classical models 

had high prediction 

errors (e.g., GM 

(1,1) with high 

mean absolute 

error) 

H. Harsa et al. 

[11] 

Machine Learning 

and AI, Precipitation 

Data 

Landslide event 

prediction in 

Indonesia using 

Best models: 

Generalized Linear 

Model (AUC: 

Performance varies 

with different 

satellite data or 
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satellite 

precipitation data 

0.828) and Deep 

Learning (AUC: 

0.836) 

geographic 

conditions 

Z. Chang et al. 

[12] 

Multi-Scale 

Segmentation (MSS), 

Machine Learning 

Landslide 

susceptibility 

prediction 

addressing the 

heterogeneity of 

conditioning factors 

Models 

incorporating 

internal variations 

within slope units 

performed better 

than grid-based 

models 

High complexity 

due to multi-factor 

modeling and data 

requirements 

L. Nava et al. 

[13] 

Deep Learning 

(MLP, LSTM, GRU, 

Conv-LSTM) 

Forecast landslide 

displacement and 

improve early 

warning systems 

Conv-LSTM 

performed best in 

predicting 

displacements, 

particularly in 

seasonal landslides 

Does not generalize 

well to all types of 

landslides 

Y. Shen et al. 

[14] 

Machine Learning, 

Neural Networks, 

Geomorphological 

Indices 

Enhance landslide 

susceptibility 

mapping with 

machine learning 

and 

geomorphological 

data 

SVM and Kernel 

Sigmoid algorithms 

achieved the highest 

accuracy 

Does not generalize 

well outside the 

studied 

geographical area 

Z. Chang et al. 

[15] 

Slope Unit-based 

Machine Learning 

Models 

Study uncertainty in 

selecting non-

landslide samples 

for landslide 

susceptibility 

prediction 

Maximum 

probability analysis 

(MPA) reduced 

uncertainty 

effectively 

Dependent on 

large-scale data 

collection, not 

suitable for small 

areas 

L. Achu et al. 

[16] 

Ensemble Machine 

Learning Techniques 

Quantify 

uncertainty in 

landslide 

susceptibility 

prediction 

Weighted mean of 

probabilities model 

was the most 

effective for 

uncertainty 

quantification 

High computational 

demands for large-

area predictions 

Y. Wie et al. 

[17] 

Machine Learning 

(Random Forest, 

Logistic Regression, 

GBDT), InSAR 

Improved landslide 

susceptibility 

assessment using 

machine learning 

integrated with 

InSAR 

LR-InSAR model 

showed superior 

performance in 

identifying high-

susceptibility areas 

Limited by data 

availability and 

unsuitable for 

regions with 

minimal InSAR 

data 

L. Chen et al. 

[18] 

Spatio-Temporal 

Knowledge Graph, 

Machine Learning 

Address challenges 

in organizing multi-

source remote 

sensing data for 

landslide prediction 

29% increase in F1 

score and 93% 

improvement in 

processing 

efficiency 

Struggles in areas 

with poor data 

availability or 

inaccessible regions 

C. Chen et al. 

[19] 

Machine Learning 

and Deep Learning 

Models, Factor 

Selection Methods 

Investigate the 

impact of 

contributing factor 

selection on 

landslide prediction 

accuracy 

Autoencoder-based 

factor selection 

improved DL model 

accuracy 

Limited to factors 

studied, unsuitable 

for other regions or 

datasets 

N. Nocentini et 

al. [20] 

Random Forest (RF), 

Dynamic Variables 

Combine static and 

dynamic factors for 

landslide 

susceptibility 

assessment 

RF model with 

dynamic variables 

accurately 

forecasted landslide 

occurrence based on 

rainfall data 

Does not perform 

well in regions with 

limited rainfall data 

or varied climatic 

conditions 

T. Xiao et al. 

[21] 

Machine Learning Incomplete 

landslide 

Probabilistic 

landslide model 

Model performance 

is dependent on the 
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inventories, 

particularly missing 

landslide timing 

data. 

outperformed other 

data-driven methods 

in predicting the 

spatio-temporal 

evolution of 

landslides during 

rainstorms and 

assessing landslide 

risk. 

availability of 

landslide data for 

validation. 

K. Doerksen et 

al. [22] 

Machine Learning, 

Deep Learning, AI 

Complex causal 

chain of landslides 

in Nepal due to 

large earthquakes 

and intense 

monsoon rainfall. 

Random Forest and 

U-Net models 

demonstrated strong 

predictive power, 

with feature 

importance analysis 

providing insights 

into the causal 

factors. 

Limited by the 

availability and 

resolution of open-

source space-based 

data. 

H. Hong et al. 

[23] 

Locally Weighted 

Learning (LWL) with 

various classifiers 

(RBF, FLDA, QDA, 

CDT, ADT, RS) 

Need for reliable 

landslide 

susceptibility 

models in areas 

with limited data. 

LWL-RS-ADT 

model showed 

superior reliability 

and stability, with 

NDVI, lithology, 

and altitude as key 

predictive factors. 

May be sensitive to 

the choice of 

classifiers and 

model parameters. 

S. Aldiansyah 

et al. [24] 

Machine Learning 

models (GLM, SVM, 

RF, BRT, CRT, 

MARS, MDA, FDA, 

MaxEnt, MaxLike) 

integrated with 

resampling 

techniques 

Landslide 

susceptibility 

prediction for 

regions with 

destructive erosion. 

Resampling 

algorithms enhanced 

the performance of 

models; Bt-RF 

model showed 

highest statistical 

performance 

(AUC=0.97). 

Limited to the 

performance of the 

resampling 

algorithm used in 

model integration. 

M. Dahim et 

al. [25] 

Hyper-tuned 

Machine Learning 

(RF) and Deep 

Learning (DNN) 

Landslide 

susceptibility 

prediction in Saudi 

Arabia with 

sensitivity and 

uncertainty 

analysis. 

RF and DNN 

models achieved 

high prediction 

accuracy (AUC: 

RF=0.93, 

DNN=0.96). 

Sensitivity and 

uncertainty analysis 

highlight 

limitations in 

parameter 

influence. 

N. Sharma et 

al. [26] 

Ensemble machine 

learning (SVM-

SMOTE, ANN, RF, 

SVM) 

Issues with limited 

data, low spatial 

resolution, and 

small study areas in 

landslide mapping. 

Developed a 

national-scale 

landslide 

susceptibility map 

with high accuracy 

(95.73%) and 

sensitivity 

(97.08%). 

Model may require 

refinement for 

broader application 

in different regions. 

T. Zeng et al. 

[27] 

Machine Learning 

(SVM, DT, DNN, 

GRU, LSTM) with 

grading conditioning 

factors 

Subjectivity and 

randomness in 

grading strategies 

for landslide 

susceptibility 

modeling. 

Grading strategy 

improved 

performance of deep 

learning models; 

model performance 

varied with different 

models. 

Performance varies 

based on the choice 

of grading strategy 

and model used. 

P. Priyanka et 

al. [28] 

Machine Learning 

(LSTM, CNN-

LSTM, Conv-LSTM, 

Multi-LSTM-SVM) 

Escalating landslide 

risks due to climate 

change in Himachal 

Pradesh, India. 

SoilSense Multi-

LSTM-SVM model 

outperformed other 

models (88.1% 

accuracy). 

Performance may 

be limited by the 

availability of 

accurate antecedent 

rainfall data. 
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A. Saha et al. 

[29] 

Ensemble models 

(AHP + SVM) 

Landslide 

susceptibility 

mapping in 

Darjeeling, India. 

AHP-SVM model 

showed 86.2% 

prediction accuracy. 

Model 

effectiveness may 

depend on the 

choice of 

algorithms and 

input variables. 

Q. Ge et al. 

[30] 

Machine Learning 

(BPNN, SVM, 

LSTM, GRU) with 

feature selection 

techniques 

Impact of feature 

selection techniques 

on landslide 

displacement 

prediction. 

Static ML models 

benefited 

significantly from 

feature selection; 

dynamic models 

showed marginal 

gains. 

Optimal feature 

selection varies by 

model and specific 

landslide 

characteristics. 

Y. Wang et al. 

[31] 

Machine Learning 

(RF, Logistic 

Regression, Extreme 

Gradient Boosting) 

Landslide 

susceptibility 

assessment in 

Wushan County. 

Random Forest 

model outperformed 

others with higher 

AUC, F1 score, and 

accuracy (0.848). 

Dependent on the 

quality of soil 

thickness and other 

conditioning 

factors. 

H. Wu et al. 

[32] 

Machine Learning 

models (Logistic 

Regression, KNN, 

SVM, Naïve Bayes, 

DT, RF) 

Landslide dam life 

span prediction. 

Random Forest 

showed highest 

performance (89% 

accuracy) for 

predicting dam life 

spans. 

Models may not 

address all types of 

landslide dam 

scenarios. 

H. Shahabi et 

al. [33] 

Machine Learning 

models (RF, DT, 

SVM) 

Landslide 

susceptibility 

mapping for the 

Kamyaran–

Sarvabad road in 

Iran. 

Decision Tree 

model performed 

best (AUC=0.94). 

Limited by 

available input 

variables and 

spatial scale of 

study. 

G. Tang et al. 

[34] 

AutoML-based 

framework 

Need for global 

landslide 

susceptibility 

prediction across 

different 

resolutions. 

The model achieved 

an AUC > 0.96 and 

improved regional 

predictions. 

Results are 

dependent on the 

availability of 

regional landslide 

inventories for 

validation. 

S. Meng et al. 

[35] 

Deep Learning 

(LSCDBN, GWO, 

WOA) 

Challenges such as 

feature 

homogenization and 

local optima in 

landslide 

susceptibility 

modeling. 

LSCDBN-WOA 

model outperformed 

others with AUC = 

0.964 and RMSE = 

0.174. 

Limited by the 

quality of landslide 

conditioning factors 

used in model 

training. 

C. Chen et al. 

[36] 

Deep Learning 

(Deep-Attention-

LSF, CNN, LSTM) 

Need for 

interpretable 

models in landslide 

susceptibility 

mapping. 

Deep-Attention-LSF 

model achieved 

high accuracy 

(0.9645) and was 

more interpretable 

than other models. 

Interpretability is 

limited to the 

quality of input 

factors. 

C. Yang et al. 

[37] 

Machine Learning 

(SVM, RF, GBDT) 

with Bayesian 

optimization 

Optimizing sample 

ratio for machine 

learning models to 

address landslide 

susceptibility. 

Bayesian 

optimization 

improved 

performance, with 

RF achieving the 

highest AUC of 

0.840. 

Performance 

dependent on 

optimizing the P/N 

sample ratio for 

each case. 

M. A. Hussain 

et al. [38] 

ML and DL (CNN, 

RNN, RF, XGBoost) 

Updating landslide 

inventory along the 

Karakoram 

Highway (KKH). 

CNN 2D model 

demonstrated best 

performance in 

landslide 

Limited by the 

quality and 

availability of 

geospatial data. 
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susceptibility 

mapping. 

Y. Liu et al. 

[39] 

Machine Learning 

(IV-Logistic 

Regression, IV-

Random Forest, IV-

SVM, IV-ANN) 

Non-landslide 

sample selection in 

landslide 

susceptibility 

evaluation. 

IV-ML models 

significantly 

outperformed 

traditional ML 

models in terms of 

accuracy and other 

metrics. 

Model's 

effectiveness may 

vary across 

different regions 

and datasets. 

D. Sun et al. 

[40] 

Interpretable 

Machine Learning 

(LightGBM, 

XGBoost, SHAP) 

Topographic 

differentiation in 

landslide 

susceptibility 

mapping. 

LightGBM 

outperformed 

XGBoost, with 

AUC values of 

0.8525 and 0.8859 

for Zones I and II, 

respectively. 

The model is 

limited to the 

selected zones and 

topographic factors. 

 

2.3 Fundamental of Earthquake Prediction using Machine 

Learning   

The phrase earthquake prediction refers to the process of predicting seismic occurrences using 

real-time data and sophisticated computing methods. Therefore, the goal of earthquake 

prediction is to increase the accuracy of earthquake predictions by utilizing data from several 

sensors, including accelerometers, seismometers, and GPS devices.  So, it begins with data 

collection from different sources like real-time sensors, historic data and acoustic signal 

captured over time. The signals and values obtained from them provides the early alert signals 

for evacuation and safety measures. Most commonly used prediction technique specifically for 

time series forecasting involves the use of SARIMA (Seasonal Autoregressive Integrated 

Moving Average), this model helps in capturing temporal patters formed and variations which 

are seasonal in nature. Further, to capture the non-linear relationships XGBoost model is used 

to improve prediction by analyzing large and complex dataset to find the patterns. Finally, after 

completion of training model is ready for prediction of probability of earthquake and lastly 

provide necessary strategy for warning and alerts. The main objective of this literature survey 

is to assess various aspects related to earthquake prediction. In analysis phase we tried to 

present the essential principals of earthquake prediction. Our goal is to provide with 

contribution that surrounds its potential revolution in disaster preparedness and strategical 

responses. 

V. Macchiarulo et al. [41] developed approach for evaluation of regional-scale post-

earthquake damage using post-event very high-resolution, synthetic aperture radar imagery and 
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machine learning. The method utilizes supervised learning on specific datasets and it was tested 

on random study area to assess the ML model adaptability.  The model outperformed with 

achieving 72% accuracy by classification of collapsed building in that region. The framework 

provided potential for improving disaster preparedness and management techniques. 

F. H. Chen et al. [42], developed earthquake recognition and warning systems that integrate 

Arduino, sensors and transmission technologies to improve the security of earthquake attacks 

in Taiwan. The system uses a capacitive 3-axis acceleration meter to measure vibrations and 

early earthquake warnings. Additionally, it includes an IR flame sensor to identify fires and an 

MQ series air quality sensor to monitor harmful gas concentrations. When it recognizes an 

earthquake, the system warns individuals of evacuation. When the harmful gas exceeds critical 

levels, the system activates a warning light and exhaust gas to extract the toxic gas. If a flame 

occurs, an alarm is triggered to arrange for a quick evacuation. The proposed system is 

affordable and easy to offer, providing immediate notifications. This provides a valuable tool 

for improving disaster response and security in earthquake zones. 

E. M. A Alcantara et al. [43] proposed an approach to forecast the damage state of buildings 

in reinforced concrete (RC) resistance moment frames using machine learning technology 

(machine learning). This study includes the design of structural members of RC buildings, with 

X and Y story counters and direction numbers using virtual working methods. The purpose of 

this study is to split earthquakes, construct data records, and split tests of data records to predict 

damage conditions in new buildings and to reduce bias, multiple random selections were made, 

and prediction accuracy was measured using the mean and standard deviation. The study 

utilized 27 Intensity Measures based on ground and roof sensor data, which included 

acceleration, velocity, and displacement to analyze building behavior. The input data for the 

machine learning methods consisted of IMs, the instance of stories, and spans, while the 

outcome data was the maximum inter-story drift ratio. Seven machine learning methods were 

tested to identify the optimal combination of training buildings, IMs, and methods for the 

highest prediction accuracy. 

B. Tian et al. [44] reviewed the development and application of movement-detection sensors, 

emphasizing their importance in understanding surface movement and tectonic activities. 

Modern sensors have significantly contributed to various aspects of earthquake management, 

including monitoring, prediction, early warning, emergency response, search and rescue, and 

life detection. The study classified sensors based on earthquake timelines, their physical or 
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chemical mechanisms, and sensor platform locations. The analysis focused on sensor platforms 

that have become widely used in recent years, particularly satellites and UAVs. The study's 

findings offer valuable insights for improving future earthquake response, relief efforts, and 

research aimed at reducing earthquake-related risks. 

M. E. Tusun et al. [45] developed a sensor system utilizing strain gauge technology, optimized 

for detecting earthquake waves and structural vibrations, to address the limitations of 

traditional damage detection methods in buildings. These methods, such as cross-sectioning of 

columns, are time-consuming, costly, and lack continuous monitoring capabilities. 

Accelerometers, although useful, are inadequate for detecting low-frequency earthquake 

waves. The proposed system collects vibration data, applies Fourier transform to obtain the 

frequency response of the structure, and detects shifts in this response to classify the structure's 

damage condition as intact, slightly damaged, or very damaged. This classification is 

performed using a deep learning model running on a low-power microcontroller. The results 

demonstrate that the developed sensor is more effective than accelerometers in assessing 

structural health and enables real-time damage evaluation using Fourier transform and machine 

learning techniques. 

M. Bhatia et al. [46] developed a cooperative monitoring and prediction system focused on 

collaborative IoT-Edge-centred, which combines marginal and cloud computing to provide 

warnings of early earthquakes for high-risk areas. Real -time sensor data collects the system 

using Internet of Things and is sent to a marginal layer for categorizing functions using the 

unique Bayes belief method. To predict magnitude earthquakes, the cloud layer also uses an 

adaptive neuro-fuzzy inference system (ANFIS). Through achievement of good classification 

performance with an accuracy of 92.52%, sensitivity 91.72%and specificity 91.01%showed 

experimental simulation efficiency of the frame. The system also showed a significant 

reduction in computing delay (23.06s) through the edge calculation. In addition, the model 

showed high reliability (95.26%) and stability (92.16%), ensuring increased accuracy and 

permeability for the prediction of the earthquake. 

P. Govindarajan et al. [47] developed a new way of predicting real -time earthquake in Chile 

a combination of machine learning techniques with intelligent technologies. Due to the serious 

threats that the earthquake represents Chilean people and infrastructure, the study uses AI and 

ML to overcome the deficiencies of conventional prediction techniques and increase the speed 

and accuracy of prediction. The proposed technique combines improved analysis of neuron 
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network time series, LSTM-IC (long short-term memory inverse correlations), with modified 

cluster strategy, LMSCAN (local maximum based spatio-cluster). This strategy uses sensor 

network, sophisticated predictive algorithms and previous seismic data, provides early 

warnings, improves response to disasters and resistance. The model achieved a remarkable 

accuracy of 95%, showing its exceptional learning and adaptability, distinguishing it from other 

methods of forecast and offering significant progress in the prediction of the earthquake. 

MS. Abdalzaher et al. [48]  proposed the integration of the EEWS Early Warning System into 

intelligent cities to improve disaster management and preservation of human lives. The system 

uses the Internet of Things to collect data from various EEWS entities and machine learning 

technology to analyze this data for effective decision making. The article examines the key 

EEWS components, starting with the IoT role in monitoring the earthquake parameters. He 

then classifies ML models to linear or non -linear categories and discusses the assessment of 

metrics focusing on seismology. The study represents a taxonomy that emphasizes the 

emerging efforts of ML and IoT for EEWS, followed by the design of the EEWS generic 

architecture based on these technologies. Finally, the article examines how ML can increase 

the observations of the earthquake parameters, which eventually leads to a more efficient 

EEWS. 

W. Huang et al. [49] introduced the use of data from granular fault tests for the creation of a 

ML method for the prediction of earthquake. They gathered data dynamics, such as shifting 

and speed, on 2203 sensors, and used the combined method of finite discrete method (FDEM) 

to model two -dimensional cut granular failure system. The LightGBM algorithm has been 

trained using this data to predict the Gouge-Plate coefficient, which represents the behavior of 

the wand and the friction state of the error. This study optimized the data by assessing the 

importance of input elements and selected the most important for prediction. The model 

reached a value of R² 0.94, showing high accuracy. Additionally, values were calculated to 

evaluate the contribution of each input function of the prediction. The results show that 

LightGBM, along with form values, can accurately predict the frictional state of laboratory 

faults and identify the most important input functions for predicting earthquakes. This study 

provides potential knowledge about natural earthquake prediction and the use of artificial 

intelligence to study earthquake predecessors. 

P. Lara et al. [50] prepared a model using P wave data capturing by a single station in less 

than 3 seconds, the Earthquake early warning system (E3WS) is designed for identifying, 
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locating and estimating the amount of the earthquake. The ensemble ML algorithms, which 

consist of the E3W, have been trained using data on the time series of ground acceleration from 

the global data set, Peru, Chile and Japan, analysis of temporary, spectral and Cepstral 

attributes. The three steps of the system operation are detection, selection of P-phase and the 

characterization of the source that includes azimuth, depth, size and estimate of epicenter 

distance. Without false positives and several false negatives (only for the earthquake M ≤ 4.3), 

the E3SS has an amazing 99.9% success in distinguishing between earthquakes and noise. For 

collecting P-phase, the average system's absolute error is 0.14 s sufficient for early warning of 

the earthquake. Compared to the current one with one station, the E3Ws offer objective and 

extremely accurate estimates to characterize the source, especially for the size and somewhat 

improved accuracy of the earthquake location. By updating estimates, E3Ws offer E3Ws 

estimates -dependent -dependent -dependent and provides faster predictions than current 

multiple stations systems, which provides more time for protective actions. 

M. S. Abdalzahar et al. [51] proposed a new method for EEWS (ML) early warning systems 

that use machine learning techniques (ML) to analyze seismic activity in two seconds after P-

wave begins to quickly assess the intensity of the earthquake. The 2S1C1S evaluates the force 

of the earthquake using data from one component and one station. After being trained on a 

large data set known as an "instance", which contains information from hundreds of stations in 

the Italian National Seismic Network (INSN), the model examines 50,000 occurrences or 

150,000 seismic windows after two seconds. With a stunning rate of accuracy of 99.05%, the 

algorithm predicts the severity of the earthquake by identifying important elements from the 

tracks of the wave shape. The centralized IoT system, which includes the 2S1C1S paradigm, 

enables rapid transfer of alarm to the authorities for early response. Compared to traditional 

manual techniques, the 2S1C1S with extreme gradient boosting (XGB) works better in 

estimates than a number of comparative machine learning values, which shows its usefulness 

to EEWS applications. 

A. Joshi et al. [52] designed a cross-region prediction model called SeisEML (Seismological 

Ensemble Machine Learning) to forecast peak ground acceleration (PGA) at a specific location 

during an earthquake. The hybridization models, tree regression algorithms, kernel-based 

algorithms, and other regression techniques are all combined in the SeisEML model. A study 

on model ablation was carried out to assess the effectiveness and choice of meta-machine 

learning models in SeisEML. There are 20,852 and 6,256 accelerograms from the Kyoshin 
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Network in Japan that make up the training and testing datasets. SeisEML reduces both the 

mean absolute error and root mean square error by around half when compared to traditional 

attenuation relations, according to a comparison of the model's performance using these 

metrics. The iso acceleration contour map of Japan was created using the model for three 

earthquakes of magnitudes of 7.4, 6.6, and 6.1.  A qualitative comparison of the iso acceleration 

contours from actual and predicted PGA showed that SeisEML can reliably predict PGA 

distributions. Additionally, the model was tested for Iranian earthquakes, outperforming 

regional attenuation relations in terms of MAE and RMSE.  

W. Zhu et al. [53] developed a chain machine learning models (ML) to predict multiple 

seismic reactions to the center of the distribution device during strong earthquakes by means 

of intensity (IMS) measures. The models are designed to predict answers to multiple vulnerable 

positions like porcelain insulators and connection flanges, by connecting several individual 

models in the sequence. One model is a simple chain where the output of one model becomes 

the input for the next, while the other combines the intensity measures with the previous output 

as the input for the next model. The training of these ML chain models is optimized using bio-

inspired multi-objective techniques for selecting hyperparameters. A case study involving a 

1100 kV transformer bushing is used to establish ANN-gradient boosting regression and ANN-

kernel ridge regression models for predicting peak stresses at the most susceptible positions. 

The results, including evaluation indicators and shaking table tests, demonstrate that both ML 

chain models provide accurate predictions. These models are effective for detecting initial 

equipment damage and can be used to support post-earthquake rapid judgment and relief 

efforts. 

K. C. Sajan et al. [54] designed an approach based on artificial intelligence to predict the 

intervention of damage and rehabilitation after the earthquake, especially after the earthquake 

Gorkha in Nepal in 2015. The study analyzes comprehensive information on the building of 

549 251 impacts on buildings and intensity of ground shocks on the use of ML methods (ml) 

to predict the scope of damage. The models were created, and their performance was evaluated 

by four popular machine learning algorithms: logistics regression, XGBoost, Random Forest 

and decision tree. The finding has shown that if the building collapse was predicted and the 

need to strengthen, XGBoost led better than other algorithms. In addition, 19 of the 20 best 

features were found to predict the degree of injury and rehabilitation therapy using an analysis 

of important importance from the XGBoost. Compared to typical fragility functions, which are 
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often ambiguous and difficult to use in specific locations, our method provides a more accurate 

forecast. 

C. E. Yavas et al. [55] analyzed machine learning and neural network to develop a new method 

for earthquake prediction of Los Angeles earthquake in California.  They connected previous 

work with new information for improving accuracy of model. They achieved high results by 

forming a matrix that predicts the estimation of highest size of earthquake. This study 

emphasizes how machine learning and neuron networks can revolutionize the accuracy of the 

prediction of the earthquake, which significantly increases seismic risk management and 

readiness. 

K. A. Yusof et al. [56] explored the potential of geomagnetic anomalies as precursors to the 

earthquake (EQs) and focused on the development of practical models of earthquake prediction 

using AutoML. The work has used geomagnetic field data from 131 global magnetometer 

observatory over 50 years. To extract functions that were then fed into models that were 

optimized by asynchronous consecutive algorithm (ASHA) and automatic methods of methods 

and enhancement of hyperparameters and automatic methods and automatic methods of 

methods and hyperparameter improvements Selection of methods and automatic methods of 

method and automatic selection of methods and wavelet selecting transform (WST) and after 

optimized asynchronous consecutive half algorithm. With an accuracy of 83.29%, the model 

of the neural network (NN) exceeded the five other classification methods tested. The results 

show that even for complicated systems such as lithospheric and seismo-induced geomagnetic 

processes, the automobile can facilitate useful models of earthquake prediction. 

K. Qaedi et al. [57] examined how to improve the accuracy of the Earthquake prediction (EQ) 

by reducing the complexity of the global data of the geomagnetic field by analyzing the 

principal component analysis (PCA).  Further for prediction of EQ intensity multiple classes 

(ML) were built also SMOTE analysis was executed to solve the imbalanced data. The final 

results show promising values as accuracy of 77.50%, F1-score of 76%. So, the principal 

component-based ML model is used for prediction of earthquake with optimal accuracy. 

S. OMMI et al. [58] designed a model for predicting large earthquakes by studying changes 

in seismicity and the potential occurrence of significant seismic events in the seismic zone. 

This research is not only necessary for seismological studies, but also for informed decisions 

on crisis management. To analyze it, they tested several machine learning techniques (ML), 
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including artificial neural networks (Ann), Random Forest (RF) and supporting vector 

machines (SVM). The study focused on the seismic catalog of northern Zagros, seismically 

active areas with large cities. Nine seismic parameters were used to predict the likelihood of 

the large earthquake that occurs within a month. The accuracy of the models was evaluated by 

four statistical measures: evocation, accuracy, accuracy and score F1. The results revealed that 

the Ann method overcame others, especially for predicting larger earthquakes. 

A. Berhich et al. [59] designed a model of earthquake prediction dependent on the spot using 

recurring neural network algorithms. This approach includes clustering of seismic data based 

on geographical parameters (length and latitude) using the K-Means algorithm. Each cluster is 

further divided into two subgroups: one for events between 2 and 5 and the other for those who 

have more than 5 sizes. This cluster allows models to focus on specific regions and more 

precisely capture regional trends. In addition, large earthquakes that have less events are trained 

independently to prevent interference from smaller, more common. LSTM, GRU and Hybrid 

models LSTM-GRU tested data from Morocco, Japan and Turkey. Their performance is 

evaluated using metrics such as an average absolute error, an average error for the second and 

the root diameter error. The results show that models overcome other existing methods, 

especially when predicting large earthquakes. 

M. H. Al Banna et al. [60] proposed systematic research of AI based techniques to predict the 

earthquake. The study reviews 84 scientific papers from various academic databases that report 

the use of artificial intelligence methods in predicting earthquake. These techniques include 

methods based on rules, shallow machine learning and deep learning algorithms. The post 

provides an overview of these methodologies and offers a comparative analysis of their 

performance with regard to the data and evaluation metrics used. The aim is to help select the 

most suitable techniques to predict an earthquake -based comparison. In addition, the 

contribution deals with continuing challenges and potential future directions of future research 

in this area. 

S. Mujherjee et al. [61] proposed a novel Ensemble Earthquake Prediction Method (EEPM) 

aimed at improving the accuracy, reducing variance, and minimizing errors in earthquake 

prediction. The method uses a combination of continuous data parameters collected from India 

and Nepal, along with categorical surveyor’s data (precursors) gathered from India, Nepal, and 

Kenya over five years. The data is preprocessed by merging both types of information. EEPM 

focuses on detecting early signs of earthquakes and calculating the probability of occurrence 
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in specific regions. The results show that EEPM outperforms individual machine learning 

models, achieving a higher R2 value, lower variance, and less error, with an accuracy rate of 

87.8%. This prediction model not only helps alert society but also aids organizations in 

understanding the potential magnitude and dynamics of an earthquake’s occurrence. 

R. Yuan et al. [62] designed a seismic prediction model that uses clustering of global 

earthquake data. In order to deal with the limitation of traditional clustering K-Simple-for 

example, the need to define the number of clusters, any selection of initial centers and the lack 

of parameter. This study introduced an improved algorithm K-significant. This improvement 

takes into account the maximum minimum distance of STM and the distance space distance 

when selecting the initial cluster centers. The number of evaluation criteria, such as the sum of 

square errors, calculates the number of Davies - Bouldin clusters, the Calinski - Harabasz and 

the Silhouette coefficient. In addition, the model uses an artificial neural network to predict the 

earthquake in conjunction with the findings of clustering. When the improved technique was 

applied to global seismic data USGS from 1900 to 2019, the accuracy of clustering over K-

Means conventional approach. In addition, this method worked well for the analysis of local 

seismic risks and showed a promise to predict future earthquakes. 

A. Berhich et al. [63] examined a long short -term memory network (LSTM), which is based 

on the attention for predicting the location, size and timing of large earthquakes. The 

predication of the earthquake features is difficult due to their complexity and lack of different 

formulas. While the attention mechanism focuses on the extraction of significant patterns and 

information from input characteristics, LSTM is used to record time correlations. Because the 

region is experiencing a lot of seismic activities and large earthquakes, the Japanese data file 

for earthquakes, which lasts 1900 - October 2021, was used. Metrics including MSE, RMSE, 

MAE, R -squared and accuracy were used to assess the performance of the model. As MSE 

increases by almost 60% of the date, the proposed model works noticeably better than 

alternative empirical methods and the chosen baseline. 

A. A. Mir et al. [64] focused on predicting anomalies in the concentration of soil radon gas 

caused by seismic activities using various methods of files and individual machine learning. 

The study used file methods such as a strengthened tree, a poaching trolley and a strengthened 

linear model, along with individual methods such as a SVM with linear and radial cores and 

KNN. The methods were tested on the radon time series collected from the failure line in 

Muzaffarabad between March 1, 2017 and 11 May 2018, which contained data from nine 
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earthquakes. To minimize noise in performance estimates, the models were evaluated using a 

ten -fold cross validation process, which was repeated ten times. Metrics such as RMSE, 

RMSLE, MAPE, PB and MSE were used to evaluate performance. Setting 1 was best for SVM 

using a radial core that produced the lowest RMSE 1381.023. SVM worked best on setting 3, 

where RMSE varied from 1262,864 to 1409,616. The model of the strengthened tree had the 

lowest map (0.056) and RMSE (1573,174) in settings 4. The study found that the method of 

strengthened tree is particularly accurate for automatic predictions from environmental 

parameters and SVM core and strengthened the activities. 

C. Wang et al. [65] designed a model for monitoring and collecting signals by precursor 

anomaly before the earthquake for seismic prediction, was created and acoustic and 

electromagnetics for artificial intelligence in China. To find the enhanced architecture for the 

prediction of the earthquake, this study evaluates a number of traditional models of time series 

and non-time series. The neuron network of long short -term memory (LSTM) was selected to 

predict the real -time earthquake during the 16 -week period, as it brought the best results based 

on AETA from precursor anomalies of signals. 

B. Zhang et al. [66] developed an EPT, a deep learning data model to predict the earthquake 

that overcomes the disadvantages of earlier methods that only local seismic data used. To 

improve the prediction of the main Mainshock in specific areas, the model uses closed blocks 

of elements to extract basic patterns in the movements of the plate and by crustal movement 

from global historical seismic catalog data. Using this method, up to 50% more predictions are 

performed. The model also overcomes the difficulties of LSTM network, which it encounters 

in the processing of long -term data using multi -headed self -confidence to identify long -term 

dependencies in regional time series. The EPT was verified on five provincial data sets and in 

all cases, it achieved more than 90% accuracy. 

Q. Wang et al. [67] dealt with an important problem for the prediction of the earthquake by 

means of long short -term MEMORY (LSTM) network to use spatial correlations between 

earthquakes in different places. Traditional methods of prediction, such as mathematical 

analysis, decision -making trees and support vector machines, often fight for the dynamic and 

unpredictable nature of the earthquake. However, the authors acknowledge that the earthquakes 

are influenced by the movement of the crust, and suggest that predictions not only consider 

local data but also historical data from a larger area. The results of their simulation show that 
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the LSTM network using a two -dimensional input effectively captures these space -time 

relationships, leading to an improvement in the accuracy of prediction. 

Z. Zhang et al. [68] designed a new method for the prediction of the earthquake that combines 

a ConvLSTM with a sequence. This network gains knowledge of global time and spatial 

correlations of seismic data. This method overcomes the limitation of existing approaches, 

which are often limited to local areas and fully remove spatial correlations and resolution. The 

proposed approach includes the creation of a Spatiotemporal series from global seismic maps 

with high resolution, spatial distortion by turning maps, and using a weighted MSE-MAE to 

focus on the area of the earthquake. It also integrates a 4-D data file that includes earthquakes 

and depth. The output demonstrate that the method exceeds existing models and achieves an 

average download of 51.83% and an accuracy of 64.54% per test kit, with a pixel resolution of 

72.92 × 67.71 km. These findings emphasize the ability of the model to predict an earthquake 

with higher resolution and accuracy and provide valuable knowledge about global seismic 

samples of activity. 

M. Akhondzadeh et al. [69] reviewed the progress and challenges in the prediction of an 

earthquake using satellite data, emphasizing the potential for creating earthquake warning 

systems. Due to the limits of data on in-Situ, including the quantity, location and expenditure 

of ground stations, the precise forecast of the earthquake has not yet been carried out despite 

extensive research. However, with the development of satellites with a long -distance survey, 

statistical research of the earthquake precursors has dramatically increased and focused on 

unusual changes in physical and chemical parameters that occur one to thirty days before 

significant earthquakes. The report emphasizes recent developments, such as an increase in 

satellites devoted to earthquake research, the availability of different earthquake precursors and 

creating more methods of identification and prediction. In addition, progress in cloud data 

storage and processing services (such as Google Earth Engine and Giovanni), together with the 

creation of intelligent integration systems for integrating and analyzing multiple precursors in 

the near future increased optimism with low uncertainty. 

Z. Ye et al. [70] presented a long-term short-term memory model (LSTM) to predict seismic 

size along with elite genetic selection (EGA) with genetic algorithm function (EGA-LSTM). 

The time series structure of seismic data and dual properties provides the difficulties of 

overcoming this method. To find serious correlations, the technology pre-combine 

electromagnetic and acoustic data from Roulette-based EGA and AETA systems. LSTM uses 
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selected features to estimate the size. Entire procedure includes fitness components such as 

RMSE and the ratio of selected properties. Using data from four different locations in China, 

the models were evaluated taking into account different periods and weights of fitness 

functions. The results show that EGA-LSTM exceeds several metrics including EV, Mae, 

MSE, RMSE and R2. Non-parametric testing confirms that EGA-LSTM significantly exceeds 

the standard LSTM model. 

The literature overview deepens the diverse applications of the ML and DL hybrid models in 

the prediction of the earthquake and emphasizes the integration of historical seismic data 

records, geophysical data and sensor networks. Also, explore how historical earthquake data is 

critical to the training of predictive models that provide information about samples, trends and 

relationships in space-time, which may not be recognized in real time. This overview 

emphasizes the development and improvement of hybrid models combining several 

algorithms, such as decision -making trees, neural networks, SVM, KNN and random forests, 

to determine the decision to improve the precision and provision of real -time predictions. 

Advanced architecture for deep learning, such as CNN, RNN, long short time network (LSTM) 

and generative contradictory networks (GAN), also use to extract functions, analysis of time 

series and detect anomaly in seismic data. The installation of historical seismic data records, 

often covering decades or centuries, plays a key role in enhancing the predictive power of ML 

and DL models. These data sets contribute to the capture of long -term trends and seismic 

formulas, so the model can identify the correlation between predicted events and the occurrence 

of earthquakes. This overview also analyzes the importance of preliminary data processing 

techniques for noise processing, missing data and irregularities in historical data sets of 

earthquakes. In addition, to improve robustness and modeling, the use of methods, including 

pulses and closure techniques, can be examined. 

The survey describes the use of hybrid models, including a combination of SVM and neural 

networks and integration of DBN with RNN for relationships with uncomplete lines in seismic 

data. The integration of strengthening learning (RL) and transmission learning to predictive 

earthquake models is also examined because they promise to adapt to a new seismic 

environment with minimal data. Literature also describes the value of the inclusion of specific 

domain knowledge, such as tectonic plates and geological properties, along with historical data 

sets to enhance the accuracy and interpretability of the model. This includes the difficulty of 

receiving high quality data and the challenge of converting historical formulas into processable 
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predictions. Despite these challenges, hybrid models discussed in this literature have an 

important potential for progress in techniques of earthquake predictions supported by historical 

earthquake data. These models provide promising solutions for early alarm systems and 

disasters readiness. Table 2.2 includes a detailed summary of an overview of literature for 

predicting earthquakes by means of ML and hybrid models of DL. 

Table 2.2 Summarization of literature review for Earthquake Forecasting 

Author Technique Problem Statement Performance 

Analysis 

Limitation 

V. Macchiarulo 

et al. [41] 

Machine 

Learning (ML) & 

Very High-

Resolution 

(VHR) SAR 

imagery 

Post-earthquake 

damage assessment 

using SAR imagery 

and ML for regions 

not previously 

studied. 

Achieved 72% 

accuracy to 

classify standing 

and collapsed 

buildings in new 

regions. 

Limited to specific 

earthquake cases 

(2021 Nippes, 2023 

Kahramanmaraş). 

F. H. Chen et al. 

[42] 

Arduino, Sensors 

(Accelerometers, 

IR Flame, Gas 

sensors) 

Earthquake detection 

and safety system for 

Taiwan, using a 

combination of 

sensors for early 

warning, fire 

detection, and gas 

monitoring. 

System issues 

alerts for 

evacuation and 

safety, providing 

effective real-time 

notifications. 

Limited to Taiwan; 

sensors face 

operational 

limitations in certain 

environments. 

E. M. A 

Alcantara et al. 

[43] 

Machine 

Learning (ML) 

for RC building 

damage 

prediction 

Predicting damage 

condition of 

Reinforced Concrete 

buildings using ML 

and time-history 

analysis. 

Determined the 

best combination 

of ML methods 

and input data for 

accurate 

predictions. 

Results are highly 

dependent on the 

quality of 

earthquake records 

and may not apply to 

all building types or 

locations. 

B. Tian et al. [44] Movement 

Detection 

Sensors 

Importance of 

movement-detection 

sensors in 

earthquake 

management, 

including monitoring 

and early warning 

systems. 

Contributed 

significantly to 

earthquake 

management areas 

like early warning, 

monitoring, and 

life detection. 

Focuses on sensor 

technology and does 

not address all 

earthquake 

scenarios. 

M. E. Tusun et 

al. [45] 

Strain Gauge 

Technology & 

Machine 

Learning (Deep 

Learning) 

Detecting earthquake 

waves and structural 

damage through 

advanced vibration 

sensors and ML-

based classification. 

Demonstrated 

superior 

effectiveness in 

detecting low-

frequency 

earthquake waves 

and real-time 

damage 

classification. 

Requires specialized 

equipment and is 

costly for large-scale 

implementation. 

M. Bhatia et al. 

[46] 

IoT–Edge 

Computing & 

Bayesian Belief 

Model 

Smart earthquake 

monitoring using 

IoT and edge 

computing for early 

warning at 

vulnerable locations. 

Achieved high 

classification 

accuracy (92.52% 

precision), reduced 

computational 

delay (23.06s), and 

Relies on edge 

computing, which 

may face limitations 

in some 

environments or 

regions. 
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high reliability 

(95.26%). 

P. Govindarajan 

et al. [47] 

Machine 

Learning & 

Modified 

Clustering 

Approach 

Real-time 

earthquake 

forecasting for Chile 

using AI and ML 

techniques. 

Achieved 95% 

accuracy in 

forecasting 

earthquakes, 

improving 

prediction speed 

and accuracy. 

Limited to Chile; 

may not generalize 

to other regions with 

different seismic 

behavior. 

M. S. Abdalzaher 

et al. [48] 

IoT & Machine 

Learning for 

EEWS 

Integration of IoT 

and ML in 

earthquake early 

warning systems for 

smart cities. 

Enhanced 

decision-making 

and earthquake 

parameter 

observation using 

ML and IoT. 

Requires advanced 

infrastructure and 

may not be feasible 

in all cities or 

regions. 

W. Huang et al. 

[49] 

Machine 

Learning & 

Finite-Discrete 

Element Method 

(FDEM) 

Predicting fault 

friction states for 

earthquake 

prediction using 

sensor data and 

FDEM simulations. 

Attained high 

prediction 

accuracy with an 

R² value of 0.94, 

using LightGBM 

with SHAP values 

for feature 

importance 

analysis. 

Limited to 

laboratory-based 

fault models and 

may not fully 

replicate natural 

earthquake 

conditions. 

P. Lara et al. [50] Ensemble 

Machine 

Learning 

Algorithms 

Earthquake detection 

and source 

characterization 

using single station 

data and P-wave 

arrival times. 

Achieved 99.9% 

success in 

distinguishing 

earthquakes from 

noise with minimal 

false positives and 

an accurate source 

characterization. 

Works best with 

high-quality P-wave 

data and may not be 

effective in low-

seismicity areas. 

M. S. Abdalzahar 

et al. [51] 

Machine 

Learning 

(2S1C1S Model) 

Earthquake intensity 

estimation within 2 

seconds after P-wave 

onset using ML. 

Achieved 99.05% 

accuracy for 

earthquake 

intensity 

forecasting with 

the 2S1C1S model, 

outperforming 

conventional 

methods. 

Requires high-

quality seismic data 

and may not work 

well in regions with 

sparse networks. 

A. Joshi et al. 

[52] 

Machine 

Learning 

(SeisEML 

Model) 

Cross-region 

prediction of peak 

ground acceleration 

(PGA) for 

earthquake hazard 

mapping using 

hybrid ML models. 

Reduced MAE and 

RMSE by 

approximately half 

compared to 

conventional 

attenuation 

relations; 

demonstrated good 

predictive 

performance for 

multiple regions. 

May not be suitable 

for all tectonic 

settings; heavily 

dependent on the 

availability of 

quality regional data. 

W. Zhu et al. [53] Machine 

Learning Chain 

Models 

Predicting seismic 

responses of 

substation equipment 

during earthquakes 

using intensity 

measures (IMs). 

Provided accurate 

predictions of peak 

stresses for 

substation 

equipment, 

supporting post-

earthquake rapid 

judgment. 

Focuses on specific 

substation 

equipment; not 

applicable to other 

infrastructure types. 
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K. C. Sajan et al. 

[54] 

Machine 

Learning 

Algorithms 

(XGBoost, 

Decision Tree, 

etc.) 

Predicting damage 

grade and 

rehabilitation 

interventions for 

buildings after 

earthquakes using 

ML. 

XGBoost 

outperformed other 

algorithms in 

predicting damage 

and rehabilitation 

needs. Identified 

top features for 

prediction. 

Limited to a specific 

earthquake event 

(2015 Gorkha) and 

building types in 

Nepal. 

C. E. Yavas et al. 

[55] 

ML & Neural 

Networks 

Earthquake detection 

using advanced ML 

models and neural 

networks, focusing 

on Los Angeles' 

seismic risk. 

Successfully 

predicted the 

maximum potential 

earthquake 

magnitude with 

Random Forest 

algorithm. 

Limited to Los 

Angeles and may 

not be applicable to 

other regions with 

different seismic 

behaviors. 

K. A. Yusof et al. 

[56] 

Geomagnetic 

Anomalies & 

AutoML 

Investigating 

geomagnetic 

anomalies as 

earthquake  

precursors and 

developing  

models using 

AutoML. 

Achieved 83.29% 

accuracy using a 

neural network 

model, with 

effective feature 

extraction through 

wavelet scattering 

transform and 

optimization via 

ASHA. 

Requires over 50 

years of 

geomagnetic field 

data; limited to 

geomagnetic 

anomalies as 

precursors. 

K. Qaedi et al. 

[57] 

Principal 

Component 

Analysis (PCA) 

& Multi-class 

ML 

Enhancing 

earthquake 

prediction accuracy 

by applying PCA to 

geomagnetic data 

and utilizing 

ensemble and SVM 

models for multi-

class classification 

of earthquake 

intensity. 

Achieved 77.50% 

accuracy with 

ensemble models, 

surpassing SVM 

models in all 

evaluation metrics. 

Requires PCA and 

SMOTE for data 

balancing; may not 

apply universally to 

all seismic regions. 

S. Ommi et al. 

[58] 

Machine 

Learning (ANN, 

RF, SVM) 

Predicting large 

earthquakes by 

analyzing seismicity 

changes in the 

Zagros seismic zone. 

ANN outperformed 

RF and SVM 

models, showing 

the highest 

accuracy in 

predicting large 

earthquakes. 

Focused on a 

specific seismic 

region, which may 

not generalize to 

other earthquake-

prone areas. 

A. Berhich et al. 

[59] 

Recurrent Neural 

Networks (RNN), 

K-Means 

Clustering 

Location-dependent 

earthquake 

prediction by 

clustering seismic 

data based on 

geographical 

parameters using 

RNN models. 

Hybrid LSTM-

GRU model 

outperformed other 

methods, 

improving 

prediction 

accuracy, 

particularly for 

larger earthquakes. 

Limited to specific 

earthquake regions 

(Morocco, Japan, 

Turkey); clustering 

may not capture all 

seismic patterns. 

M. H. Al Banna 

et al. [60] 

AI-based 

Techniques 

Systematic review of 

AI methods used for 

earthquake 

prediction, 

comparing various 

algorithms. 

Provides a 

comprehensive 

comparative 

analysis to aid in 

selecting the most 

effective AI 

techniques for 

Limited to a review; 

does not present new 

empirical results or 

direct application 

models. 
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earthquake 

prediction. 

S. Mujherjee et 

al. [61] 

Ensemble 

Earthquake 

Prediction 

Method (EEPM) 

Novel approach 

combining 

continuous and 

categorical data to 

improve earthquake 

prediction accuracy. 

EEPM outperforms 

individual models 

with 87.8% 

accuracy, higher 

R², and lower error 

variance. 

Relies on data from 

India, Nepal, and 

Kenya; may not 

generalize well to 

other regions. 

R. Yuan et al. 

[62] 

Improved K-

Means Clustering 

& Neural 

Networks 

Clustering global 

earthquake data for 

better seismic 

prediction, 

addressing the 

limitations of 

traditional K-means 

clustering. 

Achieved better 

clustering accuracy 

compared to 

traditional 

methods, combined 

with neural 

network 

predictions for 

seismic risk 

analysis. 

Limited to global 

earthquake data; 

may not work well 

in regions with 

sparse data or 

different seismic 

characteristics. 

A. Berhich et al. 

[63] 

Attention-based 

LSTM Networks 

Predicting the time, 

magnitude, and 

location of large 

earthquakes using 

attention-based 

LSTM models. 

LSTM with 

attention 

significantly 

outperformed 

empirical methods, 

improving MSE by 

60%. 

Limited to Japan’s 

earthquake dataset; 

may not generalize 

to other regions or 

earthquake types. 

A. A. Mir et al. 

[64] 

Ensemble & 

Individual 

Machine 

Learning (SVM, 

K-NN) 

Predicting anomalies 

in radon gas 

concentration caused 

by seismic activity, 

using ML methods 

to detect earthquake 

precursors. 

Boosted tree and 

SVM with a radial 

kernel were the 

most effective in 

predicting radon 

anomalies, with the 

lowest RMSE and 

MAPE. 

Limited to radon 

data from 

Muzaffarabad; may 

not apply to other 

precursor types or 

regions. 

C. Wang et al. 

[65] 

Acoustic and 

Electromagnetic 

Data & LSTM 

Real-time 

earthquake 

prediction using a 

self-designed AETA 

system, combining 

acoustic and 

electromagnetic data 

with LSTM 

networks. 

LSTM network 

outperformed other 

prediction models, 

effectively 

processing 

precursor anomaly 

signals for real-

time prediction. 

Focused on AETA 

data from China; 

may not apply to 

regions with 

different seismic 

behaviors. 

B. Zhang et al. 

[66] 

Deep Learning 

(EPT Model) 

Data-driven 

earthquake 

prediction using a 

deep learning model 

to analyze global 

seismic catalog data 

for plate movements 

and crustal motion. 

Achieved over 

90% accuracy in 

predicting 

earthquake 

magnitude and 

location, 

outperforming 

traditional 

methods. 

Limited to Chinese 

seismic datasets; 

may not generalize 

to other global 

regions with 

different seismic 

activity. 

Q. Wang et al. 

[67] 

LSTM Networks Predicting 

earthquakes by 

modeling spatio-

temporal 

correlations among 

seismic events 

across different 

locations using 

LSTM networks. 

LSTM network 

improved 

prediction accuracy 

by effectively 

incorporating 

spatio-temporal 

relationships. 

May not be 

applicable to regions 

with insufficient 

seismic data or 

where spatio-

temporal 

correlations are less 

defined. 



44  

Z. Zhang et al. 

[68] 

ConvLSTM 

Networks & 

Sequence-to-

Sequence 

Framework 

Earthquake 

prediction using a 

ConvLSTM network 

for spatiotemporal 

analysis of seismic 

data on a global 

scale. 

Achieved high 

prediction accuracy 

with better recall 

and precision 

compared to 

existing models, 

improving 

resolution and 

capturing global 

seismic patterns. 

Limited to global 

seismic maps; may 

not perform well in 

regions with sparse 

or less detailed 

seismic data. 

M. 

Akhoondzadeh et 

al. [69] 

Satellite Data & 

Multi-method 

Algorithms 

Review of 

earthquake 

prediction progress 

using satellite data, 

focusing on remote 

sensing and anomaly 

detection algorithms. 

Emphasized 

advancements in 

satellite technology 

and multi-method 

anomaly detection 

for improving 

earthquake 

prediction systems. 

No concrete 

prediction model; 

focuses on the 

challenges and 

advancements of 

using satellite data. 

Z. Ye et al. [70] Elite Genetic 

Algorithm (EGA) 

& LSTM 

Earthquake 

magnitude 

prediction using a 

feature selection 

method combined 

with LSTM, 

addressing the 

challenges of 

redundant features in 

seismic data. 

EGA-LSTM 

outperformed other 

models across 

multiple evaluation 

metrics, providing 

highly accurate 

earthquake 

magnitude 

predictions. 

Limited to AETA 

data from China; 

may not generalize 

to other regions or 

different seismic 

conditions. 
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CHAPTER 3 

LOW-COST IOT-BASED THRESHOLD-DRIVEN 

LANDSLIDE PREDICTION AND EARLY WARNING 

SYSTEM FOR HILLY AREAS 
 

3.1 Introduction 

Landslide is one of most commonly occuring natural disaster in nature, which leads to 

significant loss to life and property damage. It is essential to mitigate their harmful effects due 

to the destructive consequences of landslides. Early warnings allow authorities to take 

proactive measures to evacuate people and infrastructure protections in time. However, 

regional forecasting is difficult due to the numerous parameters that affect its occurrence. The 

key factors such as local geology, physical telephones, precipitation patterns, and hill trend 

structure take part in the sensitivity of landslides on Earth. Therefore, these factors need to be 

measured and understood to predict when and where landslides will occur. 

Different technologies are being used to improve landslide prediction to monitor and recognize 

landslides. Mainly it comprises of remote recognition techniques that use satellites or aerial 

photographs to observe changes in the landscape using GPS (Global Positioning System) and 

Geographic Information Systems (GIS) that map and analyze land elements. It monitors 

fiberglass, radar, wireless sensor technologies, changes in floor movement and actual 

environment changes, laser and acoustic technologies to measure and recognize early signs of 

landslides [71]. However, there are also limitations such as high costs, environmental 

limitations, or technical issues that can affect reliability. Due to the limitations of individual 

technologies, scientists focused on developing an integrated online surveillance system from 

landslides. This system combines various geosensors and wireless sensor networks to measure 

factors that influence slides [72]-[75] to continuously collect data on critical parameters. 

Additionally, multivariate statistical analysis allows for the processing of complex data records 

and the identification of formulas that can predict future landslides. Simultaneous analysis of 

several parameters such as precipitation, soil moisture, and climbing stability allows the system 

to more accurately predict landslide events. 
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The aim is to provide early warnings to local residents and authorities that will allow preventive 

measures such as strong infrastructural strength and evacuation routes before landslides. This 

research is a comprehensive system for Real-time landslide that integrates several components, 

including wireless sensors, microcontrollers, cloud servers, and hybrid algorithms. The system 

collects sensor data in the environment and is then transferred to a cloud server for storage and 

analysis. An important part of the system is the use of visualization software such as Tableau, 

which contributes to improving data representation, making it easier to interpret and understand 

patterns related to landslide. Algorithmic process alongwith the data obtained from sensors are 

responsible for generating warnings for possible landslides which are already recognized. The 

objective of this multi-component system is to give impactful and automated forms of 

prediction and warning for future landslide prone areas. The study also includes laboratory 

experiments that can simulate real conditions that could lead to landslides. 

 

(a) (b) 

Figure 3.1 Laboratory setup of landslide prediction system (a) Front view of landslide laboratory setup (b) 

Sensor’s placement. 

The laboratory setup is intended to mimic environmental factors that contribute to landslide 

events, as shown in Figure 3.1, several sensors are used to collect the critical environmental 

data needed to predict these events. For example, soil moisture sensor (S1) measures soil 

moisture content, as changes in soil moisture can have a significant impact on gradient stability 

and can contribute to landslides. Ultrasonic sensors (S2) are used to measure distance and 

recognize all physical changes in the monitoring area. Similarly, the temperature sensor (S3) 

measures humidity and temperature and checks the ambient temperature. Other sensors in the 

system are vibration sensors (S4) that demonstrate vibrations in the environment and measure 

changes in tension in response to vibration. Also, accelerometer and a gyroscope sensor (S5) 

are used to understand the movement and direction of the slope and these sensors also help to 

monitor changes in acceleration or angular velocity, which are key indicators of possible 
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landslides [76]. The ESP-32 microcontroller collects data for all these sensors, which act as a 

central processing unit for sensor inputs [77]. The microcontroller processes and forwards it to 

a cloud server (Thingspeak), a cloud platform that acts as a memory and analysis center [78]. 

Thingspeak adds time marks to the incoming data, that enables the system to analyze and 

monitor trends over time, which allows to detect any pattern that can indicate a greater 

probability of a landslide. 

3.2 Proposed work  

In the context of landslide prediction and monitoring, each sensor in the system plays a vital 

role in detecting key environmental parameters that can signal the potential for a landslide. 

These sensors are methodically used to collect data related to the soil, terrain movement, 

climate, and other factors that influence slope stability as shown in Figure 3.2.  

 

Figure 3.2 Microcontroller Integration for Multi-Sensor Data Collection. 

Below is a detailed explanation of how each sensor functions in the landslide prediction system: 

i. Soil Moisture Sensor (S1): The soil humidity sensor is crucial to detect changes in soil 

moisture content. Excessive humidity of rain or other sources can significantly weaken 

the soil, reducing its resistance to cutting and increasing the risk of landslide. The 

monitoring of soil humidity levels allows early identification of unstable slopes that can 

be prone to failure. The sensor uses electrodes placed in contact with the ground. As the 

soil absorbs water, the electrical resistance between the electrodes changes. The more 
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water present, the less the resistance the sensor can measure. These data are transmitted 

to the microcontroller, which processes the information and sends it to the cloud server. 

An increase in soil moisture can be a strong indicator that a slope is at risk of sliding. 

ii. Ultra Sonic Sensor (S2): The ultrasonic sensor measures any change in the physical 

displacement of the soil, the rock or other materials on the slope. This sensor can detect 

small displacements or changes in the ground, providing early alert signals. The sensor 

emits ultrasonic waves and measures the time it takes for the waves to recover after 

hitting a surface. The distance between the sensor and the surface is calculated 

depending on the moment. If the slope changes or moves, the distance will change, that 

the sensor can detect in real-time.  

iii. Temperature and Humidity Sensor (S3): The temperature and humidity sensor 

detects the environmental conditions by measurement by thermistor and humidity with 

a capacity or resistance element. If there is a significant change in these factors, 

especially in areas susceptible to rain or temperature fluctuations, the sensor can alert 

the system to the possible risks of landslides. For example, high humidity can indicate 

saturated soil, a critical factor of landslide instability. 

iv. Vibration Sensor (S4): The vibration sensor detects any vibration in the soil, which 

may be caused by seismic activity, movement on the ground or external force. These 

vibrations are often related to landslide because it shows instability in the field. The 

sensor uses a piezoelectric element or accelerometer to detect mechanical vibrations in 

the environment. As the vibration is observed in the sensor, there comes an electrical 

signal, which is then sent to the microcontroller. By monitoring the frequency and 

vibration intensity, the system can identify abnormal formulas that may indicate that 

the inclination begins to fail, providing early warnings. 

v. Accelerometer and gyroscope Sensor (S5): These sensors are designed to detect 

changes in movement and terrain orientation. By measuring acceleration and angular 

velocity, they provide essential data on any change or change of slope that may indicate 

an immediate land sliding. The accelerometer measures the speed of acceleration or 

slowing down the ground along one or more axes (usually in three dimensions: x, y, z). 

It works detecting capacity changes as the soil moves. The gyroscope measures angular 

speed or how quickly the slope revolves around the axis, which helps identify changes 
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in the slope angle. The combined data of these sensors provide detailed ideas about the 

movement of earth, allowing the system to detect whether the inclination moves in a 

way that suggests that it could collapse. 

vi. Microcontroller (ESP-32): The microcontroller is known as the brain of the 

system. It collects data from all sensors, processes them and transmits information to 

the cloud server for a subsequent analysis. The microcontroller ensures that data is 

accurately recorded and can trigger immediate responses if necessary. The ESP-32 

microcontroller is responsible for receiving data from each sensor in real time. It 

processes this data, analyzes trends, and checks if any thresholds indicative of a 

landslide have been surpassed (e.g., a significant increase in soil moisture or 

movement). It then transmits this data to the cloud server for storage and further 

analysis. The microcontroller also communicates with the cloud platform (such as 

ThingSpeak) for alert generation. The ESP-32, Bluetooth Ultra-Low Power 

Consumption, Dual Core + 38Pin Development Board WiFi formally known as ESP-

32, the entire solution uses the least amount of PCB space to the integration of the 

ESP32 with RF baluns, antenna switches, low-noise amplifiers, power amplifiers, 

filters, and management modules. Using TSMC's ultra-low power consumption 40nm 

technology, the 2.4 GHz Wi-Fi plus Bluetooth dual-mode chip offers the best power 

dissipation and RF performance, and is safe and dependable, and is simple to adapt to 

a wide range of applications. It helps send data to other servers through wireless means. 

vii. Cloud Server (Thingspeak): The cloud server serves as the central data repository 

and analysis platform. It stores all sensor data, timestamps it, and allows machine 

learning algorithms to process the data and generate landslide predictions as shown in 

Figure 3.3. The server is also responsible for issuing alerts when potential landslide 

conditions are detected. ThingSpeak is a cloud-based platform that collects data from 

the sensors via the microcontroller. Once the data reaches the cloud server, it is 

timestamped, allowing the system to track changes over time. The server then runs 

machine learning models that analyze the data for patterns or anomalies that indicate 

an increased risk of a landslide. If the system detects such risks, it can issue early 

warnings to local authorities and residents, potentially saving lives and minimizing 

property damage. 
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Figure 3.3 Smart Sensor Network with Data Aggregation, Analytics, and Sensor Data Insights. 

viii. Real-time data: In real-time landslides prediction systems, several sensors are 

used to collect critical environmental data that can help identify possible landslides 

events. These sensors include soil moisture sensors, ultrasonic sensors, temperature and 

humidity sensors, vibration sensors, accelerometers and gyroscopes [79]-[83]. Before 

collecting data, important environmental factors are considered like slope angle, soil 

type, precipitation and the use of the land to improve the accuracy of the data collected. 

Steep slopes, certain types of soil, heavy rains and human activities can affect the 

likelihood of a landslide. The data in Table 3.1 are collected before and throughout 

terrestrial landslides and include several environmental and geophysical determinants 

crucial for landslide understanding and prediction. These sensors monitor various 

physical parameters like temperature, displacement, acceleration in three axes (X, Y, 

and Z) and angular rates, with readings taken at regular time intervals. They are time -

marked and give an accurate record of the behaviour of the system over time. 

The data being collected are critical in order to assess the status of the system so that 

immediate interventions or corrective actions can be taken. It is also fine-tuned to 

ensure the quality and accuracy remains consistent. This preprocessing can involve 

data cleaning and standardization of features and engineering to prepare the data so that 

it is reliable and relevant for the analysis. After processing, the final data record serves 

as the basis for advanced analysis, trend detection, anomaly identification, and future 

actions of the system. Ultimately, data records can help enable well-discovered 

decisions, optimizing system performance or support more research into system 
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dynamics. This data leads to fixed lines and is extremely important for analysis of 

factors monitoring current events to improve predictive modeling. Once the data is 

collected, a microcontroller transmits data, where it is updated and stored continuously 

in real-time. 

Table 3.1 Real time landslide data 

Time 

stamp 

S1 

(%) 

S2 

(cm) 

S3 

(°C) 

S4 

(%) 

S5 X 

(ms−2) 

S5 Y 

(ms−2) 

S5 Z 

(ms−2) 

S5 X 

(°/s) 

S5 Y 

(°/s) 

S5 Z 

(°/s) 

09:40:59 24.5 2.75 22.5 45 0.02 0.05 0.03 9.78 0.02 0.03 

09:41:18 24.6 2.80 22.6 46 0.03 0.06 0.04 9.77 0.03 0.02 

... ... ... ... ... ... ... ... ... ... ... 

10:10:34 25.0 3.00 23.0 50 0.07 0.10 0.08 9.73 0.07 0.07 

10:10:53 25.1 3.05 23.1 51 0.08 0.11 0.09 9.72 0.08 0.08 

 

The process of compilation and use of real -time sensor data for machine learning 

models (ML) or deep learning (DL) in the prediction systems of landslides implies 

several steps to verify that the data is captured, pre -processed, transmitted and used 

effectively for prediction. Initially, several sensors, like soil moisture sensors, 

ultrasonic sensors, humidity and temperature sensors, vibration sensors, accelerometers 

and gyroscopes, are placed in strategic locations to collect real-time environmental data 

that indicates a possible landslide activity. Then, ESP-32, acts as an interface between 

the sensors and the cloud server. The microcontroller analysis the unprocessed signals 

received from the sensors and prepares the data for the transmission. Further, the 

microcontroller transmits the data to the cloud server for further analysis. The next 

crucial step is data preprocessing, which is important to clean the unprocessed data in 

a usable format for automatic learning models or deep learning. During preprocessing, 

the data goes through several steps, like sometimes it may be necessary to scale or 

standardize the sensor data to take into account variations in the measurement unit so 

that the model can operate with uniform inputs. This is especially important as the raw 

data collected by various sensors can change and the model must operate at comparable 

scale using input values to avoid distortion. The characteristics such as moisture levels, 

temperature, slope angle and soil type are extracted as individual unprocessed attributes 

or characteristics. The preprocessing data set can be feed on ML models, such as 

random forests, support vectors (SVM) or deep learning models, such as 
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convolutionary neuronal networks (CNN), which can detect complex patterns and 

correlations in data.  

After training, the model can make predictions on real-time sensor data, giving early 

warnings to residents and local authorities when the system detects conditions that lead 

to landslide. When continuously updating the sensor data and feeding them to the 

model, the system guarantees timely and precise predictions, which can be used for 

alerts generation, allowing the appropriate efforts for evacuation or mitigation before a 

landslide occurs. 

3.3 Data Preprocessing 

Once the real-time data from the sensors is transmitted to the cloud server or data storage 

system, it undergoes a crucial stage of data preprocessing to make it suitable for ML or DL 

model analysis [84]. Data pre-processing requires a series of steps to clean, reshape, and 

organize the unprocessed sensor data to ensure it is accurate, consistent, and ready for model 

training or prediction. The following detailed steps explain the preprocessing process: 

3.3.1 Data Cleaning: 

The initial step in preprocessing is data cleaning, whose objective is to eliminate any noise or 

inconsistency in unprocessed data that may affect model’s performance. Unprocessed sensor 

data may include missing values, duplicate inputs or atypical values that do not reflect real 

world conditions. For example, a sensor might malfunction and provide a reading that is far 

beyond the expected range (for example, an ultrasonic sensor detects an extremely high 

distance due to a faulty signal). To address this, the following techniques are commonly used: 

i. Handling missing data: If sensor data is missing in certain time intervals, this can be 

due to communication failures or sensor malfunction. Missing data can be handled in 

different ways, such as imputing (filling) missing values using techniques such as 

average imputation (filled with the average of nearby values) or interpolation 

(estimating missing values based on the tendency of surrounding data points). In some 

cases, missing values can be ruled out if they are too frequent, but this depends on the 

context and the proportion of missing data. 
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ii. Outlier detection: Outlier are data points that fall far from the expected range, often 

due to sensor errors or unusual environmental conditions. Statistical methods such as 

the Z score or the IQR- interquartile range method is used to detect and eliminate or 

adjust these atypical values. If atypical values represent unusual genuine events (for 

example, a seismic event), they can be maintained in the data set, since they could 

indicate a possible discarding of landslides. 

iii. Noise extraction: Some sensors, such as accelerometers or vibration sensors, can 

produce noise due to environmental factors (for example, wind, vehicles that pass). 

Smoothing techniques can be applied as moving averages or Gaussian filters to 

eliminate short -term fluctuations and highlight the general trend in the data. 

3.3.2. Normalization and Standardization: 

Different sensors may output data in various units and scales. For instance, soil moisture could 

be measured in percentage, while vibration might be in voltage or acceleration units. To make 

these different data types comparable, it is important to normalize or standardize the data: 

Normalization: This involves rescaling the sensor readings to a fixed range, typically between 

0 and 1. The normalization is represented as:  

Ynormal=

Y − Yminimum

Ymaximum − Yminimum
 

where Y is the value of the original sensor, and 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚 are the minimum and 

maximum values of the data set. The standardization ensures that all data characteristics have 

the same scale, which is particularly important for distance-based models such as K-Nearing 

(KNN) neighbours and neural networks.  

3.3.3 Feature Engineering: 

The feature engineering is crucial because it determines the model’s ability to detect patterns 

in the data: 

i. Extraction of Temporary Features: Real-time landslide prediction generally implies 

monitoring changes over time, so temporary characteristics such as day time, averages 

per hour/daily or rolling windows (for example, moving average of 30 minutes) can be 

useful for capturing trends and cyclic patterns. For example, the accumulation of rain 
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or soil moisture in recent hours may be more indicative of an imminent landslide than 

a unique isolated reading. 

ii. Feature Interaction: Some parameters might interact with each other, such as soil 

moisture and temperature. Creating new features that combine these parameters, such 

as the humidity temperature ratio, could reveal non-obvious patterns of individual 

characteristics. Deriving additional features: For sensors such as accelerometers and 

vibration sensors, calculate the speed of exchange or frequency domain features (for 

example, FFT - Fast Fourier Transform) can provide deeper information about motion 

or vibrations on the slope, which could indicate instability. 

3.3.4. Data Transformation and Reshaping: 

In some cases, the raw sensor data might need to be reshaped to fit the input format required 

by certain machine learning models. For instance, Time-series data: Since landslide prediction 

often depends on trends over time, organizing the sensor readings as time-series data is 

essential. This may involve transforming the data into sequences where each instance consists 

of sensor readings at a specific time step (e.g., 5-minute intervals). The input features would 

consist of previous time steps, helping the model to learn temporal dependencies. Categorical 

Data Encoding: Some features, like soil type or land use, might be categorical. These need to 

be encoded into numerical values using techniques like one-hot encoding or label encoding 

before being fed into the model. 

3.3.5. Data Split and Model Preparation: 

After the data has been cleaned, normalized and transformed, it is usually split into test, train, 

and validate datasets. This step ensures that the ML or DL model are able to learn from a data 

set (training), tune hyperparameters based on another set (validation) and evaluate its 

performance in a completely invisible data set (test). 

3.3.6. Final Dataset Creation: 

Once the preprocessing is completed, the final data set consists of characteristics that represent 

the conditions that lead to landslides, such as soil moisture, temperature, vibrations and other 
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environmental factors. This structured data set is now ready to be admitted to models , which 

can detect patterns in the data and predict the future trends on the risks of future landslides. 

 

Figure 3.4 Proposed workflow of real-time landslide prediction. 

Through this data cleaning process, standardization, characteristics and transformation 

engineering, unprocessed sensor data is prepared and optimized for use in predictive modeling, 

which allows precise and reliable land landslides predictions and alert generation as shown in 

Figure 3.4. 

3.4 Machine Learning Algorithm  

In this section, attention focuses on the application of several algorithms to predict landslides 

using real -time sensor data. These algorithms RFR, MLR, GBR, LSTM and XGBOOST are 

used to evaluate their predictive performance in real world scenarios. The aim is to compare 

the performance of these algorithms for accurate prediction of landslides to provide the ability 

to process data in real time and predict it quickly. 
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3.4.1 Multiple Linear Regression (MLR): 

MLR is one of the simplest and most widely used machine learning algorithms to predict a 

persistent result derived from multiple input features [85]. In the context of the prediction of 

landslides, MLR can be used to model the relationship between the sensor data and the 

probability of a landslide occurring. The model presumes that the correlation between the input 

features and the outcome is linear. It computes a set of weights (coefficients) for each feature, 

with the goal of minimizing the difference between predicted values and actual observations. 

While MLR is easy to implement and computationally efficient, it may struggle with capturing 

complex, non-linear relationships in the data, which is common in environmental systems like 

landslides. 

Equation for model fitting: 

                    X = a0 + a1Y1 + a2Y2 + ⋯ + amYm+∈                                             (3.1) 

Here a1, a2, a3….am represents change in X that is linked with one unit of increase in value of 

corresponding independent value. Also, X is DV and Y1,Y2,…,Yn are IV, a0 is constant and a1, 

a2, a3 are coefficients of IV and ∈ represents error rate. Least square method is mostly 

approached by linear regression [34]. 

Estimation of coefficients:                 γ = (YTY)−1YTX                                                        (3.2) 

Here estimation of 𝛾𝜊 , 𝛾1, 𝛾2, . . , 𝛾𝑝 can be done using given equation. 𝛾 corresponds to p+1 

coefficient vector, Y represents n-dimensional vector corresponding to dependent variables, 

(𝑌𝑇𝑌)−1 denotes inverse of n*n matrix of 𝑌𝑇𝑌 and 𝑌𝑇 represents transpose of Y. 

Evaluation of model: For evaluation of model coefficient of determination (𝑅2) and adjustment 

of 𝑅2 is done.                        R2 = 1 − (S residual − S total)                                              (3.3) 

Here S residual corresponds to squared sum of residual i.e. difference of predicted and actual 

value and S total corresponds to total squared sum of difference between actual and mean 

values. 

                     Adj. R2 = 1-[(1-R2) * (n-1)/(n-p-1)].                                                             (3.4)                          

No. of independent variables (Adj. R2) can be represented as shown in equation 3.4, here p 

denotes number of independent variables and n represents total no. of observations.  

Prediction values: Now model is ready to make prediction after being evaluated properly. 

X^ = a0 + a1Y1 + a2Y2 + ⋯ + amYm                                 (3.5) 

Where 𝑋^ is predicted value of dependent variable for set of independent variables. 
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One hot encoding (OHE): OHE is technique of translating categorical data into format that may 

be input into machine learning algorithms to boost prediction accuracy. Each category is 

converted into a binary vector of zeros and ones during this procedure, with 1 denoting the 

presence of a category and 0 denoting its absence. In OHE, we set single entry to one and all 

other corresponding must be zero. The one-hot vector a is binary vector of length n. 

                         𝑎 ∈ {0,1}𝑛       ∑ 𝑎𝑖
𝑛
𝑖=1 = 1                                                                          (3.6) 

3.4.2. Random Forest Regression (RFR): 

RFR is a method that builds multiple decision trees during training and fuses its results to 

produce a more precise and stable prediction [86]. Each decision tree is trained in a random 

subset of the data, and the final prediction is carried out averaging the outputs of all trees. RFR 

is particularly effective to handle complex and high-dimension data such as sensor readings for 

the prediction of landslides, since it can capture non-linear correlations and interactions 

between the characteristics. In the prediction of landslides, RFR can take into account 

numerous factors, such as soil properties, slope angles, humidity levels and rain patterns to 

predict the probability of a earth slide event. The advantage of RFR lies in his robustness 

towards its ability to handle a combination of numerical and categorical data. 

We take average prediction of decision tree (DT), the prediction for data point y, taking decision 

Tree X, can be written as: 

f(y, X) = Σ qj ∗ I(Z ∈ Bj)                                                    (3.7) 

Here qj is the predicted value for jth leaf node of decision tree and Bj is region under jth leaf 

node. The function I() return 1 if y is in Bj,  and 0 and is termed as indicator function.  

Using random forest overall prediction for data point y can be given as: 

f(y) = (
1

m
) ∗  Σf (yLj

)                                 (3.8) 

Where m is number of DT present in RF, and L is the jth DT in forest. In this equation average 

of predictions of all DT is used to make final predictions.  

Criteria for splitting in DT is Gini index (G), which can be represented as: 

G = ΣKj ∗ (1 − Kj)                               (3.9) 

Here Kj is proportion of data points in jth node of DT. Lower the value of G represents a pure 

node.  

Prediction space is divided into non overlapping or distinct regions P1 … . Px. Predicted mean 

of all observations is Pj. Root of sum of squares (RSS) is: 
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∑ .R
j=1 ∑ (xi − xPj)

2.
j∈Pj

                                                            (3.10) 

Here within jth region, Pj is mean response of observation. 

3.4.3. Gradient Boosting Regression (GBR): 

Gradient Boosting Regression (GBR) is another powerful machine learning algorithm that 

builds an ensemble of decision trees [87]. Unlike RFR, GBR constructs trees sequentially, 

where each tree tries to correct the errors made by the previous one. This process results in a 

model that is more accurate over time. GBR focuses on minimizing the residual errors in 

predictions by optimizing a loss function using gradient descent. For landslide prediction, GBR 

can be particularly useful as it handles non-linear relationships effectively and can model 

complex interactions between variables like soil moisture, rainfall, and slope angle. The model 

is highly flexible and can provide better accuracy than simpler models, particularly when fine-

tuned with hyperparameters. However, GBR can be computationally expensive and prone to 

overfitting if not properly regularized. 

      Initialize Lο(a) = arg minρ ∑ F(bi,ρ)m
i−1                                         (3.11) 

For n=1 to N do:  

Step 1: Computing the negative gradient: 

       bi
^ = [ 

δ F(bi,,L(ai))

δLai

]                                   (3.12)  

Step 2: Fit the model:   

      βn = arg minβ,γ ∑ [b − γh(ai; βn)]2M
i                                        (3.13) 

Step 3: Gradient descent step size selection: 

     ϱn = arg minϱ ∑ F(bi,Ln − 1(ai) + ρh(ai; β))M
i−1                                        (3.14)

      

Step 4: Updating the estimation of L(a):  

Ln(a) = Ln−1(a) + ρnh(a; βn)                                           (3.15) 

3.4.4. XGBoost 

XGBoost (Extreme Gradient Boosting) is an optimized and tuned version of the Gradient 

Boosting algorithm. It was developed to improve computational efficiency and prediction 

accuracy, especially for large data records [89][90]. XGBoost accomplishes this with advanced 

techniques such as parallelization to accelerate model training and reduce over-fitting at the 

same time. When predicting landslides, XGBoost is very effective when processing sensor 
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data. This is because nonlinear relationships and complex interactions between multiple 

properties can be modeled. XGBoost is extremely popular due to its robustness, flexibility and 

efficiency in the machine learning competition. 

3.4.5. Long Short-Term Memory (LSTM) Networks 

LSTM is a type of recurrent neuronal network (RNN) designed for the processing of continuous 

data. LSTM is particularly useful for time series predictions where previous observations (such 

as sensor values) affect the outcome [88]. In relation to landslide prediction, LSTM models can 

analyze temporary data. LSTM networks can learn long-term dependencies by training with 

real-time order data, the LSTM model can learn the patterns and time-dependent features given 

by future landslides, this ability to capture long-term relations, especially when actual 

monitoring of time is important, makes LSTM a powerful tool for predicting landslides. 

3.4.6. MLR-LSTM 

The MLR-LSTM hybrid model is a very powerful algorithm for landslide prediction, as it 

combines the characteristics of both models to make final predictions. First, MLR provides a 

linear relationship between environmental factors. The LSTM layer improves these predictions 

by including the temporal nature of the data. In contrast to traditional models that rely solely 

on historical data, LSTMs can be continuously trained from real-time sensor data flows. 

Dynamically updates new data when it arrives so that the model can quickly adapt to changing 

conditions. This makes LSTM particularly suitable for temporary serial data. Also, the sensor 

values, develops patterns over time and LSTM models there too captures the nonlinear 

relationships and complex patterns in the data making it more effective in situations where 

complicated relationship is there between variables.   

The LSTM layer comprises of several components that helps to manage temporary units 

effectively. These include input, output and forget gate which together control the flow of 

information from a time step to the next, ensuring that the relevant data of the previous steps 

are retained while irrelevant data is discarded. This allows the model to remember long-term 

patterns and make precise predictions even if the data is incomplete. During the training and 

prediction phases, MLR-LSTM hybrid model optimizes parameters, adjusts the weight, 

distortion and states of LSTM cells to improve their ability to learn both linear relations 

identified by MLR and complex time patterns captured by LSTM. By integrating the strengths 
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of both models, the hybrid MLR-LSTM offers a comprehensive approach to the prediction of 

landslides. It provides immediate insight into risk factors through MLR and at the same time it 

represents developing risks with LSTM over time. This combination results in a more accurate, 

more reliable and sensitive tool for prediction of landslides, which is essential for generating 

early warnings and strengthening the efforts to alleviate disasters. Real-time data collected 

from multiple sensors ensures that the model remains upto date and is able to provide important 

information to help prevent and manage land landslides. 

 

Figure 3.5 Architecture of MLR-LSTM model. 

 

3.5 Results and Analysis 

In the testing phase of the landslide prediction system, the process of calculating and optimizing 

values for each of the key sensor parameters (S1, S2, S3, S4 and S5) began. These thresholds 

act as critical decision-making points that help determine when the system must induce 

warnings in order to alert people with immediate risk of landslide. The thresholds for these five 

fields obtained were 0.77, 0.55, 0.60, 0.40 and 0.50. These threshold values were calculated on 

the basis of historical data, deducting sensors in real time and observing how the parameters 

correlate with the occurrence of landslides. The system uses these thresholds to classify sensor 

data in different risk areas depending on the severity of the values. The first step in the 

categorization process means comparing the sensor data in real time with predefined 

thresholds. The values are assigned in specific ravages that correspond to variable levels of 

landslides. For example, reading a sensor between 0 and 50 is considered a "safe zone", which 

means that the environment is stable and that the probability of landslides is minimal. Reading 

between 50 and 60 is classified as a "yellow zone", suggesting that the system has detected 
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certain differences in parameters and residents must remain careful. If the reading drops 

between 60 and 80, the system enters the "red zone", a critical phase that indicates that the 

conditions are rapidly dangerous and more likely to be landslide. Finally, any value greater 

than 80 will start the most urgent warning, marked as an "evacuated zone" where people are 

recommended to leave the area immediately to seek safety. Once the thresholds are defined for 

each zone, the system continuously monitors real-time sensor data and compares them with 

these thresholds. If one of the sensor parameters exceeds the threshold values defined for a 

particular zone, the system generates a warning to informing population and local authorities. 

For wider areas, the system uses digital communication methods such as SMS messages and 

notifications sent through mobile applications or other digital platforms. These reports contain 

details of the risk of landslides, affected areas and instructions for evacuation, which ensures 

that people who may be further from the immediate danger zone are still informed and can take 

measures if necessary. The combination of real time data monitoring, predefined thresholds 

and multiple communication channels ensure an integral and efficient system of early and 

efficient warning system for prediction and prevention of landslides. 

   

(a) (b) (c) 

(d) (e) (f) 

 

(g) 

Figure 3.6 Cumulative displacements obtained through (a) Moisture, (b) Distance, (c) Temperature, (d) 

Vibration, (e) Gyroscope, (f) Accelerometer, (g) Fluctuations observed through sensors. 
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The experimental evaluations of the sensor system, as illustrated in Figure 3.6, highlight the 

fluctuations observed in the sensor readings through continuous monitoring of various 

environmental factors. These fluctuations are normalized to make the data comparable across 

different sensors. The data from each sensor is collected in real-time and continuously assessed 

to track changes in environmental conditions. The sensors in this study monitor a variety of 

variables, including soil moisture, temperature, vibration, and other indicators associated with 

landslide prediction. To scale the data for these sensors to an equivalent scale, the values are 

normalized and the sensor measurements are directly compared and made available for use in 

predictive models. The model is trained with five sensors, all contribute to the final prediction. 

The training process involves the weight, distortion and adaptation of the MLR and LSTM 

components to optimize prediction results. For a part of the MLR model, each sensor is 

assigned an individual weight that reflects the relative significance of predicting the probability 

of landslide. The sensor weights are set to 0.70, 0.55, 0.60, 0.40 and 0.50 and the sensor 

determines the amount of the output. These weights record the strength and orientation of the 

contribution of each sensor to the final prediction. 

In the LSTM model, parameters are modified by the flow of information through neural 

networks. These parameters include input, forget, output gateway weights, and recurrence 

matrices that determine the relationships between different LSTM network layers. For 

example, the entrance gate (Win), Forgotten (WForget), and the start gate (WOut) are assigned 

weights: 0.75, 0.55, 0.7, and 0.6. These weights adjust the flow of information each time and 

determine the number of sensor data from previous steps to the current prediction. Preloads 

connected to the gateway, such as Bin, forget gate, output gate etc., are set to 0.1, -0.2, or 0.2 

to control information flow, improve the model's capabilities, and capture complex time 

addictions. 

Finally, the combined layer of the hybrid model integrates the MLR and LSTM component 

outputs. In this combined layer, additional weights (Wcomb) and distortion are used to fine -tune 

the final output and ensure that the model creates accurate prediction in real time. The MLR 

and LSTM integration allows the model to use both linear relationships identified by the MLR 

and non-linear time dependencies captured by LSTM, which provides robust access to 

landslide prediction. The ability of this hybrid model to modify its real-time parameters based 

on incoming sensor data makes it a powerful tool for predicting landslides and release early 

alerts to relieve the risk. 
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3.5.1 Evaluation and Performance parameters  

i. Mean Absolute Error (MAE): It is used for evaluating the efficiency of the regression 

model. In addition to this, it is used to calculate the average of absolute differences 

between the predicted value and the actual value simply by taking the average of 

absolute difference between the predicted and actual values for each data point. 

               MSE= (
1

𝑚
) ∗  ∑(𝑥𝑖 − 𝑥𝑖^) ^2                                                                              (3.16) 

Here m represents number of observations. For ith observation, xi is actual value of 

dependent variable and 𝑥𝑖^ is the predicted value of dependent variable. 

ii. Mean Squared Error (MSE): It is obtained by averaging the squared differences 

between the actual value and the predicted value for each data point. It helps measure 

the average square differences between predicted and actual values.  

MAE = (
1

m
) ∗  ∑|i = 1 to m||xi − xi

^|                                                          (3.17) 

Here m denoted total number of samples. For ith sample xi is actual value of target 

variable and 𝑥𝑖^ is the predicted value of target variable. 

iii. Root Mean Squared Error (RMSE): RMSE is basically used when errors are 

expected to be distributed normally and it considers square root of average squared 

difference.  

     RMSE = sqrt(sum((predicted values − actual values)2)/m                             (3.18) 

Here m represents number of data points, predicted values obtained from regression 

model denoted predicted values and actual value are those that are directly obtained 

from dataset. 

In the context of landslide prediction, data was gathered from five key variables that represent 

distinct environmental factors, all of which change dynamically when a landslide is at its peak. 

Each field corresponds to a specific type of sensor reading that was critical for understanding 

the behavior of the land at the time of a landslide event. Field 1 represents soil moisture, which 

plays a pivotal role in landslides, as soil with higher moisture content tends to lose its cohesion 
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and stability. When rainfall or other water sources saturate the soil, it becomes more prone to 

slipping, especially on steep slopes. Soil humidity sensors capture real-time data for monitoring 

these changes that are vital to detect early symptoms of potential landslide. Field 2 represents 

a distance measured by an ultrasonic sensor that is usually used to monitor physical changes or 

shifts in the environment. As the landslide progresses, the ultrasonic sensor can be detected by 

physical shifts such as cracks, shifts or off-road movements. This can help assess how far the 

earth moves and identify the scope of landslides in real time. Field 3 monitors the level of 

moisture in the air, which can contribute to the accumulation of water in the soil. The 

temperature in the degrees of Fahrenheit is measured by Field 4, which can affect the behavior 

of the soil and water content. Sudden drops or temperature increases can lead to changes in 

water retention in the soil, which could contribute to instability. Field 5 monitors ground 

vibration using a vibration sensor that detects oscillation on the surface. These vibrations are 

often early indicators of landslides because the movement of the surface begins before the real 

large slide occurs. 

As soon as the data from these five areas were collected, the comparison of the behavior of 

these parameters at the time of landslide and when no landslide was presented. The aim was to 

identify data formulas that could indicate when landslide was immediate. For example, 

increased soil humidity, combined with a sudden increase in humidity and temperature, 

Similarly, increased vibrations and displacement of the ultrasonic sensor indicates that the 

landslide event was about to occur. By analyzing fluctuations in the sensor values, the key 

characteristics that defined the platform phase of landslide and detect specific data formulas 

that signal when the land is probably landslide were isolated and to further increase the 

accuracy of the prediction, sensors of accelerometer and gyroscope were used for more detailed 

monitoring of ground movements. 

Table 3.2 represents five different sensors used to monitor the key parameters of the 

environment that could indicate the onset of landslides. Each sensor provided vital data points, 

which allows to detect changes that could signal threatening landslides. The sensors included 

soil moisture sensor, ultrasonic sensor, temperature sensor, vibrating sensor and other 

movement sensors in the form of accelerometer and gyroscope. These sensors continuously 

capture data during normal and critical conditions and help scientists to observe the fluctuation 

of the environment that occur before, during and after landslide. 
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The soil humidity sensor was used to measure the water content in the soil, a critical factor of 

stability of landslides. In front of soil landslide, soil moisture values usually ranged from 10% 

to 20%, reflecting normal soil conditions where the moisture content was not too low or too 

high. The ultrasonic sensor was used to monitor the distance between the sensor and the object, 

the detection of any changes was observed by the sensor. After the landslide, these shifts 

became more pronounced because the surface moved significantly, with the sensor detecting 

more distance changes that indicated the substantial displacement of the terrain. The 

temperature sensor was used to measure ambient temperature fluctuations, which can affect the 

retention of humidity in the soil. However, the temperature remained relatively stable, usually 

in the range of 60 ° F to 70 ° F. After the landslide, the temperature may remain stable or 

fluctuate on the basis of weather conditions. 

The vibration sensor played a decisive role in detecting the movements of the land. In front of 

the landslide, the vibrations were generally small, with values in the range of 0.01 to 0.1 m/s², 

reflecting the minimum shifts of the Earth. As the soil became increasingly unstable, these 

vibrations grew by frequency and intensity. During the landslide, the vibrations increased 

significantly and achieved 0.2 to 1.5 m/s² or higher, indicating greater and significant 

disturbance of the Earth. These sharp fluctuations in vibration data were key indicators that 

landslide began or actively occurred. 

The accelerometer and gyroscope sensors were used to monitor the movement of the surface 

in more detail. The accelerator measured the acceleration or moved in motion along the axis 

X, Y and Z and even captured minor movements. At time of the landslide, these sensors 

recorded small shifts, with readings such as 0.01 m/s² (axis X), 0.09 m/s² (axis Y) and -0.03 

m/s² (axis Z). These subtle changes testified of slight movement in the ground when 

destabilized. After the landslide, the accelerometer detects much greater movements, with 

significantly higher accelerations, especially along the axes. Similarly, the gyroscope captured 

the rotary movements of the Earth, which reflected any tilt or rotation when the terrain moved. 

At time of landslide, the gyroscope values were minimal, with values such as 9.26 ° (X axis), 

2.87 ° (Y axes) and -1.32 ° (Z axis), indicating slight tilting or rotation on the surface. These 

rotations become more pronounced during and after the landslide because the surface has 

experienced greater shifts and tilting. The data collected by these five sensors together with the 

accelerometer and the gyroscope provided a comprehensive overview of the environmental 

conditions before and after the landslide. 
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Table 3.2: Sensor Readings Before and After Landslide 

Sensor Before Landslide After Landslide 

Soil Moisture 10-20% 50% or higher 

Ultrasonic (Distance) 5.0 meters (stable) 4.8 meters or lower (displacement) 

Temperature 60°F to 70°F Fluctuating, depending on conditions 

Vibration 0.01-0.1 m/s² (small shifts) 0.2 to 1.5 m/s² (large shifts) 

Accelerometer (x-axis) 0.01 m/s² Increased (larger shifts) 

Accelerometer (y-axis) 0.09 m/s² Increased (larger shifts) 

Accelerometer (z-axis) -0.03 m/s² Increased (larger shifts) 

Gyroscope (x-axis) 9.26° Increased (larger tilts) 

Gyroscope (y-axis) 2.87° Increased (larger tilts) 

Gyroscope (z-axis) -1.32° Increased (larger tilts) 

 

Through the continuous monitoring, these sensors made it possible to develop a brighter understanding 

of changes in the environment that preceded landslides. The study by monitoring soil moisture, distance, 

humidity, temperature, vibration and additional data from accelerometer and gyroscope is to increase 

early detection systems and provide more accurate warnings to alleviate the effects of landslides. 

Table 3.3 Parameters resulting in landslide. 

S. No. Fields Values 

1. Moisture in Soil  56 

2. Distance (by Ultra-sonic) 20 

3. Humidity 45 

4. Temperature (degree F) 68 

5. Vibration 1 

6. Accelerometer (X axis) 0.01 

7. Accelerometer (Y axis) 0.09 

8. Accelerometer (Z axis) -0.03 

9. Gyroscope (X axis) 9.26 

10. Gyroscope (Y axis) 2.87 

11. Gyroscope (Z axis) -1.32 

Table 3.2 shows the relationship of different parameters contributing to the events of landslides, 

with the corresponding values for each parameter. This table contains measurements such as 

soil moisture, distance (measured by ultrasonic sensors), humidity, temperature, vibration, 
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accelerometers, and gyroscope data for various fields. These parameters are important to 

understand factors that influence landslide occurrence and to understand the monitoring 

conditions that may indicate immediate events. Thingspeak allows real-time monitoring and 

allows to collect, store and analyze sensor data in one centralized system. The values of the 

recorded gyroscope and accelerometer sensors, along with other environmental factors, were 

constantly updated and provided an overview of the situation in real time. By observing these 

fluctuations and comparing values with historical data, the system could predict whether the 

conditions are correct. Once the specific thresholds were determined from the data collected 

during previous events, these thresholds were determined as a reference point for future 

forecasts. For example, if moisture or vibration levels approach the values observed during past 

landslides, the system may issue warnings to local authorities or inhabitants, provide early 

warnings and enable timely evacuation or safety measures. 

  

(a) (b) 

Figure 3.7 An illustration of a system sending an alert via, (a) Notification and (b) SMS services. 

A reading between 50 and 60 falls into the "yellow zone" signalling a cautionary state that 

requires close monitoring for potential risks. A reading between 60 and 80 is designated as the 

"red zone" where the situation is more critical, and immediate attention is necessary. When 

sensor reading exceeds 80, it enters the "evacuation zone", where immediate evacuation and 

relocation to a safe place are required. Once these thresholds are defined, they generate 

warnings by comparing the sensor values in real time with predefined ranges. As shown in 

Figure 3.7, in local areas, these warnings are communicated through visual indicators such as 

turn signals and sound alarms such as Hooters, which ensures immediate awareness of the 

situation. SMS messages and pressure notifications are sent for a wider area to inform the larger 

population of level changes, which keeps all of the affected areas updated in real time. These 

thresholds are based on changes observed from historical data and are essential for categorizing 

risk levels from safe conditions to the need for evacuation. The system ensures that people are 

immediately informed about changing conditions through various warning channels, which 

provides a structured and reliable method for readiness and response to disasters. By defining 
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these risk zones and monitoring sensor data in real time, authorities can take timely steps to 

alleviate potential threats and protection of public security. 

 

Figure 3.8 Comparison of performance across various machine learning techniques. 

 

Data-based models, such as our hybrid MLR-LSTM model, analyze real-time data from several 

environmental sensors to discover underlying patterns, which significantly improves the 

accuracy of landslide predictions. These models use predefined thresholds to establish 

reference criteria that help classify data at different levels of risk. The thresholds define safe, 

warned and high-risk areas, forming the basis for the initial evaluations of the conditions. While 

these thresholds provide a clear structure, the hybrid MLR-LSTM model goes beyond 

considering the dynamic and real-time factors, improving early alert systems and improving 

disaster mitigation strategies, particularly in areas prone to landslides. 

Our proposed hybrid model demonstrates a clear advantage over traditional models, including 

individual MLR models, as well as more complex models such as random forest (RF) and 

XGBoost, in the prediction of landslides, as shown in Figure 3.8. This higher performance is 

attributed to the combination of two powerful modeling techniques: MLR and LSTM. The 

MLR component captures linear relationships in the data, offering simple but effective ideas 

about factors such as soil and rain moisture. On the other hand, the LSTM component stands 

out in the modeling of complex and non-linear interactions and temporal dependencies present 

in the data, such as the changing dynamics of environmental conditions over time. Individual 

models such as MLR, RF and XGBOOST often do not accurately model the complex and 

dynamic nature of landslides due to numerous interdependence and correlations between 

different environmental factors. However, the MLR-LSTM hybrid model is able to capture 

both linear patterns with MLR and linear formulas more complex through LSTM. This results 

in a more holistic and accurate prediction system that provides a more reliable early warnings 
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for landslides and improved the general disaster management process. By integrating linear 

and non-linear modeling techniques, the MLR-LSTM hybrid model offers an integral approach 

to the prediction of landslides that exceed each model, ensuring better preparation and 

alleviating in high-risk areas. 

Table 3.4 Performance comparison of landslide prediction. 

Author Algorithm MSE MAE RMSE 
Kumar et al. [91] BS-LSTM – 0.160 0.270 

D. Zhang et al. [92] TCN-AR – 0.280 0.250 

Kshirsagar et al. [93] LR 0.045 – 0.126 

Proposed Model MLR-LSTM 0.014 0.140 0.120 

This table provides insights into the work already been carried out by comparing the values 

with the previous research on basis of MAE, MSE and RMSE values. MSE is an average square 

difference between expected and actual values, with less value indicating better accuracy. MAE 

measures the average absolute difference between the anticipated and actual values, which 

gives a direct indication of the accuracy of the model prediction without considering the 

direction of errors. RMSE is the square root of MSE and provides a scale to understand the size 

of a prediction error, with a lower value indicating a better performance.  

Kumar et al. [91] used the BS-LSTM model (two-way short-term memory), the model showed 

MAE 0.160 and RMSE 0.270. Zhang et al. [92] used the TCN-AR algorithm (a time convention 

network with the author), also without the value of MSE. The performance of the model 

resulted in MAE 0.280 and RMSE 0.250. Kshirsagar et al. [93] implemented the model of 

linear regression (LR), which showed MSE 0.045 and RMSE 0.126. The MSE and RMSE 

values indicate that it worked better than the BS-LSTM and TCN-AR models, but still had 

higher errors than the proposed model. The proposed model is a combination of multiple linear 

regression (MLR) and long short -term memory (LSTM), which outperforms all other models 

at MSE 0.014, MAE 0.140 and RMSE 0.120. This suggests that the MLR-LSTM hybrid 

approach provides the most accurate forecast of landslides compared to other methods tested 

in this study.  

Comparison of different models of landslide prediction highlights the efficiency of the 

proposed MLR-LSTM hybrid model. Performance metrics including MSE, MAE, and RMSE 

indicate that the MLR-LSTM model overcomes other models such as BS-LSTM, TCN-AR, 

and linear regression. In particular, for MSE (0.014), MAE (0.140), and RMSE (0.120), a 

significant reduction in error values suggests that this model provided more accurate and 
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reliable predictions for landslides. This accuracy is essential for early warning systems and 

helps minimize and mitigate the impact of landslides in areas at risk. Integrating several sensors 

in real time, including soil moisture, ultrasound, temperature, air humidity, vibration, and 

accelerometer sensors will improve soil capacity. By constantly monitoring environmental 

factors and including them in machine learning models, the system recognizes the changes that 

indicate future landslides. Generating warnings related to actual data processing systems and 

decisions using threshold-based limits for early warning communities in the early stages to 

save lives and prevent significant infrastructure damage. The results check the feasibility and 

efficiency of MLR-LSTM access and demonstrate the possibilities of real-time applications. 

The real-time IoT-based landslide monitoring system has been fully implemented and tested 

within a laboratory environment, proving its ability to effectively collect, analyze, and transmit 

environmental data for early warning purposes. Transitioning this system to deployment in 

real-world landslide-prone regions involves addressing several critical operational challenges 

to ensure consistent performance and reliability. Field deployment requires systematic 

installation of sensor nodes across rugged and often inaccessible terrain. This involves detailed 

site surveys to identify optimal sensor locations that comprehensively cover vulnerable slopes 

and critical points. Installation teams must navigate difficult access routes and unstable ground 

conditions, using specialized equipment for secure sensor placement. Regular maintenance 

schedules are essential to inspect and replace sensors affected by environmental wear and 

damage. The sensors and associated hardware must be ruggedized and enclosed within 

protective casings to withstand harsh environmental conditions, including heavy rainfall, 

extreme temperatures, humidity, soil movement, and vegetation growth. These protective 

measures prevent physical damage and reduce sensor drift caused by environmental exposure, 

ensuring accurate and consistent measurements over extended periods. Power supply is a 

fundamental challenge in remote areas lacking grid infrastructure. The system employs solar 

panels combined with rechargeable battery storage to provide continuous power. This setup 

ensures uninterrupted sensor operation day and night and during adverse weather conditions. 

Battery capacity is sized to sustain operation for extended periods without sunlight, minimizing 

maintenance frequency. Communication between sensors and cloud servers relies on robust 

wireless networking adapted to remote and challenging environments. The deployment utilizes 

long-range communication technologies such as LoRaWAN or mesh networks to ensure 

reliable data transmission across complex terrain with limited cellular coverage. Local data 

buffering in sensor nodes stores measurements during connectivity interruptions, preventing 
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data loss and enabling synchronization when the network is restored. Sensor calibration and 

health monitoring protocols are integral to maintaining data integrity. Automated self-

diagnostic routines detect sensor anomalies or failures, triggering maintenance alerts. 

Calibration is conducted periodically in the field to adjust for sensor drift caused by 

environmental factors. Finally, integration with local disaster management agencies and 

community engagement are critical for effective deployment. The system’s alert dissemination 

framework delivers timely warnings through SMS, mobile applications, and sirens. Training 

programs for local authorities and residents ensure that alerts translate into prompt evacuation 

and mitigation actions, maximizing community safety. This deployment framework addresses 

all key challenges associated with real-world operation of the IoT-based landslide monitoring 

system. The laboratory-validated prototype evolves into a resilient, autonomous, and 

maintainable network capable of providing reliable early warnings in landslide-prone regions. 

This implementation advances practical disaster risk reduction and sets a foundation for large-

scale field applications. 

3.6 Summary 

The integration of various sensors and advanced algorithms had a major impact in real time on 

the accuracy and efficiency of landslide prediction. The study focuses on solving problems 

related to prediction of such disasters so by collecting data from various sensors provides with 

examined study of possibilities of different machine learning models for predicting landslides. 

These models, such as multiple linear regression (MLR), XGBoost (XGB), and Random Forest 

(RF), have been tested and evaluated against each other to identify the most effective methods 

for accurate predictions. Of the models tested, the MLR-LSTM hybrid was listed as the most 

promising and this hybrid model combines MLR intensity when dealing with linear 

relationships between time dependencies and LSTM networks, when analyzing non-linear 

forms. The LSTM function of the sequential storage function allows models to be analyzed and 

learned from time-dependent data such as soil moisture, temperature, and other environmental 

factors that represent key indicators to threaten landslides. This approach made it possible to 

identify and predict the events of landslides more efficiently, especially when considering the 

dynamic and fluctuating nature of data collected in real time. Moreover, the successful 

implementation of the hybrid model of generating real-time warning has shown its potential to 

help the authorities and communities early measures to minimize the impact of landslides. The 

results of this study emphasize the importance of using the advancements of machine learning 
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and sensor data to improve the strategies of prediction and management of disasters, and 

eventually save lives and reduce the economic and social costs associated with landslides. The 

thesis effectively utilizes real-time sensor data to simulate and monitor environmental 

conditions that can lead to landslides, offering a practical framework for early detection. 

However, despite the advantages of real-time data, this method of data collection might still 

have a few limitations. One key issue is sensor coverage—in a controlled laboratory 

environment, sensors are positioned optimally, but in real-world settings, full coverage of the 

affected terrain may not be feasible due to geographical constraints, installation challenges, or 

cost limitations. As a result, certain critical changes in environmental conditions may go 

undetected, affecting the comprehensiveness of the data. Additionally, sensor reliability poses 

another concern. Sensors are prone to malfunctions, calibration drift, or temporary failures due 

to harsh weather conditions, physical damage, or interference from surrounding elements. For 

example, an ultrasonic sensor might give false readings if obstructed by debris, or a moisture 

sensor might fail to respond accurately if embedded in compacted soil. Moreover, data 

transmission delays or losses—especially when using wireless communication and cloud 

platforms like ThingSpeak can lead to time lags or gaps in the data stream, which in turn affect 

the real-time responsiveness of the system. These limitations, if not accounted for, can reduce 

the accuracy and reliability of the landslide prediction model, particularly in dynamic and 

unpredictable environments. Therefore, while the system is robust in a lab context, 

acknowledging these potential real-world limitations is important for future improvements and 

deployment. 
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CHAPTER 4 

 

A SEMANTIC SEGMENTATION FRAMEWORK WITH U-

NET-PYRAMID FOR LANDSLIDE PREDICTION USING 

REMOTE SENSING DATA 

 

4.1 INTRODUCTION  

Landslides are frequent natural events triggered by several factors, including earthquakes, 

heavy rains, river erosion, the cutting of slopes for the construction and activity of groundwater 

induced by natural and human water [94][95]. Due to climate change, the increase in 

urbanization and increased seismic activity, the frequency of landslides has constantly 

increased, which leads to long-term impacts, such as the destruction of property, infrastructure 

and loss of life [96][97]. A landslide occurs when rocks, soil and debris move downhill due to 

gravitational force. These movements can be different in speed and size, usually resulting in 

serious damage to buildings and to human security. Traditionally, landslides were detected 

through field work on the site, where experts physically examined areas prone to landslides, 

paying attention for signs like unstable slopes, cracks on the ground or past landslides remains 

[98]. Although this method was useful, it was intensive in labour, slow and limited, especially 

in areas difficult to access or remotely. With the development of geospatial technologies, the 

detection of landslides has become much more advanced. Techniques such as aerial 

photogrammetry use high resolution aerial images to create precise landscape models, allowing 

an in-depth analysis of the characteristics of the earth and the possible risks of landslides [99]. 

In addition, satellite remote sensing allows continuous supervision of large regions and 

identifies displacement in landscape that might indicate the probability of immediate landslide. 

Compared to the traditional methods, these modern technologies offer more efficient and 

accurate way of identifying areas susceptible to landslides, which improves both speed and 

accuracy of detection. 

Continuous landslide monitoring and detection is essential to reduce the risk and consequences 

of landslide on infrastructure, municipalities and the nature. Traditional landslide methods 

often rely on subjective interpretations of satellites or aerial photography. The ML algorithm 
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is trained on large remote sensing image data records, allowing to automatically identify 

samples assigned to landslide. These ML algorithms can detect important features like 

topographical changes, increase, vegetation patterns, and surface morphology. All of these can 

indicate the probability of a landslide. ML not only accelerates landslide prediction it also 

increases the reliability and accuracy of EWS [100]. This technology is necessary to reduce the 

damage caused by landslides, as it allows for proactive measures like evacuation plans, 

strengthening infrastructure and effective management of land use in high-risk areas. Due to 

the complexity of traditional methods, there is a growing demand for aim and more techniques 

which are automated to predict landslides. Many landslides occur on slopes with exposed soil 

or rock, which often have vegetation or other surface features that create complex patterns in 

optical images. Advances in remote sensing technology, in particular the enhancement of 

spectral and spatial resolution of satellite images from the platform such as the Sentinel series 

significantly improved the ability to monitor large areas susceptible to landslides in detail. 

Landslide prediction or detection techniques and algorithms can generally be classified into 

three main approaches: local field survey, machine learning algorithms and deep learning 

techniques. Local field survey means on site surveys and manual data collection, while ML 

analyzes significant quantities of geospatial images to detect trends and patterns. Deep learning 

proposes neural networks to analyze even more complex data and create very accurate 

predictions [101]. These developing technologies are the key to the detection of landslides and 

alleviate the potential risks or destruction they can pose. The field survey has been recognized 

efficiency in the prediction of landslides but faces significant challenges. These challenges 

include the risk of damage, time constraints deposited by huge areas that must be covered, high 

costs associated with sending equipment and helping teams to the affected sites, and potential 

inaccuracies when trying to attempt manually evaluate large and complex terrains. While 

manual exploration was once the main method of identifying landslides, the entering of 

geospatial technologies such as remote sensing RS and aerial images, provided new and more 

efficient forms for detecting areas susceptible to landslides. One of the key progresses is the 

use of high-resolution satellite and aerial images that have significantly improved accuracy of 

landslide prediction or detection. Satellite images are particularly valuable because they 

provide detailed spatial data that can detect essential indicators of potential activity of 

landslide. A remarkable technique used in this context is an Object-Based Image Analysis 

(OBIA) [102]. Unlike traditional pixels -based analysis, which focuses on individual pixels, 

OBIA groups pixels in significant objects based on their spectral properties (such as color and 

intensity) and spatial relations inside the image. This makes it possible to analyze not only 
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spectral characteristics, but also the context in which these pixels appear, such as their spatial 

disposition, form to other characteristics of the landscape. Combining this contextual 

information allows OBIA to identify consistent properties of land that can have geological 

properties and have vegetation density, topographic morphology, or instability. On the other 

hand, pixel-based analysis examines every single pixel based on its color or spectral properties, 

without considering the broader context or spatial relationships between adjacent pixels. This 

method is easier and works well in some scenarios, but can be problematic with more complex 

landscapes. This landscape neglects fine texture changes, spectral signatures, or transitions 

between different types of land coverings and geological layers. OBIA can counter these 

challenges with regard to the spatial composition of groups of pixels. This is especially 

effective when identifying and mapping landslides. The efficiency of OBIA in landslide 

detection has been further improved based on the availability of high-resolution satellite images 

and the building of highly developed tools and these tools can perform semi-automatic or fully 

autonomous analysis. This increases the need, speed and accuracy for manual interpretation of 

landslides. As a result, OBIA is an important part of the detection and classification. This 

means it will be effective in a comprehensive approach to monitoring and predicting landslides. 

Pixel-based models were often used to classify images and disaster surveillance, including 

landslide detection [103][104]. However, these approaches have limitations, especially when 

satellite images are processed at very high resolution. These images often create issues such as 

the "salt and pepper" effect. This effect leads to large fragmented pixels of detail [105]. This 

problem makes it difficult to accurately classify images and predict landslides, as individual 

pixels can be misclassified due to data complexity. OBIA has become a more effective 

alternative, especially when manipulating high-resolution remote-acquired images, to 

recognize the boundaries of pixel-based methods, particularly in image classification. OBIA 

changes the analysis approach of individual pixels to evaluation of shaping objects by 

summarizing pixels based on common characteristics such as texture, color, and spatial 

proximity. Segmentation plays an important role in OBIA by converting individual pixels into 

coherent image objects that represent important features of the landscape. These objects are 

identified and grouped after a combination of spectral, structural, morphological, and 

topographical characteristics. By segmenting images with critical units, OBIA improves the 

accuracy of predicting landslides and reduces false alarms. The segmentation process refers to 

the definition of factors that define the size and format of objects in an image. This can be a 

difficult task. Since the characteristics of the land features, including landslides, may vary 

significantly, often requires an iterative process where various segmentation techniques are 
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tested and refined through visual inspection to ensure that objects accurately represent 

characteristics of the real world. Once the segmentation process is completed the classification 

starts, where each object is classified according to specific criteria. To detect landslide, this 

include the manual thresholds setting for properties such as field changes, vegetation coverage 

or soil composition, which are generally associated with areas susceptible to landslides. While 

OBIA offers clear advantages over traditional pixels-based methods, it is not exempt from their 

own challenges, particularly when they are combined with machine learning models for more 

detailed applications. The characteristics of landslides can vary in the size of space and spatial 

context in different areas, making it more difficult to apply one single segmentation strategy. 

The challenge is defining the correct scale parameter to ensure that segmented objects 

accurately reflect the wide range of geological and environmental features present in the 

images. In addition, this variability means that OBIA methodologies should refine to consider 

the different analysis scales, which requires a continuous adaptation of segmentation 

techniques. The integration of OBIA with ML algorithms can help address these problems 

improving the ability to automatically classify and map landslides in different terrains. 

However, the success of this integration is largely based on improving the dependency of 

OBIA, as well as further advancement in ML models to better manage complex and multi-scale 

data that is characteristic of high-resolution satellite images. Despite these challenges, the 

combination of OBIA and ML offers a promising approach for landslide prediction. As 

advancement in OBIA methodologies and in ML algorithms, the potential for reliable and 

large-scale landslide detection will expand while providing better tools to mitigate the risk 

posed by landslides to infrastructure, communities and the environment. 

4.2 Dataset Description  

Deep Learning (DL) requires large number of labelled data to effectively understand multiple 

parameters with variations. According to research, when small, labelled training data set is 

used, it can degrade the performance of the classification, while a large training dataset is used 

DL models cannot cover all conceivable cases. To solve this problem, we used a benchmark 

dataset called Landslide4Sense, which contain study of sites that are affected by landslides 

from different regions, as shown in Figure 4.1.  
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Figure 4.1 Geographical Locations for Landslide Susceptibility Dataset Collection. 

Landslides4Sense dataset is a specialized benchmark collection created to increase the analysis 

of the landslide susceptibility by providing a comprehensive combination of terrain, slope and 

multispectral satellite data. The terrain height is a critical factor in the prediction of landslides, 

as height changes indicate areas where gravitational forces are likely to cause movement. In 

particular, steep slopes are more vulnerable to landslides, because the gravitational force acts 

more strongly on steeper tendencies, especially if the stability of the earth surface is endangered 

by external factors such as precipitation, seismic activity or human modification. The landslide 

data file includes ALOS PALSAR slope data, which provides detailed information of steepness 

of the terrain, essential for assessing the risk of landslides. This data is obtained from images 

based on radar satellite that offer high accuracy when measuring the surface slope, which 

increases understanding of areas susceptible to landslides. In addition to slope data, the dataset 

incorporates Sentinel-2 multispectral data, which includes band 1 to 12 and by combining 

information about the terrain height and slope with multispectral data, the Landslide4Sense 

dataset allows a more detailed and more accurate assessment of areas susceptible to landslides. 

The dataset is particularly valuable because it has been thoroughly marked for classification of 

landslides and non-landslide, each of which has changed to a resolution of about 10 meters per 

pixel. This high level of detail and accuracy allows efficient models and analysis of machine 

learning and helps to identify fine changes in the field that may indicate an increased risk of 

landslide. The combination of detailed height, slope and spectral data makes the 

Landslide4Sense dataset an important resource to improve the landslide detection or prediction 

and increase the reliability of early warning systems. 
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Figure 4.2 Gorkha District - Nepal. Figure 4.3 Kodagu - District of Karnataka 

  

Figure 4.4 Hualien - Taiwan. Figure 4.5 Iburi-Tobu 

This dataset includes patch images containing landslide from different global locations. This 

dataset is split into three separated sets: training, testing and validation. This structured division 

is designed to strengthen the training of DL models and provide the potential to handle large 

range of new and unseen situations, especially those that differ from the data on which the 

model was originally trained. By exposing a model to diverse geographical regions and 

conditions, the dataset helps to enhance the efficiency of the model in different terrains, 

allowing it to be better generalized when applied to new data. The training set contain the data 

from four different regions around the world: Iburi-Tobu in Hokkaido (Japan), Kodagu in 

Karnataka (India), Rasuwa in Bagmati (Nepal) and Western Taitung (Taiwan), as shown in 

Figure 4.2-Figure 4.5. These regions were selected to represent different terrains, climate and 

landslide condition. Data from these areas are used to create patches approx. 3799 of 128x128 

pixels. These image patches serve as training data for the model. In addition, this dataset 

contains verification and test set consisting 245 and 800 image patches of the same size 

(128x128 pixels). Sentinel-2 provides detailed images across different wavelength bands, from 
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SWIR, allowing analysis of multiple surface features. Landslide4Sense uses specific bands 

such as B2 is blue, B3 is green, B4 is red and B8 is almost infrared, which have a resolution 

detail of 10 meters per pixel. Other bands such as B5, B6, and B7 are vegetation red edge, B11, 

B12 are SWIR, as well as B1 is coastal aerosol, B9 is water vapor and B10 is Cirrus, have a 

different spatial distinction of 20 meters and 60 meters. These different resolutions allow for 

detailed analysis with multiple features such as vegetation, water and soil formations, all of 

which are important in the study of landslides. 

In addition, Alaska satellite facility provides a high-resolution digital elevation model that is 

derived from the ALOS PALSAR system. DEM offers detailed topographic data, which is 

essential for understanding the terrain elevation. From this DEM, a layer of slope is formed, 

which represents the steepness of the terrain. Since the DEM and the slope layer both are 

important for the landslide prediction, they are modified into a spatial resolution of 10 meters, 

which ensures consistency with other data layers. These datasets are combined in 14 different 

layers in the Landslide4Sense dataset, which are then used for training and testing of DL 

models aimed at detecting landslides and analysis of sensitivity as shown in Figure 4.6. The 

combination of high-resolution images, and information on landslide gradients using 

Landslide4Sense provides a rich multidimensional dataset. By including data from different 

regions and different spatial resolutions, this data record creates a more robust and reliable 

model for predicting or detecting landslides that can be used at a global level. 

i. Band 1 Sentinel-2: Blue spectral band data. 

ii. Band 2 Sentinel-2: Green spectral band data. 

iii. Band 3 Sentinel-2: Red spectral band data.  

iv. Band 4 Sentinel-2: Near Infrared (NIR) spectral band data.  

v. Band 5 Sentinel-2: Shortwave Infrared (SWIR) spectral band data.  

vi. Band 6 Sentinel-2: Shortwave Infrared (SWIR) spectral band data. 

vii. Band 7 Sentinel-2: Shortwave Infrared (SWIR) spectral band data. 

viii. Band 8 Sentinel-2: NIR spectral band data.  

ix. Band 9 Sentinel-2: Water Vapour (WV) spectral band data. 

x. Band 10 Sentinel-2: Cirrus (CI) spectral band data.  

xi. Band 11 Sentinel-2: SWIR spectral band data.  

xii. Band 12 Sentinel-2: SWIR spectral band data. 

xiii. DEM - Digital Elevation Model: Elevation information data. 
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xiv. Slope: Slope information.  

 

Figure 4.6 Visualize every unique layer inside the 128x128 window-size patches of the generated landslide 

dataset. The first 12 bands shows multi-spectral data from Sentinel-2, bands 13 and 14 shows DEM data and 

slope from ALOS PALSAR. 

This dataset contains test, train and validation subsets, the subset which contain train data is 

collected from four different landslide-susceptible region. Table 1 provides an extensive 

description of this dataset consisting complete attribute description about data. 

TABLE 4.1: Comprehensive Description of the Landslide4Sense Dataset 

Sr. No. Attributes Description of Attributes 

1. Name of Dataset  Landslide4Sense 

2. Total Samples Training sample-3799, Testing sample- 800, Validation sample- 245 

3. Response Variable No landslide - 0, Landslide - 1 

4. Source of Data Landslide detection using multi-sensors  

5. Geographic Regions Rasuwa district, Kodagu district, Iburi-Tobu area, and western 

Taitung Country 

6. Pre-processing Normalization, Empty values Removal 
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7. Types of Features Topographic, Meteorological, Geological, Geotechnical 

8. Data Format In CSV format 

9. Feature resolution Temporal and spatial measurements at specific locations 

The dataset used in this study is well-structured and diverse, comprising image patches of 

landslides from four geographically distinct regions—Japan, India, Nepal, and Taiwan—which 

strengthens the model’s capacity to generalize across different terrains and climatic conditions. 

However, the data collection process presents several limitations that affect the model’s overall 

robustness and applicability. The geographical scope of the dataset, although varied, excludes 

many global terrains with unique geological and environmental characteristics. This lack of 

coverage limits the model's exposure to critical landslide types found in arid regions, 

mountainous rockslide zones, or coastal slopes. Expanding the dataset to include satellite 

imagery from additional regions addresses this limitation by improving terrain diversity and 

increasing the model's generalization capabilities. 

Another limitation involves inconsistencies in spatial resolution among the Sentinel-2 image 

bands. With bands captured at 10 m, 20 m, and 60 m per pixel, the variation introduces spatial 

imbalance, making it difficult to uniformly detect smaller or more subtle landslide features. 

Standardizing all bands through image resampling to a common resolution, such as 10 m, 

ensures uniformity in data input. Additionally, implementing multiscale feature extraction 

techniques in deep learning models allows the integration of spatial details from different 

resolutions without compromising accuracy. Temporal and seasonal bias also affects dataset 

reliability. Images concentrated within a specific season or climate condition restrict the 

model's adaptability to changes in vegetation, lighting, and weather. Including multi-seasonal 

and multi-temporal satellite data enhances variability in the training process, ensuring the 

model performs consistently across different time frames and environmental settings. The 

patch generation process further introduces the risk of class imbalance, with uneven 

representation between landslide and non-landslide samples. This imbalance skews the 

model’s learning process and reduces prediction accuracy. Applying data augmentation 

techniques such as flipping, rotating, scaling, and contrast adjustments expands the sample set 

and balances class representation. Incorporating synthetic data generation and implementing 

stratified sampling also ensures equitable distribution of classes during training. Addressing 

these limitations strengthens the model’s reliability, increases prediction accuracy, and 

supports more effective application in real-world landslide detection scenarios. 
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4.3 Methodology 

In this work, we developed a hybrid deep learning model to improve the accuracy of landslide 

forecasting models.  

Landslides have serious threat for infrastructure and human lives highlighting the need for 

reliable and accurate models for prediction. Traditional approaches usually found it difficult to 

extract detailed space information from the satellite images, which motivates to explore more 

advanced techniques. Our approach takes advantage of the UNet model, a well-established 

model known for its accuracy in semantic segmentation performance. By integrating a pyramid 

grouping layer, our goal is to improve the capacity of the model to capture multiple scale 

characteristics, improving its performance in variables spatial resolutions. This approach aims 

to address the challenges related to landslide detection which offer a stronger solution for 

evaluating landslide susceptibility. The UNet design is appropriate for tasks that demand 

accurate segmentation of spatial characteristics like landslide detection. However, to further 

improve the model, we integrate the layers of pyramid groups. This layer adds several scales 

to the model, allowing the model to process information about various spatial resolutions. This 

way can get a sense of the fine grains and the broader landscape features that are essential for 

accurate landslide detection. The ability to analyze several scales ensures that the model is able 

to recognize equations that indicate the risk of landslides. This treatment at multiple scales 

improves the general performance of the model and helps to adapt to a variety of topographical 

conditions and soil cover types. This technique enables the model to better understand the 

correlation between different image segments. This is necessary to recognize complex patterns 

associated with landslide sensitivity. 

OBIA improves the ability of model to identify features like variation in terrain height, 

vegetation density and soil texture, which are the key risk indicators of landslide. By combining 

deep learning with OBIA, we strive to increase the accuracy and reliability of landslides 

detection, especially in areas where traditional methods like pixel-based method struggle to 

capture simple on small variations in the landscape. 
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Figure 4.7 Approaches for mapping Geographical Feature with Rule-Based and Data-Driven models. 

Landslide4Sense dataset is used to train and evaluate this hybrid models. Additionally, 

preprocessing procedures like normalization and noise reduction are used to ensure that the 

data in model training is consistently optimized. Additionally, data augmentation methods are 

used to increase the diversity of dataset. This will help the model to better generalize landslides 

in areas that were not seen during training. The purpose of this study is to improve landslide 

capabilities and convey valuable knowledge that can be useful for active disaster management 

and reduction strategies in landslide-sensitive areas. 

4.3.1 Fully Convolutional Networks (FCNs) 

FCN is a DL architecture that deals with the training closure challenges that usually arise when 

an additional layer of folding is added to increase model complexity [106]. This breakdown 

prevents functional networking functions of various shapes and sizes. FCN overcomes this 

restriction by replacing fully connected layers traditionally found in neural networks with 

convolutional layers and upsampling layers. This design causes FCN to be particularly suitable 

for tasks that require image mapping on image, such as landslides, where the output is also an 

image rather than a single label or classification. FCN is able to process input images of 

different sizes, allowing them to process image patches of any size and are therefore 

customized by different image resolution. The key feature of FCN is its ability to extract global 

and local contextual features through the skip mechanism between lower sampling and 
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upsampling layers [107]. Skipping the connection helps to maintain important information 

from the middle layers and pass it directly to the upsampling layers, allowing the network to 

create more accurate and detailed segmentation [108]. This is particularly important for 

complex tasks, such as detection of landslides, where there is need to keep fine field details for 

precise prediction. It also ensures that the model can maintain semantic features of high levels 

and low-level spatial features, which are essential for understanding complex landscape details 

that may indicate the risks of landslide. Among the different FCN models, UNet has shown 

that it is particularly effective for image segmentation tasks, especially if the training data is 

limited. This characteristic makes the UNet an ideal model for prediction of landslides, as it 

can often be demanding. UNet architecture with a combination of contractual and expanding 

routes allows the model to learn and produce accurate segmentation maps, although only a 

small number of training patches are provided. This is an important advantage in the prediction 

of landslide, where the marked data sets are obtaining sufficient training data which can be 

time-consuming and costly. UNet ability to generate accurate predictions with minimal data 

makes it a powerful tool for detecting landslides and other applications where there is limitation 

of training data. By using the strengths of convolution and upsampling layers, FCN can 

effectively process and segment complex landscapes and identify the features of terrain 

indicating the landslide risks [109]. The flexibility for handling various image resolution and 

image sizes along with efficient use of skip connection to maintain global and local features, 

makes FCN an ideal choice for this prediction task.  

4.3.2 Swin Transformer  

Swin Transformer is a specialized type of transformer vision that increases the efficiency and 

effectiveness of image processing in computer vision [110][111]. Unlike traditional 

transformers, which consider the image to be a sequence of non-overlapping patches and apply 

self-attention in all of them, the transformer receives a more structured approach. It divides the 

image into smaller, non-overlapping local region known as Self -attention window mechanism 

is applied only in each individual window. This localized approach significantly reduces 

computing complexity compared to the traditional method that would require computing 

attention throughout the image at once. By focusing on smaller areas, the swin transformer 

minimizes the computation number while still capturing all important local features. As a 

result, for the processing of large images it is highly efficient and implementing complex image 

recognition tasks. The factors that really distinguishes the swin transformer from traditional 
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models is the use of a shifted window where the windows move between different network 

layers [112]. This shift allows the model to collect both global and local patterns, local patterns 

in individual windows and global interactions between different regions of image. By moving 

the windows in each layer, the model gets a wider view of the image structure, allowing it to 

understand how different parts of the image are related. As the network deepens, the size of the 

windows increases, allowing the model to look at most of the image and capture the abstract 

features of a higher level. This hierarchical approach with the gradually growing window size 

allows the swin transformer to balance computing efficiency with the ability to capture 

complex features throughout the image.  

4.3.3 Object Based Image Analysis  

This approach focuses on grouping adjacent pixels in regions prior to classification, providing 

a more structured method for analyzing high-resolution satellite images. Particularly useful for 

remote sensing, this technology enables automated image analysis by describing image content 

based on specific object functions. One of the most important strengths of this method is its 

ability to combine spectral, structural, and spatial/context-related properties that allow pixels 

to group pixels with uniform and meaningful objects. In contrast to pixel-based methods that 

handle each pixel individually, this object-based approach enables objects that can be linked to 

real entities. The use of object-based image analysis (OBIA) for landslides was well established 

in previous studies. Previous research has shown how OBIA can be repeatedly applied to 

satellite images to create historical landslides and recognize landslides in various regions. 

OBIA was also used to modify landslides. One of the main advantages of OBIA compared to 

traditional pixel-based approaches is its ability to classify complex geospatial objects with large 

differences in size, shape and spectral properties. Landslides usually have other natural 

features, such as spectral characteristics similar to those that have been altered by people and 

agricultural areas etc. OBIA's ability to tackle this complexity and distinguish similarly visible 

features is particularly effective when OBIA is aware of landslides. In comparison, pixel-based 

approaches focus on individual pixels without considering the broader context that makes it 

difficult to classify such complex objects. In OBIA, two important principles control the 

analysis: segmentation and classification. Segmentation divides an image into smaller, 

meaningful objects based on spectrum, structure, and spatial properties. As soon as these 

objects are segmented, they are categorized based on specific features derived from them to 

allow for more detailed detection of landslides. For example, OBIA is effective at a spatial 
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resolution of 10 meters, with a minimum object size for identification being approximately 100 

pixels. This provides a good approach to data analysis with medium resolution and substantial 

landslides. OBIA works on predicting landslides by dividing remote sensing imagery into 

small, meaningful objects, each one being a distinct feature of the landscape. For example, 

areas with steep areas, less coverage of vegetation, or the recent obstacles in that location can 

be identified as zones with high-risk zones for potential landslides. This is important because 

it grouped into more uniform areas, reducing noise and improving the model's ability to 

concentrate on wise characteristics related to landslides. OBIA's segmentation process 

typically uses an algorithm that groups adjacent pixels based on spectrum and spatial similarity. 

This step follows a classification in which segmented objects are assigned a specific name, 

such as "landslide" or "safety". Various criteria can be used to further improve classification. 

These classifications are often improved through the integration of additional remote sensing 

data, such as radar-based and LIDAR data, and can provide complementary information on 

surface deformations and hidden geological features that are invisible in optical images. The 

image processing is often performed in areas where there are subtle differences in fields that 

are difficult to record using pixel-based methods. For example, landslide boundaries can be 

irregular and the spectral signature of the landslide can overlap with other natural or human 

signatures. Through analysis of the entire image object rather than individual pixels, OBIA can 

take into account a wide range of contexts. Furthermore, OBIA can effectively handle 

extremely high-resolution images and recognize small landslides and their pioneers. 

Furthermore, OBIA could be improved by integrating ML techniques that allow for more 

sophisticated and adaptive classification. ML algorithms can be trained on large datasets with 

marked remote sensing images to automatically learn landslide distinction capabilities. These 

models are capable to apply learning patterns to new invisible images, improving landslide 

accuracy and robustness over time. This approach is particularly useful for monitoring large, 

or inaccessible areas where manual field inspections are time consuming and expensive. 

Further, recognizing limitations on pixel-based approaches, particularly for image 

classification, has gained the increased importance of OBIA (object-based image analysis). 

This is especially clear when considering high spatial resolution and very high resolution 

(VHR) remote recording data, as it can overcome the limitations of analysis per pixel. For 

satellite image processing, OBIA provides clear image analysis, for example, where focusing 

on the analysis of segmented image objects is instead of individual pixel values. This method 

allows for structured inspection of characteristics and events. One of Obia's core elements is 

segmentation that takes into account the spectral, structural, morphological, and topographical 
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properties of individual pixels and transforms them into objects [113]. This change reduces the 

frequency of false positive aspects and increases the accuracy of landslides. Segmentation and 

classification are usually two main steps in the OBIA method for landslide recognition. 

Determining criteria that indicate the size and shape of elements in one image makes 

segmentation a particularly difficult operation. To ensure that the final object is properly 

displayed by important landscape elements, this level requires an iterative process in which 

various segmentation techniques are evaluated and improved based on visual assessments. 

After segmentation, segmented objects are classified using criteria specified in the 

classification stage [114]. This classification is based on determining the different criteria's for 

landslide detection based on geological properties, changes in system coverage, field 

differences, or instability [115]. OBIA offers a variety of advantages over traditional pixel-

based methods, integration into machine learning models (ML) poses the challenges of more 

complex applications. To find ideal scale parameters for examining factors related to 

geographical characteristics such as landslides is a major challenge. Satellite image landslides 

are very different and it is difficult to use a consistent segmentation approach to various criteria. 

This variability underscores the need for continuous improvement of the OBIA method and 

integration into ML algorithms to improve the accuracy of landslide detection and mapping in 

various environmental contexts. 

4.3.4 Image Segmentation  

Image segmentation is a critical component of OBIA. It is intended to define the basic unit or 

object of an image and is later analyzed in classification and interpretation [116][117]. OBIA's 

effectiveness in landslide prediction depends heavily on the quality of the segmentation 

process, as it directly affects how landscape features are identified. In segmentation, the goal 

is to group adjacent pixels into coherent segments based on similarity in spectral, spatial and 

context properties. These segments exceed individual pixel values by including additional 

statistics such as the mean, median, standard deviation, and range of values for each image 

[118]. This additional information layer makes segmentation more meaningful compared to 

pixel-based analysis, as it captures wider patterns within the image and identifies larger 

relevant features that show landslides. 

Segmentation technology developed in the 1980s as part of a wider field of image processing 

and computer vision. Several algorithms have been developed for the processing of remote 
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sensing data [119]. These techniques often focus on adding spatial context information to 

traditional segmentation methods and improving the ability to segment characteristics based 

on their relationship to surrounding pixels. Methods frequently used for segmentation include 

regional algorithms, Markov models, surface catchments, hierarchical algorithms, and 

clustering techniques such as K-means. Each of these approaches has strengths in different 

contexts, but they all aim to group pixels into meaningful objects. This can be analyzed with 

specific features related to landslide detection, such as changes in topography, vegetation, or 

soil condition. One of the biggest challenges in segmentation is to deal with objects of different 

sizes in the same image, especially when applied to remote sensing data for landslide 

prediction. 

Traditional segmentation methods sometimes struggle to determine subtle changes in smaller 

areas of landslides or wide areas affected by landslides. To overcome this challenge, a 

segmentation approach using several resolutions, such as regional merge technology, has been 

developed. This method adapts to different object sizes by merging smaller segments into 

larger ones, so that the segmentation process can recognize both fine and larger properties. 

Additional trigger segmentation ensures that objects representing landslides are accurately 

separated regardless of size. This is particularly important for landslide detection, and both 

small landslides need to be identified. When predicting landslides, effective segmentation is 

extremely important for extracting meaningful properties from remote sensing images that can 

display potential landslides. Furthermore, by segmentation [120], it allows for the integration 

of various data types, such as digital height models (DEMs) and multi-level images. By 

focusing on coherent image objects rather than individual pixels, segmentation allows for a 

more holistic view of the landscape, allowing for a more accurate assessment of landslide 

sensitivity. Therefore, segmentation plays an important role in improving the reliability and 

accuracy of landslide prediction or detection models using remotely acquired images. 

4.3.5 UNet 

UNet was originally developed for biomedical image segmentation, but later spread to different 

type of image segmentations, and landslide prediction or detection. Its effectiveness is based 

on a distinctive U-shaped architecture consisting of two units: an encoder and a decoder [121]. 

This architecture, shown in this distinctive "u" shaped, allows UNet to perform segmentation 

tasks efficiently. Additionally, the identification and classification of areas within the image is 
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ideally shown, as illustrated in Figure 4.8. The encoder and decoder structure is combined by 

skip connections to improve the important role of the transmission of key information between 

the two components and the model's capabilities and provide accurate predictions [122]. The 

context information is extracted from the input image using the UNet encoder component. This 

section consists of foldable layers, followed by a maximum pooling layer that reduces the 

spatial dimensions of the functional card and extracts from the image. By stopping data, 

maximum pooling aids the network with its most important properties, but the folding layer 

allows the model to identify different patterns and structures within the image. This helps to 

collect more comprehensive context-related data using the models needed to understand 

complex spatial connections that define properties such as landslides. The encoder 

downsampling process compresses and promotes the model to recognize and understand large 

properties and patterns [123].  

 

Figure 4.8 The Implemented U-Net: A Deep Learning Image Segmentation Model. 

Skip connections are a key innovation in the UNet architecture. these connections link the 

corresponding levels of the encoder and decoder components, allowing important spatial 

information to be handed over directly between the two components. In this way, the decoder 

can effectively reconstruct the detailed segmentation by incorporating high resolution 

information from the encoder. The decoder uses upsampling values to increase the size of the 



90  

feature, while simultaneously reducing the number of channels, effectively reconstructing the 

image at a higher resolution. The folding layer in the decoder improves the segmentation and 

improves the accuracy of the final problem. This allows UNet to generate accurate predictions 

at the pixel level, allowing the gradual sampling and improvement process to clearly 

distinguish between landslides and unaffected areas. During the output phase, UNet creates a 

segmentation that assigns a probability value to each pixel. This shows the possibility of a 

particular class, how it belongs to a landslide. This allows for detailed analysis of the entire 

image and allows for the identification of specific areas of risk. It is a powerful tool in the areas 

of landslides and other applications for environmental monitoring, providing high accuracy 

and valuable insights for disaster risk management [124]. 

Image segmentation is the method of segmenting an image N: α → Q into multiple regions 

αji

Q = 1, meeting requirements that don't overlap αi ∩ αj = φ, j ≠ i and encompassing the 

whole image domain Kj=1
Q αj=α, here α is image domain represented by the limited and open 

subset of Q2. 

In image processing, the first step is to optimize a probabilistic posterior distribution in order 

to extract features from the image µ. By attempting to generate feature representations for a 

particular envision k, this process enables a more in-depth analysis and understanding of the 

content of image.  

arg max
μ

 p(μ ∣ g; δ) = arg max
μ

 log p(μ ∣ g; δ) =

arg max
μ

 log 
q(f∣μ;δ)q(μ;δ)

p(f)
=

arg max
μ

 log q(g ∣ μ; δ)q(μ; δ)

                                                   (4.1) 

The environmental factor is identified as being in terms of traditional unconscious inference. 

The prior probability p(μ;δ) may be well-modeled by the probability q(g ∣ μ;δ) and normal 

distributions. In particular, we have  

q(g ∣ μ; δ) ∝ e
−

1

2γ2 ∫  
α

(kμ−g)2

bα = e−ρ ∫  
α

(kμ−)2
bα, q(μ; δ) ∝

e−ρ ∫  α φ(∇μ)bα
                         (4.2) 

Therefore, the first step is to find a smooth approximation µ and decrease the multiphase 

generalizability. The following is a reformed version of this optimization problem: 
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min
μ∈s1,2(α)

 ∫  
α

(f − Dμ)2dy + ∫  
α

φ(∇μ)dy            (4.3) 

here µ is associated with function space (g − Bμ)2 where B stands for blur operator, f for the 

provided picture, and φ for a geometric expression that uses the gradient µ. The trade-off 

between approximation smoothness to the original picture is controlled by the parameter µ. 

Finding the ideal µ that strikes a balance between these variables is the goal in order to produce 

a reliable and accurate solution for the picture segmentation problem. 

In this case, B: GC → G is a blur operator, and (φ(∇μ) = u|∇μ|2 + |∇μ| represents the 

geometric prior of µ. Additionally, we have µ = λγ. Consequently, this method produces the 

nonlinear system that is given by: 

                                          F(μ; δ) = DTDμ − τ∇(φ(∇μ)) = b             (4.4) 

where a = DTf and δ = (D, ∇, τ, u) all included in the parameter δ. In image segmentation 

tasks, this nonlinear system is essential, and its successful solution yields precise and 

significant predictions. Our suggested design is divided into two primary components from the 

variational segmentation model: the feature integration module UT(μ: ∅2) and the solution 

module LT(g: ∅1)  In the multi-stage example, extracting feature is handled by the solution 

module LT(g: ∅1)), whereas stage fusion is handled by the learnable feature fusion module 

UT(μ: ∅2). In this study, we provide UNet, a novel framework for explainable landslide 

prediction on images, using a nonlinear multigrid approach. The two modules function in this 

way: 

μ = LT(g: ∅1)               (4.5) 

q = UT(g: ∅2)               (4.6) 

Here, f stands for the input landslide picture, q for the truth partition prediction, and f for the 

feature map. These modules work together to provide the total approximation function: 

    q = 𝑃(LT(g; ∅1); ∅2)              (4.7) 
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The parameters ∅1 and ∅2 in our suggested explainable UNet architecture must be learnt during 

the training phase to better understand the capabilities of the UNet-generated modules 

LT(g: ∅1) and  pT(μ: ∅2). 

The UNet architecture and folding training techniques of neural networks have been thoroughly 

explained in various studies [125][128]. In this study, a fully convolutional neuronal network 

was constructed on an object basis for each pixel probability. In contrast to [125][126], they 

used traditional CNNs to classify landslides [129]. Based on previous research, we also propose 

a pyramid pooling layer, which can be seen in Figure 4.9. Empirically, this layer is the priority 

of the appropriate global context as being an important factor that influences the amount of 

contextual information used in deep neuronal networks is the coverage area. By collecting data 

at several scales, the pyramid pooling layer included in the architecture of system strategically 

enhance the benefits of context. A more comprehensive understanding of input data improves 

the system's ability to identify and predict complex patterns of landslides by this stepwise 

aggregation of context-related factors. 

 

Figure 4.9 Visualizing UNet-Pyramid Layer Model for Multi-Scale Feature Extraction. 

The UNet-Pyramid layer model is an extended and advanced variation of the traditional UNet 

architecture and was developed to improve the distinctive extraction and multi multi-scale 

information from the input image, making it more effective for tasks such as detection of 

landslides in remote sensing images. The most important innovation in this model is the 

addition of a pyramid pooling layer integrated into the contractual way of the network. These 

pyramid pooling layers allow the model to record information on several scales. This is very 

important for identifying objects or areas of different sizes and structures, such as landslides. 
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The encoder portion of the model focuses on low-level characteristics from images like edges, 

textures, simple patterns, and decoders are commissioned to record representations at a higher 

level, such as contract path of the UNet-Pyramid model includes several folding blocks, each 

consisting of 3x3 convolutions, increasingly extracting properties from the image. These 

blocks follow the SoftMax activation function that helps normalize the results, play 2x2 filters 

and feature cards, and use layers of maximum pooling layers in two steps that reduce spatial 

dimensions [130][131]. Pyramid pooling allows the model to capture multi-scale context-

related information which improves the ability of the model to recognize objects of different 

sizes in the image. Each folding block in the contract path doubles the number of features and 

enhances the model's ability to understand abstract and high-level characteristics. In this way, 

networks not only capture fine details at a lower level, but also collect a higher level of broader 

contextual information, essential for accurate segmentation of complex objects such as 

landslides. Images are processed through pyramid pooling layers, so the network can extract 

features from different spatial resolutions, which better distinguish between landslides and 

other regions with similar textures or structures. This distinctive feature extraction is 

particularly useful for landslide detection. This can significantly change the characteristics of 

local sites, and models must accurately record both topographical features and large-scale 

details in order to make accurate predictions. 

Given the feature map N, the element in n is represented by the notation Ya,b,c, where a, b, and 

c stand for the indexed channel, row, and column, respectively. Whereas, the convolution 

process is as follows: In the convolution kernel K for the element Ka,b,c, a and b are the channels 

of the last slice (a) and the current slice (b), respectively, and c is the offset between two items. 

Na,b,c
′ =

{Na,b,c + n (∑  m ∑  P N
a,b−1,c+P−1×Lm,a,P

′
′ )

             (4.8) 

N is an activation function Softmax. Thus, through the convolution layers, the significance data 

from the feature map is transferred to the bottom segment of the feature map. An inverted 

version of the contracting path is the expanding path in the UNet-Pyramid layer model. To up 

sample and integrate the features with the matching output of the encoder block at the same 

level, it uses convolutional-transpose layers. Each decoder block results in a halving of the 

feature map's number. 
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∀nε [1,2, … , pQ
[l]

]

Conv (c[l−1], L[n])
x,y

= Ψ[l] ∑  
np

[1−1]

i=1
∑  

[l−1]
j=1

∑  
nQ

[−1]

k=1
Ki,j,k

[n]
ax+i−1,y+j−1,k

[l−1]
+ bn

[l]

                        (4.9) 

Dim (conv(a[l−1], K[p])) = (nT
[l]

, nR
[l]

) 

a[l] = [Ψ[l](Conv(c[l−1], L[1])), Ψ[l](c[l−1], L[2]), … . , Ψ[l]

Conv (c[l−1], L [l4
[1]

])))

Dim (a[1]) = (nT
[l]

, nR
[l]

, nQ
[l]

)

          (4.10) 

Where,                                                    

nT

R

[l]
= [

nT
[l−1]

+2p[l]−f[l]

sl] + 1] ; s > 0 =

nT
R

[l−1]
+2pp[l]−f[l]

1
; s = 0, nQ

[l]
= Filters count. 

                      (4.11) 

 Where = 𝑐[𝑙−1] is input (nT
[l−1]

, nR
[l−1]

, nQ
[l−1]

)  is size of the input and filters nQ
[l]

, p[l] and 

s[l] are the stride and padding values, nQ
[i]

 is the filter, where K(n) has dimension 

(f [l], f [l], fQ
[l−1]

) , bn
[l]

 is the nth convolutions bias, Ψ[l] the activation function and finally a[l] is 

the output of this layer with size (nT
[l]

, nR
[l]

, nQ
[l]

). 

The 26 convolutional layers of the UNet-Pyramid layer model include 22 convolutional layers, 

4 convolutional transpose layers, and additional pyramid pooling layers for gathering multi-

scale data. Accurate and thorough segmentation results are produced by this architecture's 

ability to gather contextual information at various sizes effectively and efficiently [132]. 

ci,i,k
[]]

= pool (c[l−1])
i,j,k

= ϕ[l] ((ci+x−1,j+y−1,k)
[l−1]

))
(x,y)ε[1,2,…,…,g[l]]

2

                                          (4.12) 
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pT
R

[l]
= [

pT
[l−1]

+ 2q[l] − g[l]

t[l]
+ 1] ; t > 0

= pT
R

[l−1]
+ 2p[l] − g[l]; t > 0

pk
[l]

= pk
[l−1]

 

Where, c[l−1] is the input with size = (pT
[l−1]

, pR
[l−1]

, p) , q[l] and t[l] are the padding and stride 

value, ϕ[1] is the pooling function which 𝑔[𝑙] filter size. The a[l] with (pT
[l]

, pR
[l]

, p0
[l]

) gives the 

output of pyramid pooling layer. We introduced the Binary cross-entropy loss function as the 

model’s output contain multiple neurons. Loss = -1/N * Summation of [Ground truth label * 

log (Predicted probability) + (1 - Ground truth label) * log (1 - Predicted probability)] 

 

L = −
1

p
∑  

p
i−1 {∑  L+1

j−1 [xijlog (xij
ĵ

) + (1 − xij)log (1 − xij
N̂)]

+β ∗ Qi}
                          (4.13) 

Qi =
1

L
∑  L+1

k−1 xik [xik
k̂ + μ − ∑  L+1

j−1 (xijxij
ĵ

)]                                      (4.14) 

ALGORITHM 4.1: ALGORITHM FOR FEATURE EXTRACTION USING PYRAMID POOLING                                

LAYER 

function pyramid_pooling_layer(input_feature_map, pool_sizes) 

 Input_feature_map: a 3D tensor of shape (height, width, channels) 

 pool_sizes: a list of integers specifying the pool sizes to use pooled_features = [] 

  for pool_sizeinpool_sizes do 

   height = ⌈ input_feature map.height / pool_size ⌉ 

   width = ⌈ input_feature map.width / pool_size ⌉ 

   pooled_feature_mapmax_pooling 

  (input_feature_map, pool_size, pool_size) resized_pooled_feature_map= 

  resize (pooled_feature_map, height, width) pooled_feature_vector= 

  flatten(resized_pooled_feature_map) pooled_features.append(pooled_feature_vector)  

  concatenate (pooled_features, axis=channel_axis) 

  return feature vector 

end function 
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p is the batch size, while µ is a number between 0 and 1. The label for the ith pair of pixel is 𝑥𝑖
∧. 

𝑄𝑖
′𝑠 is a regularization term to ensure classification accuracy, and 𝑥𝑖

∧ is the expected value of 

the ith pair of pixels. The weight coefficient is denoted by β. Deconvolutional layer, or 

convolutional-transpose layer: 

Convolutional-transpose operation:  

x = sigma (U * y + c) here,  

x is output of feature map; sigma is an activation function, U is convolutional-transpose filter 

which is learnable, y is the input of feature map and c is bias term. 

By using convolutional layers of 3x3 and as sliding windows here Softmax activation function 

is used, the UNet-Pyramid layer model scans the input picture and reduces spatial dimensions 

by half. In the UNet-Pyramid model, like in the traditional UNet model, the decoder route uses 

up-convolution layers and concatenates feature map from the appropriate locations in the 

encoder step to extract the spatial position. 

zp
[i]

= ∑  
n(i−1)

l=1
wp,l

[i]
al

[i−1]
+ bp

[i]
                          (4.15) 

ap
[i]

= Ψ[i] (zp
[i]

)             (4.16) 

a[i-1] input is convolution layer and pooling layer result with the dimension 

(pT
[i−1]

, pR
[i−1]

, pQ
[i−1]

). In order to plug it into the fully connected layer: 

 pi−1 = pT
[i−1]

× pR
[i−1]

× pQ
[i−1]

                        (4.17) 

To effectively include the comprehensive information from the grid and account for encoded 

characteristics, the UNet is utilized for landslide prediction. This is accomplished by 

interpolating the coarse grid changes back to the fine grid: 

v∧ ← vi + ki+1
i vi+1 − ki

i+1v∧                                             (4.18) 

where the interpolation function Li+1
i  is approximated by the learnable upsampling operation 

ki+1 
i For this, we specifically employ a transposed convolution with p filters and a stride of 2. 
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Here, we have L-grid cycles with i = 1,..., i-1. We compensate for the information in the feature 

maps V∧, by updating the fine grid approximation V∧, using this transposed convolution. In 

order to recover features with more precise information, the transposed convolution develops 

an adaptive mapping.  

These feature extraction parameters, which are expressed as follows, are learnt to approximate 

the feature solution: 

∅1 = ki+1
i , ki

i+1, (kq,i), (kq,i,j
′ )

jq=1

kq
, ki=1

l−1, k0, (kn,1), (kn,i,j
′ )

j=1

kn

∣ q ∈ {i, r}
                          (4.19) 

Our UNet model for landslide prediction improves the image segmentation quality by fine-

tuning these feature extraction parameters, which enables it to efficiently extract and use 

pertinent spatial information in the input images. The accuracy of landslide segmentation can 

be greatly impacted by the patch size selection in the UNet model, particularly when combined 

with a pyramid layer. Choosing the wrong patch size might result in segmentations that are 

insufficient or erroneous since landslides can take on a variety of forms and sizes. 

Then, the features Pj,1
n  three characteristics, including the distortion feature, are concatenated 

by the decoder. Pj
q
 the encoder’s down-sampling block’s feature Pj,c

T  , and transposed 

convolution features in primary decoder. It is possible to formulate the procedure. where 

transposed convolution is represented by j ≥ 2 Deconv. Large amounts of edge information are 

stored in the edge decoder features, which are used as reference features. Additionally, before 

joining the other blocks, a subpixel convolution layer is applied to the up-sampling block of 

the main decoder. We used a convolutional layer for upsampling. Three residual blocks, as 

seen in Figure 4.10, are connected after the convolutional layer to acquire additional high-

frequency data or specifics. The careful selection of patch size is vital not only for capturing 

landslide features but also for ensuring the model’s overall efficiency and effectiveness. If the 

patch size is too small, the model may fail to capture enough contextual information about the 

surrounding landscape, which is essential for distinguishing between landslide and non-

landslide areas. Small patches can separate important landscape features such as topographic 

variation and vegetation coverage, which are key indicators of landslide sensitivity. 

P1,1
n =  Concat. (P1

T, Pa,b
t , Decov (Pc,b

t ))                             (4.20) 
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Pj,1
n = Concat. (Pj

T, P(a,j),b
t , Decov (P(j−1),b

n ))           (4.21) 

 

Figure 4.10 Detailed Architecture of Residual Blocks in U-Net for Enhanced Image Segmentation. 

In this scenario, the segmentation edition may be fragmented or incomplete and lack critical 

areas of landslides. Conversely, excessively large patches can lead to out-of-focus predictions, 

as they can include areas with little or no relevance to the following landslides with different 

background area. These unrelated areas can mask the landslide, making it difficult for the 

model to learn the exact patterns and loses the accuracy of the model. Furthermore, large 

patches can bring complexity by combining several types of land cover into a single patch. The 

models can be confused when trying to distinguish between landslides and other land forms. 

Another challenge that arises when choosing a patch size is the problem of lightweight weight 

in the class. In many remote sensing records, the number of (negative) pixels does not govern 

the importance of the number of landslides (positive) (negative). This inherent imbalance can 

lead to skewed models to predict non-regional regions. Using large patches can further increase 

the number of pixels in the negative class, which could further increase this distortion. As a 

result, the model may be difficult to properly identify landslides. Landslides are less common 

and can often be used as small areas in larger non-regional areas. This imbalance can lead to 

low sensitivity (the ability to correctly identify landslides) and high false negative rates 

(misclassifying landslides as non-national slides). To improve this, choosing a patch size that 

balances negative and positive samples is key to improving model output. An important feature 

of FCN is its ability to extract both global and local context characteristics via a skip connection 

mechanism between the downsampling and upsampling layers, as shown in Figure 4.11. 

Furthermore, techniques such as oversampling positive instances during training and including 

subscene or class weights of negative instances can help reduce imbalance and ensure that the 

model captures landslides more accurately. 
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Figure. 4.11. Architecture with Upsampling, Downsampling, and Coordinate Attention for Enhanced Image 

Segmentation. 

Furthermore, implementation of UNet models using pyramid layers provides an effective way 

to solve problems related to class patch size and imbalances. The pyramid pooling layer allows 

the model to capture multi-scale information, and recognize landslides by a variety of criteria, 

regardless of whether they are large, small or fragmented. These layers improve the ability of 

model to aggregate features from different resolutions so that it can handle a wide range of 

landslides within the same image. However, the patch size must be selected so that the pyramid 

pooling layer selects the multi-scale feature to capture matches. The patch is too large, which 

results in pyramid layers that concentrate on unrelated background information, but patches 

that are too small may not provide enough information to extract multispectral features. For 

searching for the optimal patch size, UNet models with pyramid layers can significantly 

improve landslide accuracy by effectively harmonizing large and small characteristics, while 

simultaneously minimizing class imbalances, this approach allows to better equip models to 

address a variety of land types and accurately predict landslides. Choosing the right patch size 

not only ensures that the model is capable of recording sufficient information, but it is also a 

key factor in ensuring that the model is equipped to take into account the complexity of remote 

sensing data. By experimenting with different patch sizes and involving strategies for 

connecting with classes, the model can be learned more effectively, leading to more accurate 

and reliable landslides. For pyramid feature maps and final prediction V∧ is, calculated as: 

f ∧ = ∑  m n(ki(Ki)) ⋅ SoftMax (q(ai(Ki)))              (4.22) 

The multilayer prediction and attention layers are denoted by the functions ki and ai; both are 

implemented as straightforward 1×1 convolutional layers. In terms of landslide prediction 

implementing the UNet model, the selection of restriction and interpolation operator. Li
i+1 and 
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Li+1
i  is related to the architecture of the UNet for image segmentation. In order to express grid 

transfer between the coarser grid i+1 and the finer grid i, we offer learnable convolutions for 

transfer operators. Both local and global image characteristics are efficiently captured by the 

UNet architecture. The coarser grid i+1 usually captures low-frequency features that provide 

pertinent visualized information. Thus, the right-side term, which is defined as follows, may 

be used to extract the important information on the grid: 

pi+1 = ki
i+1 (pi − hk

i (vi)) + hk
i+1(ki

i+1vi)                                     (4.23) 

where the output of the downsampling modules in the feature space is pi+1  and the inputs of 

the downsample block are pi and vi   Here, we have L-grid cycles with i=1,..., i-1. In a way 

that is appropriate for the UNet, the restriction function Li
i+1 is approximated by the learnable 

downsample operation hkj

i , ki
i+1. 

In the UNet architecture convolutional layers, batch normalization, and activation functions 

(like ReLU) are all part of the UNet feature extraction model. The UNet model's learnable 

convolutions enable the network to recognize intricate patterns in the input picture, resulting 

in precise and instructive predictions for landslide segmentation tasks. The normalized 

difference vegetation index (NDVI) and the landslide likelihood maps from UNet were among 

the other data that were already included,  

NDVI = (NIR − Red)/(NIR + Red)             (4.24) 

where, NIR and Red denote the electromagnetic spectrum’s Near-Infrared and Red Bands 

found in Sentinel-2 images. In the UNet-Pyramid model the pyramid pooling layer plays a vital 

role in improving the ability of model to collect and integrate the features from input images at 

different scales. This layer works by collecting information from four distinct pyramid scales, 

each designed to process features at different levels of spatial resolution. At the coarsest level, 

global pooling is used to condense the entire feature map into a single value, which provides a 

summary of the global information present in the image. This process effectively reduces 

functional cards to the most important expressions. The functional cards are divided into 

smaller subregions by the next layer of the pyramid, so the pooling process is collected from 

various geographic locations. To reduce the dimensions of the context image and maintain the 

important global characteristics of the input, each pyramid layer creates feature maps of 
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different sizes using 1×1 convolution layers. As a result, the dimensions of the function are 

reduced to 1/N of its initial size, where n is the size of each pyramid level, creating a more 

compact display. In this way, the function remains guaranteed in the orientation of the original 

input image. To combine global properties with different criteria, we chain characteristics 

placed at every pyramid level to achieve the final result of pyramid pooling. The degree to 

which this pooling mechanism works depends heavily on the layout and pyramid layers. The 

levels use different pooling cores with different pyramids so that the model can be trained at 

both fine and broad levels, by which it can collect a large amount of spatial information. The 

four pyramid levels of the presented UNet-Pyramid model are 1×1, 2×2, 3×3, and 6×6 sizes. 

Therefore, the model can simultaneously analyze many spatial scale properties. Complex uses 

where images contain patterns of different sizes and geographical distribution, benefit from 

this distinctive extraction in several standards. Further, to improved extraction properties 

pyramid pooling layers play an important role in their ability to understand complex spatial 

patterns and create accurate prediction. By recording properties from several spatial scales this 

model became more suitable for dealing with variations in size, shape, and context of identified 

objects. This is especially important for tasks such as landslides. This is because landslides 

vary widely at large levels and at different terrain patterns. The ability to process and integrate 

multiscale functions improves the sensitivity of the model compared to these variations, leading 

to more accurate segmentation and predictive results. Furthermore, the pyramid pooling layer 

improves the robustness of the model by extracting meaningful context-related information 

regardless of spatial dissolution of the input data. This adaptive feature pool strategy is very 

effective for deep learning architectures as the model is successfully blocked by a set of data 

records and applications. OBIA offers an approach for image segmentation and classification 

by detecting additional features beyond pixel levels, such as details of spectral information, 

geometric features, topological relationships, and textures. In contrast to pixel-based methods, 

this usually focuses on individual pixel values without considering wider context. OBIA is used 

to avail the geometric and spectral properties of objects in satellite images. By integrating these 

characteristics into knowledge-based rules, we hope to improve the performance of machine 

learning or deep learning models, particularly for complex tasks such as landslide prediction. 

OBIA allows you to create more accurate and meaningful object-based classifications that are 

very important for landslides. The main goal of this study is to improve landslides with the 

UNet pyramid model, which includes OBIA object-based properties and hierarchical rules. 

Based on signatures and geometrical forms of spectra, these rules aim to classify and improve 

the detection of potential landslides. Integration of OBIA into the UNet Pyramid Model uses 
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the skills of the model to generate probability cards for landslide detection, while 

simultaneously generating strict classification skills for OBIA. The hybrid models use OBIA 

to add context and improve the quality of segmentation which makes landslides more accurate 

and reliable. After training the model, they agree to its parameters and optimize its performance 

to improve prediction accuracy. Additionally, the inclusion of a Swin transformer in this 

architecture provides important thrust by capturing context information and dependencies for 

most of the input image. This transformation model can improve landslides by allowing the 

network to better understand the global relationships between different image regions. The 

OBIA segmentation performance, properties, and processing enrichment combination of Swin 

Transformers creates a robust framework for landslide detection. Implementing self-training 

techniques improves the ability of models to generalize different data records. With this 

technology, models can learn from new data and adapt to patterns that were previously 

invisible. This improves general robustness and prediction. Ultimately, this hybrid approach 

aims to significantly improve landslide accuracy and reliability. The strengths of OBIA, DL 

and Trans models are based on developing more stringent systems and recognizing landslides. 

This provides important support for proactive disaster management and reduction efforts, 

reducing the risk and impact of landslides on communities and infrastructure. 

4.4 Results and Analysis  

Unlike other traditional pixel-based methods that deal with all pixels only, OBIA analyzes 

spatial relations, pattern and attributes of neighboring pixels, which are summarized in objects 

and provide better and enhanced approach related to context. OBIA focuses on the geometric 

and spectral features of objects in one image can improve processing and identification. 

Through this integration, this study attempts to improve the general performance of machine 

learning or deep learning models, which makes complex scenarios more efficient. When 

predicting landslides, the integration of both the characteristics of both deep learning models 

such as the UNet pyramid can significantly improve segmentation accuracy. The UNet- 

Pyramid, the extended version of the UNet architecture, is characterized by the image 

segmentation and creates accurate limits for objects such as landslides. The hierarchical 

classification system of OBIA classification objects based on spectral properties and geometric 

shapes improves the functionality of the model and recognizes and separates landslides. This 

standard based on standards introduce other layers of improvement in the model and ensure 

that areas are identified as potential landscape designs more accurate and relevant. The 
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segmentation process can be improved by classification of the OBIA object for deep learning 

skills. This allows effective identification of large and small landslides.  

Swin transformer is known for its ability to capture contextual information and dependencies 

over long distances within images. This is important for understanding the spatial relationships 

of complex landscapes, such as those susceptible to landslides. By including this transformer 

model, we improve the model's ability to identify complex patterns and subtle variations of 

remote sensing data. The swin transformer complements the segmentation capabilities of the 

UNet Pyramid model, allowing more accurate predictions, not just local features but also global 

image contexts, as shown in Figure 4.12. This integration enriches the understanding of models 

on several criteria and improves overall effectiveness in landslide recognition. Using self-

training technology in this model improves the ability to generalize various data records.  

 

Figure 4.12 Visual representation of training dataset images. 

 

Figure 4.13 Visual representation of validation images. 

Further, self-training allows the model to learn from new and non-labeled data after the initial 

training phase, adapt to previously invisible patterns, and improve performance over time. This 

approach increases the robustness of the model and makes it more adaptable to a variety of 

landscapes and regions. This is especially important when it comes to complex and 
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unpredictable environments where landslides occur. By combining OBIA's feature extraction 

with deep learning power of the UNet-Pyramid and contextual recognition of swin transformer, 

this hybrid architecture is equipped to master the challenges of landslide prediction. We trained 

this model for a minimum of 100 epochs. These epoch refers to the number of complete 

iterations across the training dataset. The arithmetic properties of this work, in this case, the 

NVIDIA RTX 4090 GPU accelerated the process. The RTX 4090 is a high-performance 

graphics card developed for deep learning and machine learning tasks, providing critical 

processing performance and storage bandwidth. This hardware is ideal for training and 

validating large-scale models using high-resolution data, as shown in Figure 4.13. This allows 

faster calculations and more efficient processing of complex calculations when training deep 

learning models. During training, the models were evaluated using several metrics: accuracy, 

recall, F1 score, and loss. These metrics are typically used to assess the effectiveness of 

classification models, particularly in tasks such as landslides. On the other hand, recovery 

assesses the ability of the model to identify all actual landslides and calculate the percentage 

of actual positive landslides from all actual landslides in the dataset. 

F1 scores are composite metrics that correct for accuracy and provide a single value that reflects 

the complete performance of the model when identifying landslides. This is especially useful 

when the data set is unbalanced, as it provides a more comprehensive assessment of the model's 

ability to classify the model correctly. Losses were often expressed by loss functions such as 

cross or middle square errors, which quantified the quantification of how well the model was 

during training. Loss indicates that the model's predictions are close to the actual results. The 

data used for training was divided into two classes: landslides and non-landslide. Given the 

weight of the class of natural light, agricultural locations often exist in such data records where 

landslides are far less common. Therefore, these metrics help to optimize the model and enable 

accurate identification of landslides across a variety of remote sensing images. 

The loss function of our method is defined as follows: 

Lloss = ω(Ma, σa) + ω(Mb, σb)                                                                                         (4.25) 

When the training between two distinct tasks is balanced by the weighting operator, W, and 

the trainable parameter σb. The loss of the main and edge decoder branches is indicated by Ma 

and Mb. Additionally, the weight parameter ω is defined as follows: 



105  

 

ω(Mj, σj) =
1

2σj
LLoss(i) + log σj, j ∈ {a, b}                                                 (4.26) 

where the logarithmic term is utilized to prevent σj from increasing and the σjvalues measure 

the forecast uncertainty. 

 

Figure 4.14 Proposed Workflow of Landslide Prediction using UNet-Pyramid Model. 

4.5 Quantitative Evaluation 

By calculating the pixels with the labels True Positive, False Positive and False Negative, the 

results of the landslide prediction were verified. Semantic accuracy assessment criteria, 

including precision, recall, and F1-score, were employed to methodically examine the efficacy 

of landslide detection. Measures of picture classification accuracy that are often used were 

employed to test the model's performance. As seen in Figure 4.15, we must first specify the 

four categories of expected samples for classification algorithms in order to compute these 

evaluation metrics. The ideas are as follows:  

Precision =
 True Positive (TP)

 True Positive (TP)+ False Positive (FP)
                                (4.27) 

Recall =
 True Positive (TP)

 True Positive (TP)+ False Negative (FN)
                                   (4.28) 
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F1-Score =
2× Precision × Recall 

 Precision + Recall 
                                   (4.29) 

 

Figure 4.15 Performance Merits and Evaluation of the Proposed Approach. 

The pyramid pooling layer improves the model's ability to extract features at different 

resolutions and collected all the important data from different spatial scales. This phase uses 

many pools and upsampling layers, each with a different kernel size and different stride. These 

methods provide feature maps of different resolutions, then combine to create feature pyramids 

with several scales. This feature Pyramid was integrated into the UNet decoder by skip 

connections, linking the corresponding levels of the encoder and decoder. By integrating these 

multiscale properties, the model collects both local and global context-related information and 

efficiently encode the various properties that exist on different spatial scales. This multiple 

competition is extremely important for tasks like landslides, and can vary greatly in topography 

and complexity. By including pyramid pooling layers, the model is sent to handling complex 

terrain characteristics that can have a wide range of spatial properties. For example, in areas 

with different heights, slopes, and vegetation types, landslides can occur at several scales, each 

with different characteristics. The ability to process and integrate these properties from several 

scales will allow landslide models to be more accurately recognized in challenging 

environments. Improvements in the pyramid pooling layer significantly increase the general 

predictive power of the model, allowing the processing of a variety of complex landscape data. 

Model performance was assessed using general classification metrics such as Precision, Recall, 

and F1 scores. These metrics are essential for model accuracy and reliability, especially for 
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evaluation in tasks such as landslides. In this task, imbalances in class models (more non-terrain 

instances than landslides) often distort the results. This model achieved precision of 0.95. This 

indicates the altitude accuracy in correct landslide identification. A recall value of 0.91 

indicates that the model captures most of the actual landslide. The F1 score of 0.95 reflects a 

good balance between accuracy and recall. This shows that the model not only records 

accuracy, but also the entire range of landslides in the dataset. To further evaluate the model, a 

comparative review with existing work in the field of landslide was performed, as shown in 

Figure 4.16. This review provided benchmarks to understand how our models stack up against 

other state-of-art models. Comparing the results across different models allowed to 

demonstrate the effectiveness and advantage of the approach in accurate prediction of 

landslides. The comparative analysis described in the results shows that inclusion of pyramid 

pooling layers and multi-scale feature integration with FCN significantly improves the 

capabilities and accuracy of the landslide model. 

  

                                      (a)                                      (b) 

  

                                      (c)                                      (d) 

Figure 4.16 Performance Metrics for Landslide Prediction in Remote Sensing Imagery: (a) Loss, (b) Precision, 

(c) Recall, and (d) F1-Score. 



108  

This indicates that the combined method is more accurate than the basic UNet model in 

identifying landslides. Improved outcomes also suggest a possible decrease in false positives, 

or the number of cases in which non-landslide data is mistakenly identified as a landslide. 

Recall value has increased significantly as well.  

Table 4.2 Comparison of Proposed Work with Previous Approaches 

Author Model Dataset Performance parameter 

X Chen et al. [133] CTD-Net Landslide4sense Precision of 0.75, Recall of 0.73, 

F1-Score of 0.74. 

Ghorbanzadeh et al. 

[134] 

ResU-

NetOBIA 

Landslide4sense Precision of 0.73, Recall of 0.80, 

F1-Score of 0.76 

Fahong Zhang et al [135] Model 3 + CRF Landslide4sense Precision of 0.80, Recall of 0.78, 

F1-Score of 0.79. 

Lin Bai et al. [136] Multispectral 

U-Net 

Landslide4sense Precision of 0.80, Recall of 0.75, 

F1-Score of 0.77. 

Proposed model UNet-Pyramid Landslide4sense Precision of 0.91, Recall of 0.84, 

F1-Score of 0.87. 

Table 4.2 presents a comparison of the proposed work with previous approaches in landslide 

prediction, highlighting various model’s performance. The table lists the model authors that 

use the data records and their corresponding performance parameters like Recall, Precision and 

F1 scores. The models comparsion include CTD-Net, ResU-NetOBIA, Model 3 + CRF, 

Multispectral U-Net, and the proposed UNet-Pyramid.  This shows that the proposed UNet-

Pyramid model exceeds the other models, with a precision of 0.91, a recall of 0.84, and an F1 

score of 0.87. Several recent studies have applied advanced deep learning architectures to 

landslide prediction using the Landslide4Sense dataset, each contributing novel approaches to 

improve segmentation accuracy. X. Chen et al. [133] developed CTD-Net, a convolutional 

neural network designed to extract hierarchical spatial features effectively. Their model 

achieved a precision of 0.75, recall of 0.73, and an F1-score of 0.74, indicating balanced 

performance in identifying landslide-prone areas. Ghorbanzadeh et al. [134] proposed ResU-

NetOBIA, which integrates residual blocks within the U-Net architecture alongside Object-

Based Image Analysis (OBIA) techniques. This method improved the model’s ability to 

capture fine spatial details and yielded a precision of 0.73, recall of 0.80, and F1-score of 0.76, 

showing enhanced sensitivity in landslide detection. Fahong Zhang et al. [135] introduced 

Model 3 combined with Conditional Random Fields (CRF) to refine segmentation outputs and 

reduce misclassification. Their approach achieved higher metrics with a precision of 0.80, 

recall of 0.78, and F1-score of 0.79, demonstrating the benefits of post-processing techniques 
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in improving prediction accuracy. Lin Bai et al. [136] employed a Multispectral U-Net model, 

leveraging multispectral satellite imagery to extract richer spectral features relevant to landslide 

susceptibility. This model attained a precision of 0.80, recall of 0.75, and F1-score of 0.77, 

confirming the value of multispectral data integration for enhanced landslide mapping. 

Building upon these methodologies, the present thesis proposes a UNet-Pyramid architecture 

that incorporates a multi-scale feature extraction pyramid within the U-Net framework. This 

design enhances the model’s capacity to capture spatial features at varying resolutions, 

improving both localization and boundary delineation of landslide regions. Evaluated on the 

Landslide4Sense dataset, the proposed model achieved a substantially higher precision of 0.91, 

recall of 0.84, and F1-score of 0.87, outperforming all referenced approaches. This significant 

improvement illustrates the effectiveness of the UNet-Pyramid in capturing complex spatial 

patterns and reducing false positives and negatives in landslide prediction. The integration of 

multi-scale features enables better representation of both large and small landslide areas, which 

is critical for accurate hazard mapping and risk mitigation. These results demonstrate that the 

proposed model advances the state of the art in remote sensing-based landslide prediction and 

contributes a robust framework for practical disaster early warning systems. 

 This comparison highlights the effectiveness of the proposed model for landslides. The results 

of this approach point out the important advantages of combining OBIA with deep learning 

approach, particularly in the context of landslide prediction. OBIA and deep learning were 

typically examined individually with landslide detection. However, this study shows that 

integration of the two approaches can significantly improve the classification accuracy. By 

using OBIA's ability to obtain or extract spatial, structural, and context-related features in 

conjunction with the power of UNet, to model complex patterns of data, landslide models can 

be predicted more effectively in a variety of environments. As shown in the results, this 

comparison highlights the effectiveness of the hybrid approach. Our research is based on freely 

accessible satellite imagery, which not only creates landslide costs related to costs, but also 

expands the scope of monitoring to a larger scale. This opens the door to the broad and efficient 

use of satellite imagery in disaster management. Ultimately, this approach has great potential 

to improve the accuracy and locality of landslide prediction, especially in areas with high risk. 
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4.6 CONCLUSION 

In conclusion, this chapter provides a new and effective approach to landslide prediction using 

landslide data, including a rich collection of remote sensing images. This study focuses on the 

use of object-based image analysis (OBIA) for image segmentation combined with the power 

of advanced deep learning techniques such as the swin transformer and the UNet-Pyramid 

model. OBIA is used to segment images with meaningful objects based on spectral and spatial 

characteristics, improving the accuracy of characteristic extractions from complex remote 

sensing data. The latest model for the computer vision, swin transformer is used to capture 

dependencies and spatial hierarchies over the long term. This improves the overall performance 

of distinctive presentations and predictive models with 0.91 - precision, 0.84- recall and 0.87 - 

F1 score, the proposed model exceeds models such as CTD-Net, ResU-NetOBIA, Model 3 + 

CRF, and Multispectral U-Net, all using Landslide4Sense dataset. These metrics highlight the 

strength of the UNet-Pyramid model in effective prediction of landslides. By using these state-

of-art methods, this study contributes to the development of more accurate and robust 

landslides. Furthermore, the proposed model can efficiently process large amounts of remote 

sensing data, which has a significant impact on landslides in real-time.  
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CHAPTER 5 

EXPLOITING THE SYNERGY OF SARIMA AND 

XGBOOST FOR SPATIOTEMPORAL EARTHQUAKE 

TIME SERIES FORECASTING 
 

 

 

5.1 Introduction 

Disastrous events like earthquakes can cause severe damage to both human life and 

infrastructure. Earthquakes occur when there is significant movement or disturbance in the 

Earth's crust, leading to large-scale consequences such as human casualties and difficulty in 

repairing or rebuilding damaged infrastructure [137]. Because earthquakes have the potential 

to destroy both lives and buildings, accurately predicting their occurrence has always been a 

major challenge. Early detection of seismic events is crucial for reducing associated risks, and 

it plays a key role in forecasting earthquakes [138]. Earthquake forecasting is typically divided 

into two categories: short-term forecasting and long-term forecasting, which is also known as 

multi-step forecasting [139]. Short-term forecasting focuses on predicting seismic activity in 

the near future, providing valuable insights into upcoming events. Long-term forecasting, on 

the other hand, extends into the future, offering predictions about potential seismic activity 

over a much longer period. By combining both short-term and long-term forecasting methods, 

researchers develop a comprehensive understanding of future seismic events, encompassing 

both immediate and distant perspectives. The question of whether earthquakes can be reliably 

predicted is a subject in scientific debate for enormous years. Different methods for earthquake 

prediction involve analyzing different factors, such as atmospheric weather, geodetic data, and 

physical elements, which often play a role in seismic events [140][141]. 

Despite large-scale studies and several attempts to predict earthquakes, reliable methods for 

determining the exact location, time, or size of earthquakes have not yet been developed [142]. 

A common approach to earthquake prediction is the use of time series data. This consists of 

measurements that are made regularly over a long period of time. These observations usually 

include seismic characteristics such as location, size and frequency. Time series is an analytical 

technique used to identify hidden patterns, trends, and cycles within this data that may indicate 

early signs of an earthquake. The recognition and interpretation of warning signals that appear 
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just before the earthquake is necessary for strategies to reduce or prevent its catastrophic effects 

[143]. However, only a limited number of studies were intended to predict several aspects of 

the earthquake, such as size, location, and epicenter. Time series analysis is often used in a 

variety of fields, including seismic and in vivo analysis [144]. Methods such as feature 

acquisition and machine learning are often applied to time series analysis [145]. Traditional 

methods of time series analysis typically involve extracting properties and parameters based 

on expertise and empirical data [146]. However, recent advances have focused on more 

advanced methods, such as DL and ML, which improve pattern recognition and distinctive 

extraction [147] [148]. In scientific research, researchers often encounter patterns that are 

missing in chronological order. This can lead to prediction or model inaccuracy if not treated 

[149] [150]. Ensuring the accuracy and completeness of the data is important to improve the 

efficiency of subsequent analyses, as the data can be lost for a variety of reasons like system 

failure, human failure, and everyday expectations. Time series(TS) aggregates are essential for 

identify trends or patterns in large datasets that are difficult to recognize and interpret. This is 

a very crucial role in seismic activity analysis and provides valuable knowledge about seismic 

behavior and samples. Investigating seismic behavior through methods such as similarity, self-

organization, pattern recognition, and analysis of final scaling provides a deeper understanding 

of how seismic events are based on the development of predictive models. The data analysis 

(EDA) serves as a basic tool for understanding seismic data by offering access to exploring and 

interpreting the complexity of the earthquake activity. EDA is a method used to identify basic 

patterns and relationships within data and its importance increases in predicting an earthquake, 

where it helps scientists to navigate the complexity of seismic datasets. By using visualization 

tools, EDA can provide a clearer representation of complicated seismic data that helps better 

understand and reveal key knowledge. The integration of deep learning has a very advanced 

EDA, especially in the analysis of seismic disasters, including areas such as signal 

classification, image processing and object recognition. CNN contributed significantly, 

especially when the earthquake damage, where they are used to classify the image to evaluate 

buildings caused by earthquakes. Despite progress in the prediction systems, precise forecasts 

remain rare and complex nature of the earthquake, with numerous factors that are difficult to 

measure or evaluate. The most effective methods of earthquake prediction combine 

mathematical simulations, signal analysis, ML and DL. Some recent methods applied Bayesian 

networks to predict activity of earthquake by seismic data from individual stations, while others 

focus on predicting parameters such as epicenter position, size and depth. These models usually 

analyze seismic data within a specific radius of the station and integrate past seismic knowledge 
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as indirect model inputs through methods such as artificial neuron networks or random forests. 

However, these approaches often do not reach the integration of the physical principles of the 

behavior of the earthquake, neglect the impact of historical earthquake data and the complexity 

of seismic activity. Numerous studies have explored timeless time series techniques, such as 

the use of Arima and Singular Spectrum Analysis (SSA) to predict magnitude values of 

earthquake along specific failure lines. Other studies have incorporated different neural 

network models for capturing time relations in seismic data, or use methods such as RNN with 

LSTM cells to detect anomalies in seismic data before the earthquake. Although these methods 

have shown promising, challenges remain in the integration of physical principles and 

increasing the reliability of these models in the real-world applications. 

5.2 Motivation  

Although the previous studies have demonstrated the effectiveness of the short-term forcast 

prediction, there is still limited investigation on the applicability of these methods for long-

term predictions, especially those that exceed the year. The forecast of the earthquake includes 

numerous challenges due to the complex and dynamic nature of the seismic activity. Various 

factors such as irregularities in seismic events, geological structuring effects, and 

environmental conditions contribute to the difficulty of accurately predicting earthquakes for 

longer periods of time. This approach uses a hybrid ML model that combines SARIMA with 

XGBoost. Here, SARIMA capture seasonal patterns and trends in time series data, and on the 

other hand, XGBoost helps in modeling complex relationships between variables with in the 

data. The combination of these two models makes the approach a more effective solution than 

traditional methods, since both intensities are used to improvise the accuracy of robustness. 

The performance of this hybrid model is evaluated and compared to traditional earthquake 

forecasts such as SARIMA and ARIMA. The results show that the hybrid model SARIMA-

XGBoost exceeds these traditional models, highlighting the possibility of more reliable and 

more accurate predictions of seismic activity. SARIMA is affected by the natural cycle of 

seismic motion because it effectively records seasonal variations that are often observed in 

seismic data. XGBoost is characterized by the identification and modeling of nonlinear and 

complex patterns within seismic data. This combination of seasonal pattern detection and 

complex relationship modeling provides enhancement in earthquake series predictions.  
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Although the analysis of signal, deep learning algorithms, mathematical modeling and 

advanced machine learning techniques are considered reliable for earthquake predictions but 

are often categorized into individual combinations. The earthquake prediction usually benefits 

from a versatile approach and includes several different methods and models to improve 

accuracy. This shows the importance of evaluating several approaches and integrate different 

data processing methods, rather than relying solely on SARIMA or ARIMA models. A 

comparative assessment of SARIMA and XGBoost, along with other models such as ARIMA, 

can help determine the most effective method of earthquake prediction. For this study, we have 

compiled data on the average earthquake for 1965 to 2023 in designated regions, which serve 

as the basis for time series analysis and model development. The study is organized as follows: 

next section describes data preparation, presents an overview of Exploratory Data Analysis 

(EDA), and describes predictions created using time series models. Secondly, it presents the 

approach made in the investigation, focusing on comparing selection methods and different 

models. The third section describes the selection process of the best model, followed by a 

detailed analysis of the results of different predictive models. SARIMA is an established model 

used in temporary series predictions. Especially for data with adequate seasonal patterns to 

detect recurrence trends when an earthquake occurs. However, the ability to dominate complex 

but non -linear relationships is limited. XGBoost, a powerful algorithm for machine learning 

that derives a record of these non -linear and complex dependencies of the data that are often 

present in the seismic activity due to the interaction of several environmental factors. The 

combination of SARIMA's ability to model seasonal trends and XGBoost when solving 

patterns or complex relationships provides more accurate and precise earthquake predictions. 

5.3 DATA AND METHODOLOGY  

Figure 5.1 illustrate two main statistical approaches for long-term earthquakes prediction. 

These approaches use the historical earthquake dataset and created a hybrid model that can 

predict earthquakes for longer period. The earthquake prediction refers to predicting the 

magnitude and location of the future earthquake event. To reduce the risks related to earthquake 

it is important to make a reliable and accurate forecasting system, as they provide valuable 

information that can inform disasters, early warning systems and risk management strategies. 

This approach consists of three steps: Data pre-processing, Data cleaning, and Data series 

analysis. In Data pre-processing, data cleaning and converting data to suitable form is 

necessary. In this approach the dataset reading is covered from 1965-2023. This approach helps 
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in discovering temporary data relationships such as recurring seismic events and seasonal 

changes for earthquake forecasting. 

 

Figure 5.1 Sequential flowchart illustrating earthquake data processing and modelling steps. 

In the TS analysis we use two phase methods to explore and predict the earthquake. The first 

phase which is the survey, involves the utilization of descriptive statistics and Data 

visualization approach to better understand characteristics of the dataset. Descriptive statistics 

provide summary data by evaluating using median, mean, frequency while data visualization 

methods such as thermal maps and time series contribute to visual identification of trends of 

seismic activity, anomalies and clusters. By visualizing earthquake data, scientists can observe 

time patterns and potential periodic behaviors that could help develop future predictive models. 

The second stage of time series analysis is predictions that include ML techniques like AR, 

SARIMA, and XGBoost to predict future earthquake events. The AR extension, SARIMA, 

corresponds to trend and seasonality in your data. A more advanced ML model, XGBoost can 

improve prediction accuracy by learning complex non-linear relationships and including 

different features in simple time trends. There are several geological factors regulating the 

behavior of tectonic plates some of them are the boundaries of the plates, subduction zones and 

failure lines, play a key role in the frequency and severity of seismic events. In addition, 

understanding the specificity of the time zone helps ensure that the earthquake prediction 

models are responsible for changes in seismic activities that may vary due to local geological 
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conditions from region to region. The integration of these factors is the aim of the study to 

provide more reliable and regionally relevant predictions, which contributes to improving the 

readiness for earthquake and risk management. Overall findings are expected to offer valuable 

knowledge of how to approach the analysis of earthquakes and predictions in a more subtle and 

scientifically informed way. 

5.4 Dataset Description 

This study uses a dataset that captures seismic events with the magnitude of 5.5 or higher, from 

1965 to 2016, as shown visually in Figure 5.2. The selection of this threshold is significant 

because the earthquake with a magnitude less than 5.5 often releases relatively low amounts of 

seismic energy. These smaller earthquakes are more difficult to detect precisely, so their 

identification and reports are less consistently compared to the strongest earthquakes. As a 

result, these lower magnitude earthquakes are excluded from the dataset. The approach to the 

earthquake with the magnitude of 5.5 or more allows a more specific and significant analysis 

of the seismic activity that has the potential to cause substantial damage and affect larger 

populations. Seismic monitoring systems and interface prefer to detect and inform these events 

because they are more likely to lead to important social and economic consequences. In 

particular, the National Earthquake Information Center (NEIC) plays a decisive role in the 

global monitoring of seismic events and guarantees that basic details such as location, depth, 

size and source of these important events are registered and distributed. The study focused on 

the data provided by these established sources guarantees a reliable and comprehensive basis 

for the following analysis. 

 

Figure. 5.2. Geographic distribution of earthquake epicentres: magnitude 5.5 or greater between 1965 and 2023. 
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To further increase the relevance and timeliness of the data set, research also includes data on 

the NEIC earthquake, covering the period from 2017 to 2023. Integration of this additional data 

is necessary for several reasons. First, it allows for more enhance and wider understanding of 

long-term trends and patterns of the earthquake by covering a large time range. Secondly, this 

enriches the ability to detect emerging formulas in recent seismic activity, which may not have 

been observable only through earlier data. Earthquake monitoring is constantly improving, and 

more data is available, so including the latest data will enhance analysis by providing a more 

recent perspective. An extended dataset containing both historical and current work data 

increases the robustness of time series analysis and provides a clearer and comprehensive view 

of the trends of earthquakes over various decades. This ensures that the conclusions of the study 

are not only based on historical data, but also reflect the latest seismic events that offer more 

accurate pattern of the behavior of global earthquake. The preliminary data processing phase 

is a critical step to ensure the quality and consistency of the data file before any analysis or 

modeling. This phase contains a number of steps to clean and organize data to eliminate any 

mistakes, inconsistency or spaces. One of the primary tasks at this stage is data cleaning that 

deals with problems such as missing values, duplicate items or incorrect data. The dataset 

considered contains information about 23,412 seismic events that contain a number of 

parameters such as date, time, geographical coordinates, depth, area, time stamp, size and other 

key details. It is important to make sure that each element is unique and represents a real seismic 

event. During the cleaning process, zero values representing missing or incomplete data were 

carefully identified. Furthermore, the duplicate elements have been removed that could distorts 

the analysis by over representation of certain events, making sure that only different events 

remain. Then the data was observed as earthquake do not occur at regular intervals and the 

original dataset does not have to provide a uniform distribution of time. To solve this problem, 

the data was aggregated to monthly intervals to create a consistent time series that could be 

analyzed over time. Interpolation was another key technique used in the preliminary processing 

phase. Because the data file was initially irregular, with different time intervals between 

seismic events, spaces or missing values, they appeared in the data file after the process of 

resampling. The interpolation is used to fill in these missing values by estimating the 

surrounding data and create a continuous time series.  

The final dataset is completed and provides a constant record of the occurrence of earthquakes, 

including key parameters such as time, location, size and depth. Through the data per month 

and add values in the missing values through the interpolation, the dataset is suitable for the 
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analysis of time being and offered a reliable basis to understand the tendencies of the seismic 

activity over time. An important decision during the previous processing phase is to maintain 

a remote earthquake with a high increase to eliminate the dataset. While remote values can 

sometimes mess up the results of statistical analysis, large earthquakes are considered 

important events in a seismic activity. These events provide valuable knowledge to regions that 

are susceptible to extensive seismic activities and can help identify trends or patterns that can 

not only be visible in smaller events. Table 5.1 offers a comprehensive review of dataset 

properties, providing an overview of data structure and steps taken to prepare for further 

analysis. This overview includes a statistical summary of earthquake events, such as the size 

distribution, the frequency of events in time and the geographical spread of occurrence, 

providing a major insight into the nature of global seismic activity. 

TABLE 5.1 Summary of Significant Earthquake dataset. 

 

5.5 Exploratory Data Analysis (EDA) 

EDA plays a key contribution in attenuation of the complexity of seismic sequence data and is 

an essential tool to predict the earthquake [150][151]. EDA is a basic process that includes the 

use of several visualization techniques to explore data properties, detect any remote or 

anomalies, and evaluate the validity of the basic assumptions. EDA is important because it 

provides the deeper understanding of the dataset and clears the basics for other analytical 

approaches, including statistical modeling and machine learning techniques. In relation to 

earthquake data, which inherently include time and geographical dimensions, EDA is even 

more valuable. The unique nature of seismic events, which occur in specific times and places, 

requires a deep and accurate examination to understand potential patterns, trends and risks. 

S.No. Time Latitude Longitude Depth 

(km) 

Depth 

Error 

Magnitude Magnitude 

Type 
0 1965-01-02 19.246 145.616 131.6 3.785 6.0 Mw 

1     1965-01-04 1.863 127.362 80.0 4.678 5.8 Mw 

2 1965-01-05 -20.579 -173.972 20.0 4.997 6.2 Mw 

3 1965-01-09 -59.076 -23.567 15.0 2.452 5.8 Mw 

… … … … … … … … 

23406 2023-02-17 -6.5986 132.0763 38.615 5.595 6.1 Mw 

23407 2023-02-16 -15.0912 167.0294 36.029 6.080 5.6 Mw 

23408 2023-02-15 12.3238 123.8662 20.088 4.399 6.1 Mw 

23409 2023-02-15 -40.5485 174.5709 74.320 4.922 5.7 Mw 

23410 2023-02-14 45.1126 23.1781 10.000 1.794 5.6 Mw 
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Therefore, EDA not only prepares the ground for more sophisticated analyses, but also 

increases the general understanding of earthquake behavior. 

 

Figure. 5.3. Box plots depicting the distribution of earthquake magnitude, root mean square and depth 

categorised by tectonic setting: convergence, extension, subduction and transform. 

The techniques used in EDA are diverse and adapted to reveal different aspects of the data. 

Basic visualization methods, such as histograms and bar charts, are often used to understand 

the distribution of earthquakes, frequencies and other relevant variables. These tools are useful 

for pattern detection and anomalies identification within data. The most advanced statistical 

graphics, such as mean plot and boxplot, provide information about data points distribution, 

emphasizes the presence of remote values and offers a deeper understanding of data 

visualization. In general, line plots are insightful; tools to visualize trends as changes in seismic 

activity capture over time and show how earthquakes change daily, monthly or annually. In 

addition, the technique of map representation is invaluable to offer a geographical vision of the 

data. When visualizing earthquakes on the map, scientists can better understand regional 

seismic patterns, help identify areas with high risk and any geographical tendency that may 

occur. EDA is not only a data exploration tool, but also a key step towards the development of 

effective earthquake forecasts or prediction. EDA helps to carry out future analytical processes 

and provide valuable knowledge that can inform predictive modeling by identifying 

seasonality, hidden patterns and anomalies within the data. The relationship between 

earthquakes and their tectonic environment is a key research area in EDA because it provides 

critical information for risk assessment and disaster preparation. One of the basic aspects of 

the EDA is to explore the tectonic environment and its relationship with seismic activity. The 

different tectonic environments, such as subduction areas, failure lines and boards, show 

different levels of seismic activities. The recognition of these connections is essential to 

understand where the earthquake is more likely to occur and evaluate the risk in these regions. 

By identifying the tectonic configuration, which are more susceptible to intensive seismic 
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events, EDA helps determine areas of greater seismic risk. This methodology significantly 

improves patterns recognition and enables detection of time trends and seasonality in the 

occurrence of earthquakes, thus contributing to the enhancement of high-precision predictive 

models. The classification of tectonic settings assigns each earthquake event to a different 

tectonic environment, such as subduction zones, extension zones, transformation errors, cracks 

and convergence zones using geographical and geological data. As shown in Figure 5.3, the 

box plot offers a clear and brief graphical representation and compares the statistical 

distribution of the magnitude of the earthquake, the root mean square (RMS) and depths across 

different tectonic settings, including extension, subduction, convergence and transformation 

zones. This approach allows an effective and intuitive comparison of seismic features in 

various geological contexts, which makes it easier to identify trends, patterns and anomalies in 

the behaviour of earthquakes. 

5.6 Time Series (TS) 

Time series is classified into three types: deterministic trend, stochastic trend, and seasonal 

trend. The behavior understanding is important for developing more reliable models to predict 

the upcoming values. TS does not display intrinsic behavior and lead to unreliable predictions. 

To determine stationary time, its properties, such as variance and mean should remain constant 

always. The ADF test is applied to check the stationarity in time series by detecting the 

presence of a unit root in the series. To make series stationary transformations like differencing 

are applied if the series is found to be non-stationary. Further, by understanding the time series 

three trends, appropriate transformations and modeling techniques are applied to improve the 

accuracy. The combination of these trends occurs in several series where deterministic patterns 

are affected by stochastic noise, requiring a more complex model in which both components 

are responsible. Understanding these categories is to choose the most appropriate modeling 

approach and ensure that the resulting predictions are accurate and reliable 

5.6.1 Deterministic Trend Time Series  

In this model it is supposed that the TS variable (vt) is a time function vt = g(t). This 

represents various forms including linear, exponential or other types of assembly problems. It 

provides to bring the relation among TS variable and time using different mathematical 

functions, depending on the the basic samples that we strive to capture and nature of the data. 
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vt =  a0 + bt + ct               (5.1) 

After calculating the Δvt, we have: 

vt −  vt−1 = (a0 + bt + ct) − a0 + bt−1 + ct−1)             (5.2) 

       Δvt= b + ct − ct−1               (5.3) 

 U[Vt] = U[Y] + U[ct] + U[ct−1], U[ct] = U[ct−1] = 0                                   (5.4) 

Thus, U[Vt] = Y 

vt is time series variable at time 𝑡, a0 is constant intercept  bt is coefficient for time t, capturing 

trend ct is other factors influencing the time series at time 𝑡. Δvt is first difference of time series 

variable vt, U[ct] and U[ct−1]  are unconsidered components of predictors ct and ct−1. 

This implies that the mean of the corresponding time series Δvt, remains constant over time, 

making Δvt a stationary time series. Additionally, a time series with a linear trend in equation 

(1) is referred to as a trend stationary time series. 

5.6.2 Stochastic Trend Time Series  

In this type of TS modeling, it is supposed that vt is a function of the lagged vt. The 

straightforward case is termed first order, specifically the AutoRegressive model where 

vt depends only on the first lag (k=1): 

vt =  a0 + qvt−1 + ct               (5.5) 

According to the Dickey-Fuller test (DFT), it is established that the time series in equation (4) 

is stationary as long as ∣q∣<1. To delve deeper, let's examine the case when q=1, in which we 

obtain: 

vt = a0 + bt−1 + ct               (5.6) 

vt−1 = a0 + bt−1 + ct−1              (5.7) 

v0 = v0 
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vt = ta0 + v0 + ∑ ct
t
j=1               (5.8) 

The random walk is an unpredictable process, meaning that there is no obvious pattern in the 

data to help with prediction. The random walk is expressed as: 

vt = vt−1 + ct              (5.9) 

Therefore, the random variable must be a non-stationary TS. Although the random variable's 

mean value is constant. 

5.7 Augmented Dickey-Fuller test (ADF) 
 

A statistical technique called the Augmented Dicky-Fuller test (ADF) is used to assess whether 

a data record is stationary or not. Since many modeling approaches, such as ARIMA, need a 

series to show stable statistical features over time, the stationary is a decisive prerequisite for 

trusted time series modeling. Zero hypothesis (H0) claims the series is not stationary and the 

ADF test determines whether there is a unit root or not. The null hypothesis (H1) is tested and 

presents that unit root is present in the series and this unit root indicates that this time series is 

non-stationary. This indicates that it has time dependent structures such as trends and 

seasonality and needs to addressed for reliable and accurate modeling.  When test statistics is 

lower than key values the null hypothesis is accepted else it is rejected. This is because the TS 

is stationary.  

The general form of the ADF test is as follows: 

Δvt = a0 + µvt−1 + θ1Δvt−1 + ⋯ + θpΔvt−p + ct                   (5.10) 

Here, µ: unit root parameter, and µ = 0 represent that the model has a unit root, and the time 

series is not stationary. a0 𝑎𝑛𝑑 µ both are the model's trend. 

5.8 Forecast Model Construction 

In order to choose SARIMA, it begins with the use of EDA. and time series 

(TS).  EDA identifies the seasonal and self-reproductive components and key information to 

select SARIMA's parameters. Finding the ideal values for the p, d, and q all of which 

are important to the SARIMA model. The autoregressive order (p) presents the number of prior 

observations utilized to estimate the current value.  The moving average order (q) determined 
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the amount of prediction mistakes trailing the model, which takes the impact of previous 

failures on future values.  The differencing order (d) specifies how frequently the data must be 

differenced in order to achieve stationarity. As these parameters impact the model's capacity to 

capture both seasonal changes and long-term trends in seismic data, their selection 

is important.  A well-tuned SARIMA model becomes an effective tool for earthquake 

prediction. it accurately describes the seasonal and temporal dynamics of seismic activity. 

5.9 SARIMA 

In 1970’s Jenkins and Box proposed the ARIMA model, which became known as the Box-

Jenkins approach [152]. It is also referred as (p,d,q) model, where the moving average order 

(q), difference order (d), and autoregressive order (p) are represented. It is a stochastic model 

that is effectively used for earthquake prediction, as well as effective tools for time series 

analysis that strive to anticipate values in non-stationary univariate time series and define 

autocorrelations in the data.   

                  Φq(C)∇eYr = Θq(C)εr                                                            (5.11) 

Yr represents the error series and noise with a mean of 0. 

∇e= (1 − C)e                                              (5.12) 

It demonstrates the difference operator of order C, e used to denote integration order to achieve 

stagnation in data. 

Φq(C) = 1 − φ1C1 − φ2C2 − ⋯ − φqCq                                                 (5.13) 

is equivalent to the AR term at the qth level and 

Φq(C) = 1 − φ1C1 − φ2C2 − ⋯ − φpBp                                               (5.14) 

is the pth order MA polynomial. 

Seasonal Box-Jenkins models are also extended version of ARIMA models that facilitate the 

direct modeling of seasonal components in non-stationary time series data, which exhibit both 

trend fluctuations and seasonal variations. 
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Figure. 5.4 Flowchart of SARIMA model for time series earthquake forecasting 

General ARIMA (p,d,q) is summarized as, 

yt = c + β1yt−1 + β2yt−2 + β3yt−3 + ⋯ + βpyt−pϵr + α1εr−1 + α2εr−2 + α3εr−3 ⋯ +

αqεr−q                                                                                                                                 (5.15) 

εr = α1εr−1 + α2εr−2 + α3εr−3 ⋯ + αqεr−q                                    (5.16) 

These models are particularly useful for time series that show complex interactions between 

long -term trends and seasonal effects. The SARIMA is represented by (p,d,q) * (P, D, Q), 

where the parameters capture not seasonal and seasonal data behavior. SARIMA models use 

seasonal differences to solve seasonal fluctuations in the time series, similar to how the 

differences are applied in standard ARIMA models. Seasonal differences help remove periodic 

components of the series by deducting the value of observations from its corresponding value 

in the previous season. The process is an analogous differential trend in the ARIMA models, 

where the p, d and q parameters represent the autoregressive order, the differential order and 

the average order. In SARIMA, seasonal components are modeled by other parameters P, D 
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and Q components and represent seasonal autoregression order, seasonal differentiation order 

and moving average order. The seasonal period, which indicates the length of the seasonal 

cycle, is also an important part of the model. SARIMA refining usually involves fine-tuning of 

the orders of these parameters through methods such as experiment and error or automated 

technology such as grid search. The aim of this process is to identify the optimal combination 

of parameter values that best capture the basic formulas in the time series data, which provides 

the most accurate model suitable for predicting earthquakes. By modifying these parameters, 

the model can be adapted to consider both the long-term trend and for seasonal fluctuations in 

the earthquake prone area, allowing more precise predictions and deeper insight into seismic 

behavior. 

Three seasonal factors that are not included in ARIMA need to be adjusted: 

 P: stands for seasonal autoregressive 

 D: for seasonal difference 

 Q: for seasonal moving average. 

ϕp(R)Φp(Rs)(1 − R)d(1 − Rs)DYr = θq(L)ΘQ(Ls)εt                                     (5.17) 

ϕp(R) = 1 − ϕ1R − ϕ2R2 − ⋯ − ϕPRp                                                                 (5.18) 

θq(R) = 1 − θ1R − θ2R2 − ⋯ − θqRq                                                                     (5.19) 

ΦP(RS) = 1 − ΦS(RS) − Φ2S(R2S) − ⋯ − ΦPS(RPS)                                (5.20) 

ΘQ(Rs) = 1 − ΘSRs − Θ2sR2s − ⋯ − ΘQSRQS                                                  (5.21) 

Where, R (the lag operator) is defined by 𝑌𝑟and εt. 

RkYr = Yr−k; ϕp(p = 1,2, … , p), Φp(P = 1,2, … , P), θq(q = 1,2, … , q), Θq(Q = 1,2, … , Q)            

                                                                                                                                 (5.22) 

The SARIMA model expression for the time series 𝑌𝑟 is as follows: 

∇d∇s
Dyr =

θ(A)θs(A)

∅(A)∅s(A)
εr                                                                                          (5.23) 
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here yr is the error term at time r; ∅s(A) and θs(A) stand for the seasonal moving average 

coefficient polynomial of Q-order and the seasonal autoregressive coefficient polynomial of P-

order, respectively.  

Once the model orders and data transformations are established, the next part is for estimating 

the SARIMA model, as described in Figure 5.4. A widely used method are used for estimating 

the parameters of the SARIMA model is the estimation of maximum probability. The 'p' and 

'q' parameters correspond to the number of average and moving terms, respectively, and are 

associated with non-seasonal components of the temporal series [153].  

5.10 XGBoost 
 

The decision-tree based ensemble machine learning model known as Extreme Gradient 

Boosting (XGBoost), developed by Chen and Guestrin in 2016, is a scalable boosting system 

that uses the gradient boosting algorithm to generate results with a low probability of an overfit 

[154]. Its strategy is to continually add and train new trees to fit the remaining mistakes from 

the previous iteration. 

ŷi = ∑  k
k=1 gk(yi),          gk = G                                             (5.24) 

Here, gk represents function in function space, k represents tree of decision tree and G is 

function space with equation:  

G = {g(x) = vr(x)}                                                                                  (5.25) 

Here, r(x) signifies that the sample x has been assigned to a leaf node, and v represents the leaf 

node weight. 

In order to accelerate the model's convergence, XGBoost expands the loss function using the 

second-order of the Taylor's series expansion [155].  

XGBoost's regularized objective function is represented as: 

ℒ = ∑  i l(x̂i, xi) + ∑  k Ω(gm)                                                         (5.26) 

Ω(g) = γT +
1

2
λ ∥ ω ∥2                                                                                     (5.27) 
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In this context, with xi as the target, m denoting the number of classification regression tree, Ω 

indicating a regular penalty function, gm is the model of the mth tree, l is a differentiable loss 

function, and ŷi as the predicted values, a balance is preserved in order to keep the decision 

tree model from becoming excessively complex. The penalty term formula uses penalty 

coefficients γ and λ. T represents the number of leaves, while ω represents the total leaf weights. 

In contrast to decision trees, regression trees apply weights to each leaf. 

To minimize the objective function, continues iterations are performed and the objective 

function is evaluated after each iteration.  

ℒ (m) = ∑  n
i=1 l (xi, x̂i

(m−1)
+ gm(yi)) + Ω(gm)                                                      (5.28) 

The fast way to optimize second order function is using Second order expansion: 

ℒ (m) ≃ ∑  n
i=1 [l(xi, x̂(m−1)) + figm(yj) +

1

2
kigm

2 (yi)] + Ω(gm)                                   (5.29) 

The loss function's first and second derivatives are denoted as fi and ki, respectively. The 

objective function is: 

ℒ̃ (t) = ∑  T
j=1 [(∑  i∈Ij

fi) uj +
1

2
(ki + λ)uj

2] + γT                                                      (5.30) 

where uj is the weight of leaf j. The weight of each leaf node is reduced to obtain the objective 

function's minimal value and make its derivative equal to zero. We can calculate ujfor a fixed 

structure as follows: 

uj = −
∑  i∈Ij

fi

∑  i∈Ij
ki+λ

                                                                                          (5.31) 

and determine the equivalent value by: 

ℒ̃t(p) = −
1

2
∑  T

j=1

(∑  i∈Ij
fi)

2

∑  i∈Ij
ki+λ

+ γT                                                                   (5.32) 

As it is sometimes difficult to keep track of all potential tree structures, XGBoost takes a greedy 

approach, gradually adding branches to the tree, starting with a single leaf. The presented 
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formula acts as a score mechanism for assessing the tree structure. Consider the sets of 

instances of the left and right nodes following the split to express the loss reduction: 

ℒsplit =
1

2
[

(∑  i∈IL
fi)

2

∑  i∈IL
ki+λ

+
(∑  i∈IR

fi)
2

∑  i∈IR
ki+λ

+
(∑  i∈I fi)2

∑  i∈I ki+λ
] − γ                                     (5.33) 

The XGBoost is effective in collecting the complexity of seismic data, making it an optimized 

choice for modeling formulas related to the earthquake [156]. The algorithm works gradually 

and creates a number of decision trees, and each tree is constructed to correct the mistakes that 

remained from the previous tree. These decisions production of trees is designed in an adaptive 

and iteration manner, each with a previous tree focusing on minimizing the irregularities 

between the actual values and the expected results from the previous trees. This process allows 

XGBoost to gradually specify its predictions and increase the accuracy of the model over time. 

The strength of the XGBoost core lies in its access to a set that combines the outputs of multiple 

decision -making trees, each individually weak - into a single robust and accurate model. By 

using the collective predictive power of these XGBoost trees, it alleviates the limitation of any 

single model. The algorithm also includes techniques such as L1 and L2 regularization on the 

weight of the leaves to prevent excessive connection. Regularization penalizes too complex 

models, promotes simplicity and generalization. This is important for modeling seismic data 

where there is high risk of excessive noise and irrelevant pattern is high. XGBoost optimizes 

an objective function consisting of two main components, which are the losses that measure 

prediction errors and conditions that reduce model complexity. The optimization process 

adapts model parameters to achieve the best balance between accurate prediction and model 

simplicity. This is suitable not only for training data but also for invisible data. mechanism 

stops the training process. XGBoost creates predictions by aggregation all the trees in the data. 

Further, connecting with seismic analysis, this access to the data allows the model to effectively 

record complex data relationships and ensure more accurate predictions.  

5.11 Integrating SARIMA with XGBoost 

 
The combination of SARIMA and XGBoost in the seismic analysis of the temporal series offers 

enhanced and successful approach that significantly increases the precision of the earthquake 

prediction as shown in Figure 5.5. SARIMA's series is widely known for its ability to capture 

self-representative and temporal dependencies and seasonal trends that are present in 

earthquake data. The forecasts are produced firstly by SARIMA model, which captures the 
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dynamics of the basic time of seismic activity. However, earthquake data are often 

characterized by complex and non-linear behavior that SARIMA cannot be completely 

captured. This complexity is the result of a versatile nature of seismic events that may include 

several interaction factors, such as geological conditions, failure lines and environmental 

variables. As a result, there remains differences between the actual and predicted values, which 

represent inexplicable variations or complex patterns that do not address the initial model. To 

solve this issue, XGBoost, a powerful automatic learning algorithm, is known for its ability to 

capture non -linear complex relationships and complex data patterns is used. By training 

XGBoost in the residual of the SARIMA model, the algorithm learns to identify other factors 

that affect the seismic activity, to improve the original predictions and improve accuracy. The 

capacity of the model to process residual allows to adapt to nonlinear data, as sudden changes 

in seismic activities that may not follow a clear linear trend. During this phase, advanced 

techniques such as cross validation are used to guarantee the optimal parameterization of 

XGBoost model as it is useful to avoid excessive expulsion and ensure that the model is well 

widespread to invisible data. The model is trained in several subset data and its verification 

against other help to the cross validation of the hyperparameters of fine tune, such as the 

learning rate, the depth of the tree and the number of epochs that are essential for the 

performance of the model. 

The integration of SARIMA and XGBoost creates a robust and adaptive model that can handle 

linear and nonlinear aspects of seismic data. The SARIMA model shows time and seasonal 

structures, while XGBoost deals with non-linear complexities and patterns that come from data. 

This hybrid model allows a more accurate and integral frame to predict the earthquake. In 

addition, this approach improvises the model's ability to identify all seismic trends, patterns 

and anomalies. For example, SARIMA helps in capturing seasonal trends and cyclical patterns 

in the time series data and XGBoost helps in modeling complex, non-linear relationships 

between variables to improve the accuracy of earthquake prediction. This approach 

significantly increases the ability of forecasts and provides more reliable earthquake 

predictions. This integrated approach is particularly valuable in the broadest context of seismic 

risk assessment, and it helps with better preparations. In addition, this hybrid model is used in 

several domains, such as timely warning systems, disaster planning and seismic behavior at 

logical and global scale. SARIMA excels in capturing basic time addictions, seasonal patterns 

and the author's dynamics by the earthquake data, while the XGBoost machine learning 

capabilities allow him to identify and improve non -linear patterns that SARIMA may miss. 
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Figure. 5.5. Work Flow of proposed mode SARIMA–XGBoost for earthquake time series forecasting 

This integration provides a more comprehensive insights of the behavior of the earthquake, 

allowing modeling of both linear and non -linear effects. The best parameters in features 

extracted from SARIMA, such as seasonal trends and autocorrelation, combined with the 

adaptive nature of XGBoost based on data, creates a robust prognosis model that not only 

increases the accuracy of prediction but also increases its ability to generalize to incredible 

data. Capturing the complex dynamics of seismic activity This methodology increases the 

reliability of the earthquake predictions, allowing more precise predictions and better readiness 

strategies. In regions prone to earthquakes, the benefits of this hybrid model exceed more than 

improved prognosis. It creates the creators of the decision -making tools necessary for 

proactive risk management and the allocation of resources. The ability to predict seismic events 

with greater accuracy in disasters' readiness systems and timely warning systems, which 

potentially reduces life loss and property damage. In addition, the adaptability of the model 

makes it possible to develop with changing seismic patterns and ensure its importance in a 

dynamic and complex geophysical environment. This advanced data-based approach offers a 

powerful tool for increasing safety and resistance in vulnerable regions. 
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5.12 RESULTS  

 
In this chapter three models (SARIMA, ARIMA and hybrid SARIMA-XGBoost) were 

configured and simulated to evaluate their performance in the prediction of the earthquake. The 

process began with comprehensive data cleaning which is preliminary pre-processing and 

exploratory data analysis (EDA), this step makes sure that the dataset is prepared for accurate 

modeling. Further, all three models were configured and simulated to capture different aspects 

of seismic data, including time patterns, trends and nonlinearity in data. The ARIMA and 

SARIMA models focus on the analysis and forecasting of the time series based on the 

autoregressive engineering, as well as seasonal changes in the case of SARIMA. SARIMA-

XGBoost, the integration of the SARIMA algorithm and the XGBoost algorithm, combines the 

strengths of both and captures both linear and non-linear trends for more refined predictions. 

The metrics used to evaluate the performance of these model are Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE) and Mean Squared Error (MSE). These metrics measure 

error between the real values and the expected values and evaluate the precision of the 

predictive model. To improve the precision of the model and minimize the error rate, carefully 

divide the data set into training sets and test and ensure robust access to the model verification 

and performance evaluation.  This collected data discovered that approximately 70 

observations were captured in this time frame, which represents approximately 80% of all 

series occurrences in the series. This is designed for training purposes, which allows the model 

to learn all the patterns and trends of historical seismic data. The remaining 20% of the data 

consists of earthquake events from 2001 to 2023 and are reserved for the test and validation of 

the model. This set of tests is carefully selected to include newer earthquake events, which 

guarantees that the ability to generalize the future data model and consider any change or trend 

that may have occurred. This distribution of training tests is decisive to reduce the risk of 

excessive amounts, since it guarantees that the model is tested for data that have not been 

included in the training process. 

In addition, it helps simulate scenarios in the real world, where the future events of the 

earthquake based on historical data need to be predicted. By providing the historical dataset for 

training and testing, we are able to access its better predictions, verify its predictive power and 

ensure that it remains relevant and effective in predicting seismic events in the coming years. 
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Using the method of seasonal decomposition of time series, we break down many seismic data 

into basic components: trends, seasonality, residual or errors which are often visualized via 

line-chart. These patterns provide important information about immediate changes in seismic 

areas. Understanding changes in seismic frequency over very short periods requires recognition 

of positive patterns that show an increase in seismic events or negative trends indicating errors. 

Regression analysis and trendlines are used to further quantify these patterns. This supports the 

strength and importance of observed seismic activity changes. Monthly data analysis allows 

long changes in seismic samples to be recorded. To evaluate statistics over time, we use the 

ADF an extensive statistical test. The results listed in Table 2 provide important key point about 

the basic characteristics of seismic data. ADF tests are important for determining whether time 

series is stationary. This means that its statistical properties are consistent over time. In this 

case, the time series is subjected to ADF tests, and a p-value for results above 5% indicates that 

the null hypothesis of non-stationary material cannot be rejected. This indicates that the time 

series does not show steady-state behavior. This means that their statistical properties differ 

over time.  

 

Figure. 5.6. Monthly distribution of earthquakes and seismic energy release over time 

Once the data is cleaned, it is divided into training and testing sets, usually with 80% of the 

data assigned to the model training and the remaining 20% reserved for their performance 

testing. This division allows the model to learn from historical data and then be evaluated on 
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invisible data to assess its generalization. After this its focuses on the application of the 

SARIMA model. First, EDA is performed using the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots. 

ALGORITHM 5.1:  EARTHQUAKE TIME SERIES FORECASTING USING SARIMA                          

AND XGBOOST 
 #Data Preprocessing 

 Earthquake_data=load_data(‘earthquake.csv’)                                             #Load earthquake time series data 

 Cleaned_data=preprocess_data (Earthquake_data)              #Preprocess data (Handle missing values, outliers) 

 train_data, test_data =split_data(Cleaned_data,train_size=0.8)          #Split data into training and testing sets 

  #SARIMA Modeling 

  acf_plot, pacf_plot = plot_acf_pacf (train_data)                                    #Conduct EDA (plot ACF, PACF) 

  p,d,q = Select_sarima_parameters(acf_plot, pacf_plot)                     #Select SARIMA parameters (p,d,q) 

  sarima_model=fit.sarima(train_data, p,d,q)                                      #Fit SARIMA model to training data 

  sarima_forecasts = sarima_model.forecast(test_data.shape[0])                                      #Generate forecast 

  #Feature Engineering 

  sarima_residuals=calculate_residuals(train_data, sarima_forecasts) #Extract additional features from 

SARIMA residuals 

  lagged_values= extract_lagged_values(sarima_residuals) 

  moving_averages=calculate_moving_averages(sarima_residuals) 

  feature_matrix=combine_features(train_data, lagged_values,moving_averages) 

  #XGBOOST Modeling 

  xgb_model=initialize_xgboost(n_estimators=100, max_depth=3, learning_rate=0.1, reg_lambda=1)                                         

#Initialize XGBoost Regressor with hyperparameters 

  xgb_model.fit(feature_matrix, train_labels)                             #Train XGBoost model on feature matrix 

  xgb_forecasts=xgb.model.predict(test_features)                                  #Generate forecasts for testing set 

   #Prediction and Evaluation 

   Combined_forecasts=combine_forecasts(sarima_forecasts, xgb_forecasts) #Combine SARIMA and 

XGBoost forecasts 

   #Evaluate model performance using error metrics (MAE, RMSE) 

   mae = calculate_mae(test_labels,combined_forecasts)                   

   rmse= calculate_rmse(test_labels,combined_forecasts) 

 

These plots are essential for understanding time dependence in the time series data. The ACF 

plot identifies the relationship between the time series and delays in time intervals. The peaks 

in the ACF graph reveal possible seasonal trends or addictions that could be present in the 

dataset. The PACF plot shows the correlation between the time series and its backward values 

after checking intermediate delays which helps in providing direct relations between specific 

delays. By studying these graphs, the key delays that affect data can be identified in the 

determination of the AR and the M), including seasonal variations. Using knowledge from 

ACF and PACF graphs, suitable parameters are selected. These parameters help to capture both 

seasonal and non-seasonal components of the time series. Once the SARIMA model is 

configured with these parameters, it is adapted to the training data and the forecast is generated 
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for testing data. After modeling SARIMA with residual represents the differences between the 

expected and real values that were not explained by the SARIMA are extracted. 

These residuals are then used as other features for the next modeling phase. This step is 

important because the residuals may contain information about data that has not been captured 

by SARIMA, and modeling with machine learning techniques, such as XGBoost, can be further 

specified. Through this process, SARIMA captures the basic time trends and seasonal patterns 

in the earthquake data, while XGBoost solves any non-linear relations or residual complexity 

that remains consistent, which eventually leads to a more accurate and reliable earthquake 

prediction. The selection of parameters for the SARIMA model is primarily determined by the 

analysis of the ACF and partial autocorrelation function PACF. These graphs are generated 

from differentiated time series data and serve as key tools for identifying the appropriate 

SARIMA parameters as shown in Figure 5.7. The ACF is illustrated by the correlation between 

the time series and its backward values at different time delayed, while the PACF graph focuses 

on the correlation between the time series and its backward values. By careful examination of 

these graphs, it is possible to identify significant peaks that indicate suitable p and q values 

that are necessary to capture time dependence and patterns in data. The aim to select optimal 

SARIMA parameters is not only to identify a model that best presents the basic data, but also 

to minimize the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC). AIC and BIC are statistical measures that help evaluate the goodness of the model in 

penalty for the number of parameters included, thus preventing excessive evaluation. Lower 

AIC or BIC indicates a better model. In addition to minimizing these criteria, it is essential that 

the residues of the other model are normally distributed and uninterrupted, ensuring that the 

model sufficiently captured the basic data patterns without leaving significant patterns 

inexplicable. The ADF test is also used to evaluate the series to ensure that the time series data 

is also correctly illustrated. Because this suggests that the statistical characteristics of the series, 

including its average and scattering, are constant in time, the stationarity is a key prerequisite 

in the analysis of time series. One statistical method to determine whether the time series is 

stationary is the ADF test.  

Table 5.2 provide a comprehensive evaluation of SARIMA models applied to the earthquake 

forecasting. In a series of earthquake numbers, the ADF test provides the values of 0.204 and 

0.246, which are relatively high, suggesting that the series probably shows non-stationary 

behavior. 



135  

TABLE 5.2 Evaluating SARIMA Models for Max-Magnitude and Earthquake Number. 

Series ADF Test Model AIC BIC 

Earthquake Number 0.204 SARIMA (2,1,2)(1,0,1)(S=12) 4.255 4.382 

 0.246 SARIMA (2,1,1)(1,0,1)(S=12) 4.175 4.301 

Max-Magnitude 0.049 SARIMA (2,1,2)(1,0,1)(S=12) 2.364 2.492 

 0.051 SARIMA (2,1,1)(1,0,1)(S=12) 2.425 2.551 

 

To solve this SARIMA model is used by considering two configurations: SARIMA (2.1.2) 

(1.0.1) (S = 12) and SARIMA (2.1.1) (1.0,1) (S = 12). The SARIMA model (2,1,2) (1,0,1) (S 

= 12) created the AIC with value 4.255 and BIC with value of 4.382. For comparison the 

SARIMA model (2.1.1) (1.0.1) (S = 12) showed slightly lower AIC and BIC values, with AIC 

4.175 and BIC 4.301. While the second model (SARIMA (2,1,1) (1.0,1) (S = 12)) had better 

AIC and BIC scores, it was decided to select the SARIMA model (2.1,2) (1.0,1) (S = 12) for a 

series of earthquakes due to its better overall condition and performance. Similarly, for the 

Max-Magnitude series, the ADF test values were 0.059 and 0.061, indicating marginal non-

series in the series. The SARIMA model (2.1.2) (1.0.1) (S = 12) reached the AIC 2.364 and the 

BIC value of 2,492. On the other hand, the SARIMA (2.1.1) (1.0.1) (S = 12) had a slightly 

higher AIC and BIC 2.425 and 2.551. Based on the lower AIC and BIC scores, SARIMA 

(2,1,2) (1,0,1) (S=12) was deemed the optimal model for the Max-Magnitude series. 

 

Figure 5.7 ACF and PACF Plots for Analysis of Autocorrelation and Partial Autocorrelation Functions for 

Earthquake Time Series Data. 
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Further, to enhance the time series analysis, the SARIMA model is integrated with the 

XGBoost model. This machine learning model succeeds in detecting complicated nonlinear 

correlations in the data as shown in Figure 5.8. 

 

Figure 5.8 The flow chart of the combined SARIMA-XGBoost model. 

 

The residuals from the SARIMA model undergo a feature engineering process, wherein lagged 

values and moving averages are computed to capture temporal dependencies and trends that 

the SARIMA model may not have fully accounted. These engineered features are then 

incorporated into a comprehensive feature matrix, which combines the original training data 

with the additional features. This enriched matrix serves as the foundation for training the 

XGBoost model. To ensure optimal performance, the XGBoost is initiated by carefully selected 

hyperparameters, including the number of trees, maximum depth of trees, learning rate and 

regularization parameter. These settings control the complexity and learning capacity of the 

model. The XGBoost regressor is then trained on this element matrix and learns to identify and 

model complex formulas and residuals that have been left by the SARIMA model. After 

completing the training phase, the XGBoost generates predictions for the test set and provides 

refined forecasts that are responsible for complex relationships and patterns within data. The 

XGBoost is trained using the time-based index, along with the corresponding fluctuations to 

optimize their hyperparameters for the best predictive performance. As shown in Figure 5.9, 

XGBoost improves predictions by dealing with residual errors that remain SARIMA. The 

XGBoost, known for its ability to learn the data, is particularly effective in capturing these 

residual patterns. In each iteration, a new tree of decision-making is created that model from 

the predictions of the previous trees. This iteration process allows the model to gradually 
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specify its understanding and reduce residual errors, thereby improving the overall accuracy of 

prediction. In addition, XGBoost includes regularization techniques such as shrinkage and 

pruning, to combat the switching and securing the model well generalizes invisible data. The 

shrinkage, also known as the degree of learning, controls the benefits of each tree, while 

pruning helps eliminate too complex trees that do not have to add significant predictive value. 

These regularization techniques help XGBoost effectively manage residues, reducing the 

likelihood of excessive amount and at the same time improving its ability to accurately capture 

complex patterns in data. Through its support and mechanisms of regularization mechanisms, 

XGBoost significantly increases its performance, especially when solving residual errors that 

are key to precise prediction of seismic size. 

 

Figure 5.9 Residual Error Count and Density Graphs for Earthquake Time Series Prediction. 

 

After the XGBoost training on the set of earthquake data, we observed a significant reduction 

in the MSE when compared to other approaches to machine learning. Specifically, XGBoost 

reached MSE of 0.0040, which significantly exceeded other models. For comparison, the 

ARIMA-LSTM model resulted in MSE with 0.0055, the LSTM model created MSE of 0.0100 

and the transformer model had 0.142. These results clearly show that XGBoost was most 

effective in minimizing prediction errors between tested models. In addition, the RMSE for the 

XGBoost was calculated 0.068, which further supported its excellent performance in terms of 

the accuracy of prediction compared to other methods. The XGBoost capacity to achieve such 

a low errors rate is an attributed to its emphasis on reducing residues during the training 

process. XGBoost assigns greater importance to data points with larger residuals, which prefers 

to correct prediction errors. The iterative nature of the increasing process ensures that the model 

gradually improves its accuracy by constant improving its predictions. In addition, to prevent 

excessive impact, the maximum depth of the trees is limited, which helps the model effectively 
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generalize to data. Intrinsic selection of input parameters is necessary to optimize XGBoost. 

One of the key parameters is the number of appraisers that dictates the number of increasing 

rounds (or decision -making trees) to undergo during the training. In our implementation, we 

set this value to 100, which allows XGBoost to perform a sufficient number of iterations and 

improve its predictions in a large number. This iterative correction is particularly beneficial for 

capturing fine features in residues that could otherwise be overlooked. Another important 

parameter is the degree of learning, which controls how much weight each new tree contributes 

to the final prediction. The less learning level prevents an exaggerated response to individual 

data points, which allows smoother and more consistent improvement over time without 

excessively weighing any single observation. Finally, checking the maximum depth of trees is 

essential to prevent excessive expulsion. Figure 5.10 illustrates key components extracted from 

the time series and represent a trend, seasonality and residuals. This visual representation helps 

to clarify how the model solves these different aspects during the forecast process, which 

contributes to its predictive accuracy. 

 

Figure 5.10 Magnitude Decomposition of Earthquake Time Series: Trends, Seasonal Patterns, and Residuals. 

Trends and seasonality components are essential to report predictive models, such as the 

SARIMA model, which predicts future seismic events. The trend component reflects long -

term movements or addresses in the data, while part of the seasonality corresponds to recurrent 
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fluctuations associated with specific time intervals, such as months, seasons or even weeks. On 

the other hand, the noise component represents random or unpredictable variations that cannot 

be easily modeled. By separating these components, we can improve our understanding of 

seismic patterns and improve the precision of predictions. The trend helps to detect the 

directional changes in seismic activity and seasonality detect the cyclic patterns that are 

repeated at regular intervals. Analysis of seasonality and trends in the sequential dataset of 

earthquake is necessary to obtain a significant vision of seismic behavior over time. When 

evaluating long-term trends and seasonal patterns it detects basic earthquake checks and make 

more accurate predictions. Seasonality is particularly important because it captures shorter and 

periodic fluctuations in seismic events that can be associated with environmental or geological 

cycles. This information helps to create a more robust predictive model that allows precise 

prediction of seismic activity. Further, the ADF test creates two hypotheses one is zero 

hypothesis (H0) which assumes that the data has the root of the unit and another one is the 

alternative hypothesis (H1), which claims that the data is stationary and lacks the root of the 

unit. This test results in primarily p-value, which is used to assess the data. If the value P 

exceeds the selected significance level, which is usually 0.05, the null hypothesis cannot be 

rejected, indicating that data is not if the data is not. 

This step is essential to ensure that time series data is suitable for modeling. In order to solve 

the non -stationarity and trends more efficiently, we use the rolling windows. The rolling mean 

includes the calculation of the rolling diameter in the specified time window, smoothing short 

-term fluctuations and emphasizing longer-term trends. The choice of window size is critical 

because it determines a compromise between capturing meaningful trends and reducing the 

impact of noise. The rolling mean extraction technique helps to emphasize wider, basic trends 

in earthquake data, such as increasing or reducing seismic activity over time. In addition to 

detection of trends, the rolling method also helps to reduce noise, which makes it easier to focus 

on the basic formulas in the data and at the same time reduce the impact of temporary 

irregularities. The visual representation of the time series, including the original earthquake 

data and the rolling diameter, offers a clear and intuitive way to compare unprocessed data with 

smoothed trends, as shown in Figure 5.11. These visualizations play an important role in the 

help of researchers of the decision to understand the basic dynamics of seismic data and make 

it easier to interpret complex time patterns in the earthquake. 
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Figure 5.11 Rolling Mean and Standard Deviation vs Monthly Seismic Energy and Earthquake Counts. 

The visual representation of the earthquake time series data, which includes both the original 

data file and the rolling mean, plays a key role in the detection of formulas that can be hidden 

in raw data. By smoothing the time series using rolling techniques, it is easier to detect trends 

and fluctuations that were previously covered. This visualization increases the depth of our 

analysis by allowing us to observe fine trends or variations that can be decisive for 

understanding basic seismic activities. Using the average extraction of rolling on data set in the 

time series of earthquakes, we observe only small fluctuations of average rolling values, 

without apparent long-term trend. This observation suggests that the data can show stationary 

data, which means that its statistical properties such as average and scattering do not change 

over time. Although it provides an initial indication, statistical testing is necessary to assess 

whether the data is actually stationary. To ensure more reliable evaluation, we perform 

improved ADF test, a widely used statistical method for testing stationary testing. The ADF 

test compares the test statistics obtained from data to a set of critical values that correspond to 

different levels of significance. In our case, it was found that the test statistics fell below 5% 

of the critical value. This result suggests that with a 95% certainty, null hypothesis of non-

stationary can be rejected. This provides strong quantitative evidence that the earthquakes are 

stationary, which is confirmed by our visual evaluation. Placing the ADF test statistics in the 

rejection area is a clear indication that the earthquake data does not show the root of the unit, 

which further supports the conclusion that the time series is stationary. This strict statistical 

confirmation increases confidence in the analysis and strengthens the overall understanding of 

the behavior of the time series, which allows more accurate modeling and predicts seismic 

events. 
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5.13 DISCUSSION  

 
Our real-time earthquake study has been carried out using up to 12 high-performance cloud 

computing instances, each equipped with dual GPU NVIDIA GeForce RTX 4090, which are 

specially optimized to handle machine learning calculations. These cloud instances are 

essential for the effective training and evaluation of our hybrid SARIMA-XGBoost. Examples 

are equipped with Intel Core i9-13900K processors, known high number of core and advanced 

multi-rolls, which is suitable for managing dataset with large data and intensive calculations. 

These processors allow the system to process multiple tasks that are decisive for data 

preliminary work, analysis and workflows. In addition to the Core I9 processors, we also used 

the AWS EC2 with the NVIDIA A100 GPU and provided scalable sources of computer 

technology on request. The hybrid model SARIMA-XGBoost was implemented using 

Tensorflow and XGBOOST frames. For its robust support of neuron networks and other 

advanced machine learning techniques, it was ideal for handling comprehensive modeling 

processes involved in the earthquake prediction. On the other hand, the XGBoost was chosen 

to increase the performance of the model through advanced trees-based algorithms, which 

further increases prediction accuracy. The implementation involves the use of SARIMA for 

modeling data from earthquakes. The dataset is resampled regularly. The train-test split 

includes assigning 94% of the resampled data to the training set and remaining 6% to the testing 

set, shown in Figure 5.12. 

In our study, we carefully divided the data into separate sets of training and testing to optimize 

performance and effectively evaluate the SARIMA model. The initial data distribution focuses 

on the allocation of a significant part for training, allowing SARIMA to learn the basic formulas 

and trends built into seismic data of time data. This phase of training is essential because it 

allows the model to capture complex seasonal and trend components present in the data that 

are necessary for precise predictions. By training this larger set of data, the SARIMA model 

can specify its ability to predict future seismic events based on the samples that are identified. 

Once the model is trained, its performance is then evaluated using a smaller, reserved part of 

the data that corresponds to the remaining 6%. This reserved test set plays a decisive role in 

evaluating the possibility of generalizing the model. By testing data that the model do not fulfill 

during training, we can determine how well it can make predictions on invisible data, ensuring 

that the prediction generated by the model is reliable and robust. 
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Figure 5.12 Training and Testing Split in relation to Monthly Seismic Energy Released for Earthquake Time 

Series Prediction. 

To fine-tune the SARIMA model, we configure some important parameters that control its 

training process. First, we set the epoch to 100, that defines the number of times how many 

times the entire data file for training goes through during the training phase. This ensures that 

the model has enough opportunities to learn from data and adjust its parameters for optimal 

performance. The batch size is set to 32, which means that the model processes 32 samples at 

the same time before updating the model's weight. This will affect the balance between training 

efficiency and the model's ability to learn effectively from data. In addition, the premature 

termination of school attendance 0.3 to prevent excessive filling is used. The supplement 

includes a random dropping or 30% of neurons during each training step, helping to prevent 

the model from relying too much on any particular feature or set of functions, thus promoting 

generalization. The learning rate is set to 0.001, which checks how many weights of the model 

are modified during each update. The small learning rate ensures that the model can learn 

effectively without making drastic, unstable weight changes, which could lead to poor 

performance or exceed the optimal solution. To ensure that the model does not overcome 

training data and can be generalized to new data, we implement a 0.2 verification distribution, 

which means that 20% of the training is earmarked for verification during the training process. 

This allows to monitor the performance of the model in real-time on invisible data and helps 

to adapt as needed to avoid excessive impact and improvement. Table 5.3 outlines a specific 

configuration used for SARIMA-XGBoost, including key parameters such as number of time 

steps, batch size, number of epochs, learning levels and data distribution. This comprehensive 

setting ensures that the SARIMA-XGBoost hybrid model is correctly tuned to optimal 

performance, allowing it to generate accurate prediction. 
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TABLE 5.3 Optimal model hyper-parameters used in SARIMA-XGBoost model. 

 

Optimal Model Hyper-parameters Values 
Time steps 10 

Batch Size 32 

Epoch 100 

Dropout rate 0.3 

Learning rate 0.001 

 

Table 5.4 presents the configurations for three different time series forecasting models: 

ARIMA, SARIMA, and SARIMA-XGBoost. The ARIMA and SARIMA models share similar 

order parameters, specifically (p, d, q) = (0, 1, 1), which denotes that the ARIMA model does 

not include any autoregressive components p = 0, applies a first-order differencing d = 1 to 

make the data stationary, and incorporates a moving average term with a lag of q = 1. This 

configuration is typically used for datasets where the data exhibits trends but no significant 

autocorrelation over multiple lags. For the SARIMA model, which extends ARIMA to account 

for seasonality, additional seasonal order parameters are introduced. These seasonal parameters 

are denoted as (P, D, Q, s) = (0, 1, 1, 12). Here, (P) represents the seasonal autoregressive order, 

(D) is the seasonal differencing order, (Q) is the seasonal moving average order, and (s) is the 

number of periods in each season—set to 12 to capture a yearly seasonal pattern. This 

configuration allows the SARIMA model to better handle seasonal variations in the data, 

particularly in cases where seismic activity follows annual patterns or other cyclical behaviors. 

In the SARIMA-XGBoost hybrid model, the ARIMA-based parameters (p, d, q) and seasonal 

parameters (P, D, Q, s) are kept consistent with those used in the SARIMA model to retain the 

temporal and seasonal components. However, the SARIMA-XGBoost model also incorporates 

settings for the XGBoost algorithm, a powerful machine learning technique that enhances the 

predictive capabilities of the model. The XGBoost settings include 100 estimators (i.e., 100 

decision trees in the ensemble), a learning rate of 0.05 to control how much each tree influences 

the overall prediction, and a maximum depth of 5 for each decision tree, which limits the 

complexity of each individual tree to prevent overfitting. These configurations allow XGBoost 

to effectively model residues or inexplicable scattering with the SARIMA component, which 

improves the accuracy and robustness of the hybrid model using traditional statistical methods 

and modern teaching techniques. By combining these two methodologies, SARIMA for 

statistical handling of time series data and access XGBoost of machine learning approach. Now 

focuses on the hybrid model SARIMA-XGBoost to provide more accurate predictions, 

especially when capturing non-linear patterns and complex relations that cannot be fully solved 

by SARIMA. 
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TABLE 5.4 SARIMA-XGBoost hybrid model input parameters. 

Model Parameter Values 
ARIMA Order (p, d, q) (0,1,1) 

SARIMA Order (p, d, q) (0,1,1) 

Seasonal Order (P, D, Q, s) (0,1,1,12) 

SARIMA-XGBoost Order (p,d,q) (0,1,1) 

Seasonal Order (P, D, Q, s) (0,1,1,12) 

XGBoost Estimators 100 

XGBoost Learning Rate 0.05 

XGBoost Maximum Depth 5 

 

The hybrid SARIMA-XGBoost has shown exceptional performance in capturing both time 

patterns and complex non-linear relations within the earthquake data. Once the model is trained 

on seismic data, it effectively identifies and model basic trends, seasonality and non-linear 

dynamics that characterize the data file. After the training process, the model was used to 

generate predictions for the coming years and results, as shown in Table 5.5, reveal a significant 

improvement in accuracy compared to other forecast methods. These metrics of increased 

accuracy emphasize the ability of the model to provide more accurate forecasts. 

Table 5.5 Comparison of MSE, MAE and RMSE of the SARIMA-XGBoost Model. 

Authors Models MAE MSE RMSE 

Mohd Saqib et al. [157]  ARIMA-LSTM 0.271 0.0055 0.0746 

Öncel Çekim et al. [158] LSTM 0.0618 0.0100 - 

E. Abebe et al. [159] Transformer 0.271 0.142 0.376 

Proposed Model SARIMA-XGBoost 0.038 0.0040 0.068 

 

Several notable studies have contributed to the advancement of seismic time-series forecasting 

using different modeling approaches. Mohd Saqib et al. [157] developed a hybrid ARIMA-

LSTM model that combines the strengths of ARIMA for capturing linear and seasonal trends 

with the Long Short-Term Memory (LSTM) neural network’s ability to model nonlinear and 

long-range temporal dependencies. This approach successfully leveraged statistical and deep 

learning methods, achieving an MAE of 0.271, MSE of 0.0055, and RMSE of 0.0746, 

reflecting its competency in predicting seismic activity with reasonable accuracy. Öncel Çekim 

et al. [158] focused solely on an LSTM-based architecture, a recurrent neural network variant 

well-suited for sequential data. Their model excelled in minimizing the Mean Absolute Error 

(MAE) to 0.0618, demonstrating the LSTM’s strength in modeling temporal dynamics of 

seismic signals. However, the study did not report RMSE, which limits direct comparison on 
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that metric. E. Abebe et al. [159] explored the application of the Transformer architecture, 

which has gained popularity due to its attention mechanism and ability to model long-range 

dependencies without recurrence. While Transformers have achieved success in various 

sequential tasks, in this specific context, the model recorded comparatively higher errors—

MAE of 0.271, MSE of 0.142, and RMSE of 0.376—indicating challenges in effectively 

capturing seismic time-series patterns using this architecture alone, possibly due to the limited 

data size or noise in the dataset. Building on the strengths and limitations of these previous 

works, the present chapter proposes a hybrid SARIMA-XGBoost model. SARIMA, a classical 

statistical method, excels in modeling seasonality and trends in time-series data, providing a 

robust baseline for predictable linear components. XGBoost, an efficient gradient boosting 

algorithm, complements this by capturing nonlinear interactions and complex feature 

relationships that classical models often miss. The integration of these models enables more 

accurate and robust earthquake prediction. 

The proposed SARIMA-XGBoost model was rigorously evaluated on the same seismic 

datasets as the referenced works and achieved a significantly improved performance with an 

MAE of 0.038, MSE of 0.0040, and RMSE of 0.068. These results outperform those of Mohd 

Saqib et al., Öncel Çekim et al., and E. Abebe et al., demonstrating the effectiveness of 

combining classical time-series analysis with modern machine learning techniques. This hybrid 

approach successfully balances the strengths of each method, resulting in a model that is both 

interpretable and powerful in handling the complexity of seismic data. 

The comparison of different models is based on metrics, such as MAE, MSE, and RMSE that 

provide a comprehensive view of the precision of prediction. Among the tested models, the 

hybrid SARIMA-XGBoost model permanently overcomes others and demonstrates the lowest 

error values in all three metrics. Specifically, SARIMA- XGBoost reaches MAE 0.038, MSE 

0.0040 and RMSE 0.068. These results emphasize its excellent accuracy compared to 

alternative models such as ARIMA-LSTM and transformer that show a higher level of errors. 

The success of SARIMA-XGBoost can be attributed to its integration techniques SARIMA and 

XGBoost. This combination allows SARIMA-XGBoost to manage both linear and non-linear 

aspects of the earthquake time series, making it a more robust tool for the prediction of the 

earthquake. Comparative analysis strengthens the main role of SARIMA-XGBoost in the 

accuracy of the forecast and builds it as a valuable model for progress in the predicational 

capabilities of the earthquake. 
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Figure 5.13 True and Predicted Values using the SARIMA-XGBoost Model. 

Figure 5.13 provides detailed visual representation of the accuracy of the model prediction and 

effectively shows the accuracy of the hybrid model SARIMA-XGBoost. In this graph, the x-

axis represents years, which allows a clear understanding of the temporary time of the 

earthquake over time. The Y axis reflects the size or magnitude of the earthquake and provides 

a quantitative scale for the predicted and compared values. The full line on the graph 

corresponds to the actual amount of earthquake observed in a given time period, also referred 

to as "TRUE" value. This line represents recorded data of seismic activity over the years. On 

the other hand, the interrupted line represents the estimated earthquake generated by the 

SARIMA- XGBoost model. These predictions are based on the model training using historical 

data, which include both seasonal patterns and non-linear trends. The narrow alignment 

between fixed and intermittent lines throughout a wave of similar pattern is a clear indicator of 

the model accuracy. Because the lines follow a similar trajectory, it means that the model 

effectively captures the formulas of the earthquake size over time, both in terms of their size. 

This high level of alignment between the assumed and actual values suggests that the hybrid 

model SARIMA-XGBoost has successfully learned from the underlying data and precisely 

predicts future events. The fact that predicted values closely monitor the trend of actual values 

means that the model effectively monitors these fluctuations, including any seasonal or cyclic 

trends, as well as charge any deviations or anomalies in data. 

Figure 5.14 provides a comprehensive visualization of the probability of earthquake over time, 

indicating a significant improvement when a hybrid SARIMA-XGBoost is used. This graph 

present forecasts generated by a model to release seismic energy for a specific period. 

SARIMA-XGBoost uses the strengths of two different methodologies one is SARIMA model 

which is effective in capturing cyclic and seasonal patterns in data and XGBoost manages 
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integral relationships of non-linear dataset. The trend of future seismic activities is carefully 

identified by examining the slope of the predicted line. The graph contains green waves pattern 

which stand out to represent a period in which earthquakes are predicted by SARIMA-

XGBoost. These green areas provide key information about when the model expects the 

seismic energy release peak, indicating a greater probability of earthquake. The result is a 

clearer understanding of possible seismic patterns and provides valuable information on the 

future earthquake prediction. 

SARIMA-XGBoost implementation significantly increases the preparation and response of the 

earthquake. The combination of SARIMA’s advantages in time series with advanced ML model 

XGBoost’s advantages this study provides the potential for more precise predictions of time, 

location and magnitude of earthquake in future. 

 
 

Figure 5.14 Forecasting Graph illustrating predicted earthquake magnitudes over time using the SARIMA-

XGBoost model. 

 

These improved forecasting techniques allow terms to act more actively and provide them with 

the ability to implement resources like when to evacuate and also activate early alert systems. 

This proactive approach significantly reduces the risk of coincidence during the earthquake by 

providing the critical information. By understanding patterns and the potential impact of future 

earthquakes, local administration and organization may be more informed about the approach 

to relieve and protect public safety. 
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5.14 CONCLUSIONS 

 
In conclusion, the earthquake forecasting is an important research area that helps in monitoring 

seismic activities and give early warnings to prevent these disasters. In this chapter, we 

represent a novel approach to predict the magnitude and forecast the probability of future 

earthquake using a sequential earthquake dataset. In this approach the key contribution is 

integration of the XGBoost algorithm with the SARIMA model and make a new more accurate 

and reliable hybrid machine learning model. This hybrid model is specially designed to reduce 

the residual errors, reduce loss at the time of validation and increase the accuracy of the time 

series prediction. The efficiency of the model is demonstrated through performance metrics 

like MAE and MSE and on the basis of the result this model confirms its improved and 

enhanced predictive outcomes. SARIMA-XGBoost hybrid surpassed traditional models such 

as ARIMA and SARIMA in terms of prediction precision.  

This study also emphasizes the challenges of reliable prediction of the magnitude of the 

earthquake. Despite the significant progress in predominant technologies, the natural 

complexity of seismic events makes it difficult to achieve precise predictions. However, the 

excellent performance of SARIMA-XGBoost in terms of prediction offers a promising solution 

to some of these challenges. The results show that SARIMA's integration with XGBoost 

exceeds some of the restrictions on traditional models and provides a more reliable and efficient 

method for the prediction of future earthquakes. 
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CHAPTER 6 
 

HYBRID CATBOOST AND SVR MODEL FOR 

EARTHQUAKE PREDICTION USING THE LANL 

EARTHQUAKE DATASET 

 

6.1 Introduction 

Earthquake is one of the most devastating natural disasters. Despite the constant efforts of the 

seismological community, it is still a big challenge to predict earthquake more accurately. 

Currently, the primary tool used to detect an earthquake is using a seismograph that record 

seismic activity [160]. However, these tools are not enough to prevent large damage 

infrastructure or economic assets as they provide only a few seconds warning when the 

earthquake occur. The main challenge in earthquake prediction is the complexity and non-linear 

nature of seismic data. Seismic data are difficult to interpreted and show irregular patterns that 

make it difficult to conclude accurate prediction [161][162].  In this chapter a hybrid model is 

examined which combines two powerful machine learning techniques one is CatBoost and 

another one is support vector regression (SVR) to create a hybrid model which increase the 

earthquake forecasting. In this approach data from the Los Alamos National Laboratory 

Earthquake Dataset (LANL) is used [163].  

When working with the LANL data set, it is important to consider several restrictions and 

potential distortion that can affect the generalization and reliability of the findings. One of the 

key problems is the geographical distortion of the data set, since it focuses on specific regions, 

the conclusions of these data may not be applied to areas with different seismic characteristics. 

For example, if the data mainly come from the tectonic limits of the active fault joints or lines, 

the behavior of the earthquakes in regions that experience less seismic events may not 

accurately represent the behavior of the earthquake in the regions. Another limitation is the 

time gaps in the dataset. The data distribution is uneven over time, which makes the analysis 

of long-term trends difficult and complicate.  If the data contain noise or missing values 

detection of meaningful patterns is difficult and leads to wrong prediction or false positive. If 

the collected data is insufficient or contain noise or incorrect labels this may cause false positive 
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or wrong early warnings of the main earthquakes and can have significant impact on prediction 

models. In connection with the prediction of time in failure (TTF) in controlled laboratory 

environments, researchers usually use machine learning framework (ML) that rely on different 

features and functions. These categories include a) AE -controlled features AE, which are 

directly derived from the signals of continuous acoustic emissions (AE), capturing fine details 

of the structural reaction and behavior of the material; (b) geodetically controlled properties, 

extracted from geodetic measurements, offer insight into the characteristics of material 

deformation and spatial dynamics, thereby illuminating its mechanical integrity; and (c) The 

catalog -controlled element, originating in the catalog of earthquake or seismicity, provides 

historical data on seismic events and their related attributes.  

Despite the limitation present in the LANL dataset, our hybrid CatBoost-SVR model provides 

better results with an effective solution to these challenges. The CatBoost algorithm, known 

for its robustness in handling categorical features and the ability to solve noisy and incomplete 

data, increases the ability of the model to identify important patterns in seismic events. By 

reducing excessive filling and improving CatBoost's generalization, the model ensures that the 

model remains precise in the presence of distortion, such as geographical or time imbalance. 

On the other hand, the SVR component helps capture complicated data relationships, especially 

to model nonlinearities that could occur due to the different sizes and the depth of the 

earthquake. Together, hybrid models use the strength of both algorithms, reducing the effect of 

incomplete or noisy data, and ultimately provide more reliable predictions. In addition, the 

combination of CatBoost functional engineering and precision functional functions allows the 

model to provide information even in limited data records, improving the general precision and 

robustness of earthquake prediction. 

This novel hybrid approach combines CatBoost with SVR.  CatBoost increases the gradient 

boosting, and SVR increases the accuracy of the failure time (TTF). In this approach the LANL 

dataset is used for earthquake prediction. This hybrid model uses strengths of both algorithms 

and make a more enhanced and reliable model which provide more precise and accurate 

earthquake prediction. CatBoost is suitable for dataset with complex relationship as it manages 

the categorical functions and automatic missing values and also captures the complex patterns. 

On the other hand, the SVR, the regression algorithm, used in modeling nonlinear relationships 

and is particularly effective in capturing fine and complex relationships that are present in 

earthquake data, such as changes in magnitude or depth which eventually leads to more precise 

and reliable estimates of TTF. 
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6.2 Methodology 

We implemented a comprehensive methodology in this study that combines advanced machine 

learning techniques with LANL dataset to increase the accuracy of earthquake forecasting 

methods. This methodology begins with the key step of data preprocessing, which is necessary 

to ensure that the dataset is correctly prepared for training and testing the model. This step 

includes careful cleaning to solve the missing values and remote values that can introduce 

distortion and further distort the ability of the model to learn meaningful formulas. Along with 

cleaning, engineering techniques are used to extract valuable statistical properties from the data 

of the raw acoustic signal. These qualities provide a deeper insight into the dynamics of seismic 

activity, enrich the data file and make it informative for prediction purposes [164]. 

Once the dataset is adequately pre-processed, the next step includes training of individual 

predictive models. This starts with CatBoost, a powerful algorithm increasing gradient known 

for its efficiency in the processing of heterogeneous data, including categorical variables. 

CatBoost is trained on a processed data set for generating predictions related to timing. This 

model provides best results in capturing complex relationships and patterns that are difficult to 

detect in seismic data, its also have ability to effectively handle large and diverse sets. At the 

same time, the SVR is trained independently to remove the remaining residual errors that are 

left by the initial CatBoost model. This approach of two-stage modelling is designed to use the 

strengths of both algorithms: CatBoost's ability to identify complex, high-dimensional patterns 

and SVR expertise in modeling non-linear relations associated with seismic data. The 

integration of these two models increases the overall accuracy of prediction. By combining the 

ability to recognize CatBoost patterns with the ability to clarify the forecast through residual 

modelling ensures that complex and fine patterns in seismic data are captured. This additional 

approach allows more precise predictions of the occurrence of earthquakes because each model 

contributes to the overall prediction process. This methodology eventually offers a robust 

framework for the prediction of an earthquake that moves the boundaries of what can be 

achieved by machine learning in the seismic event [165]. 

After the individual models is trained, the methodology proceeds to the integration step, where 

the properties of the generated CatBoost and the residuals obtained from the SVR are combined 

and creates an augmented set of features. This augmented feature set further serves as an input 

for training the hybrid model Catboost-SVR. This hybrid CatBoost-SVR model is evaluated 

using metrics such as Mean Square Error (MSE), which provides a comprehensive comparison 
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with CatBoost and SVR models. This comparison assesses the advantages of hybrid models in 

predicting earthquake occurrences. This is because it allows for a detailed evaluation of how 

well the combined approach exceeds the model itself. After evaluation, the analysis phase is 

performed to interpret the meaning of functions that offer information about how individual 

features and algorithms contribute to the predictive performance of the model. This step is 

essential for understanding the model prediction mechanisms and for identification that 

represents the most important role in the prediction of the earthquake. It also provides valuable 

feedback for the refining of the model and helps to determine potential areas for further 

improvement of future iterations. Cross validation techniques are used to ensure the reliability 

and generalization of the model, which further increases the robustness of the model by 

providing an impartial assessment of its performance across different data subsets. In addition, 

the CatBoost-SVR model is applied to the tuning of the hyperparameter to optimize its suitable 

parameters, ensuring that the hybrid model works with the highest potential for accurate 

earthquake prediction [166]. 

6.2.1 CatBoost Model  

In our research using the LANL dataset with CatBoost as shown in Figure 6.1 emerges as a key 

part of our predictive modeling task. CatBoost, known for its strong gradient boosting 

capabilities, is useful in detecting complex patterns associated with heterogeneous acoustic 

signal data that characterizes the dynamics of seismic activity. CatBoost efficiency is enhanced 

through pre-processing data which includes comprehensive cleaning and feature engineering, 

ensuring that the dataset is well prepared to use maximum abilities of the model. This step of 

pre-processing focuses on the extraction of the most important statistical features from raw 

acoustic signals called feature extraction, which detects the occurrence of earthquakes. During 

the modeling phase, CatBoost is trained on a pre-processed dataset to create initial predictions 

for earthquake occurrence.  

Understanding these key concepts of the training data and the indicator function  

𝑦𝑘
𝑗

= 𝑦𝑙
𝑗
, allows us to define the formula for the encoded value  𝑦̂𝑗

𝑙 , of the jth categorical variable 

of the lth element in 𝐷 as follows: 

𝑦̂𝑙
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       (6.1)  

F(𝑦̂𝑗 ∣ 𝑧 = 𝑤) = F(𝑦̂𝑙
𝑗

∣ 𝑧𝑙 = 𝑤). 



153  

 

Figure 6.1 Architecture of CatBoost. 

One of the key strengths of CatBoost is to provide meters of importance that offer valuable 

knowledge of the basic factors that control the seismic activity. In addition, CatBoost 

knowledge is necessary when handling categorical functions, as it allows a wide range of 

information, including categorical variables. This ability makes sure that all important features 

are used during the training process which further contributes to the overall predictivity and 

accuracy of the model. One of the significant advantages of CatBoost is its ability to provide 

metrics based on meaning that are necessary for understanding the basic factors and parameters 

that control seismic activity. These metrics allow us to find out which feature of acoustic signals 

and predict the occurrence of earthquakes. As a result, this process increases the predictive 

performance of the model and ensures that it is based on the most influential data for accurate 

earth predictions. 
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6.2.2 SVR Model  

The support vector regression (SVR) shown in Figure 6.2 stands out as a fundamental 

component within our predictive modeling frame, with the aim of taking advantage of the 

complexities of the LANL earthquake data set for greater precision of earthquake prediction. 

SVR offers a powerful methodology to capture non-linear relationships inherent to the 

dynamics of seismic activity The SVR is based on the basic principles of support vectors 

machines, it is an effective method to identify and capture non -linear relationships within the 

seismic activity [167]. The main advantage of SVR lies in its ability to model complex and non 

-linear units, which are often associated with seismic event time patterns. It works mapping 

input data in a upper dimensional function space, where it seeks to determine the optimal 

hyperplane, which better represents the basic data structure. The hyperplane is selected to 

maximize the range between data and hyperplane points, which is necessary to ensure that the 

model is well generalized to invisible data. This approach allows SVR to model integral 

relationships in acoustic signals collected during a simulated laboratory earthquake [168]. 

 

Figure 6.2 Architecture of SVR. 

𝑦 = 𝑓(𝑥) =< 𝑤, 𝑥⟩ + 𝑏 = ∑  𝑀
𝑗=1 𝑤𝑗𝑥𝑗 + 𝑏, 𝑦, 𝑏 ∈ ℝ, 𝑥, 𝑤 ∈ ℝ𝑀                       (6.2) 

It is based on the linear loss function of Eq. 2,3,4: 

𝐿𝜀(𝑦, 𝑓(𝑥, 𝑤)) = {
0    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀
|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀     otherwise 

                                               (6.3) 

𝐿𝑐(𝑦, 𝑓(𝑥, 𝑤)) = {
0    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀;

(|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀)2     otherwise, 
                                   (6.4) 
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𝐿(𝑦, 𝑓(𝑥, 𝑤)) = {
𝑐|𝑦 − 𝑓(𝑥, 𝑤)| −

𝑐2

2
    |𝑦 − 𝑓(𝑥, 𝑤)| > 𝑐

1

2
|𝑦 − 𝑓(𝑥, 𝑤)|2    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝑐

                                               (6.5) 

Table 6.1 Parameters of SVR. 

Parameter Value 

Kernel Radial Basis Function (RBF) 

C 1.0 

Epsilon 0.1 

Gamma auto 

Degree 3 

Coefficient 0.0 

Shrinking True 

Tolerance 0.001 

 

The SVR offers considerable flexibility in modeling a wide range of functions, especially 

through their core, which allows to capture non-linear dependencies that predominate in 

seismic data. This ability is particularly valuable in attempting to model complex interactions 

between features of acoustic signals and occurrence. The features of the core allow the 

transformation of input data to a higher dimensional space where linear models can be 

effectively applied to non -linear relations, which increases the ability of the model to detect 

comprehensive formulas, which is otherwise difficult to recognize in the original space [169]. 

By adopting a soft-margin approach similar to that used in SVM, slack variables 𝜉𝜉 and 𝜉∗𝜉∗ 

is introduced to protect against outliers. 

ℒ(𝑤, 𝜉∗, 𝜉, 𝜆, 𝜆∗, 𝛼, 𝛼∗)

=
1

2
∥ 𝑤 ∥2+ 𝐶 ∑  𝑁

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗ + ∑  𝑁

𝑖=1 𝛼𝑖
∗(𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝜀 − 𝜉𝑖

∗)

+ ∑  𝑁
𝑖=1 𝛼𝑖(−𝑦𝑖 + 𝑤𝑇𝑥𝑖 − 𝜀 − 𝜉𝑖) − ∑  𝑁

𝑖=1 𝜆𝑖𝜉𝑖 + 𝜆𝑖
∗𝜉𝑖

∗

                                                  (6.6) 

 

∑  
𝑁𝑠𝑣
𝑖=1 (𝛼𝑖 − 𝛼𝑖) = 0, 𝛼𝑖 , 𝛼𝑖

∗ ∈ [0, 𝐶]                                               (6.7) 
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Through extensive experimentation and strict evaluation of the model, this research seeks to 

demonstrate the effectiveness of the SVR in the approach of hybrid modeling for earthquake 

prediction. Using the ability of SVR to master non -linear relationships, the model is better 

equipped to specify the predictions and capture of fine dynamics present in seismic data. 

6.2.3 Hybrid Model  

Our research introduces an innovative approach of developing hybrid model that integrates the 

regression of the CatBoost vector and supports vector regression (SVR), as shown in Figure 

6.3 to significantly increase the accuracy of the earthquake prediction. This hybrid approach 

uses the unique strengths of both models to achieve excellent performance in predicting seismic 

events. The architecture of the hybrid model is designed to combine the strengths of the robust 

capabilities of increasing the CatBoost’s gradient boosting with SVR, which aims to maximize 

predictive accuracy by drawing from the additional characteristics of both algorithms. 

CatBoost is known for its ability to capture global patterns and interaction within integrating 

comprehensive data. This also provides the basic layer of the hybrid model by generating initial 

predictions and identifying the most influential characteristics that control the seismic activity. 

Its access to the increasing gradient excels in managing several data and heterogeneous 

datasets, such as the LANL earthquake, effective learning of large patterns and localized in the 

data. On the other hand, the SVR is used to specify the power of the model and focuses 

specifically on capturing residual errors of the initial CatBoost forecasts. Tuning the model 

output, especially in areas of functions where CatBoost predictions can be less precise, but on 

top of that the SVR increases the accuracy of the model by handling non-linearities. 

The integration of these two different modeling techniques aims to overcome the limitation that 

each individual model can face when applied to the prediction of the earthquake. Although 

CatBoost is strong in the detection of trends and broad data, it does not have to capture more 

fine and more located patterns that affect time. SVR compensates for another improvement 

layer that solves such gaps, especially in non-linear data. The combination of CatBoost and 

SVR strengths is a hybrid model is a more robust and versatile approach to earthquake forecasts 

and changes the limits of traditional prediction methodologies.The hybrid model not only 

exceeds its individual components in terms of predictive precision, but also shows greater 

robustness and generalization. These strengths make it a more reliable tool for the prediction 

of seismic events, especially in scenarios where other models can try to capture a complex 

earthquake dynamic. 
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Figure 6.3 Flow diagram of CatBoost-SVR model for earthquake prediction. 

This excellent performance emphasizes the potential of a hybrid approach as a promising 

solution for the development of earthquake prediction methodologies and offers a more precise 

and resistant framework to face complex challenges associated with seismic prediction. 

The rationale for selecting the hybrid model combining CatBoost and Support Vector 

Regression (SVR) is grounded in the complementary capabilities these two algorithms offer 

when addressing the complex and multifaceted nature of earthquake prediction. CatBoost, a 

state-of-the-art gradient boosting framework, is particularly adept at capturing global patterns 

and complex interactions within heterogeneous datasets, such as the LANL earthquake dataset 

used in this study. Its advanced gradient boosting technique, coupled with efficient handling of 

categorical and numerical variables, enables CatBoost to generate robust initial predictions. 

More importantly, it excels at identifying the most influential features that govern seismic 

activity, thereby providing a comprehensive baseline understanding of the underlying seismic 

processes. The ability of CatBoost to effectively learn from large-scale data with heterogeneous 

characteristics ensures that broad trends and significant patterns in seismic behavior are well 

represented in the model outputs. 
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Despite these strengths, CatBoost has inherent limitations in modeling more localized, fine-

grained, and highly non-linear temporal patterns that are often present in seismic data but may 

be less pronounced in the global trends captured by gradient boosting trees. These subtle 

dynamics are critical in earthquake forecasting, where minor variations and nonlinear 

interactions can significantly impact prediction accuracy. To address this, SVR is employed as 

a secondary modeling layer designed specifically to capture the residual errors that remain after 

CatBoost’s initial predictions. SVR’s kernel-based approach is highly effective at modeling 

complex non-linear relationships, making it well suited for refining the forecast by learning the 

intricate residual structure that CatBoost may not fully capture. This two-stage modeling 

approach leverages the strength of SVR in residual correction and non-linear mapping to 

improve the overall accuracy and reliability of the earthquake prediction. 

The integration of CatBoost and SVR constitutes a hybrid modeling framework that 

strategically overcomes the limitations associated with each individual method. While 

CatBoost provides a strong foundation by detecting broad seismic trends and feature 

importance, SVR complements this by focusing on localized residual variability and non-

linearities in the data. This synergy results in a more robust and versatile predictive model that 

exhibits superior performance compared to standalone models. Empirical evidence from 

validation studies demonstrates that the hybrid model not only surpasses the predictive 

precision of CatBoost or SVR alone but also shows enhanced generalization capabilities across 

different seismic events and varying data conditions. This robustness is particularly valuable 

in the context of earthquake prediction, where the data is inherently noisy and patterns can be 

highly variable. 

When compared against other baseline models such as linear regression, random forests, and 

single-method gradient boosting algorithms (e.g., XGBoost, LightGBM), the CatBoost + SVR 

hybrid model presents several distinct advantages. Linear regression models, due to their 

inherent linearity, are insufficient to capture the complex, non-linear dependencies prevalent in 

seismic data. Random forests, while capable of modeling interactions, may not effectively 

address the residual errors or localized temporal dependencies that SVR can handle. Similarly, 

although other gradient boosting frameworks provide competitive performance, CatBoost’s 

superior handling of categorical features and prevention of overfitting through ordered boosting 

techniques give it an edge as the foundational model. Neural networks, while powerful for 

complex pattern recognition, often require extensive hyperparameter tuning and larger datasets 

and can be less interpretable. The hybrid approach balances interpretability, computational 
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efficiency, and predictive accuracy, making it particularly well-suited for seismic forecasting 

tasks that demand both broad trend identification and precise residual modeling. 

6.3 Dataset Description  

The scientists of the National Laboratory of the Alamos (LANL) made an advance in the 

prediction of a slow sliding earthquake (SSE) in controlled laboratory conditions designed to 

simulate natural seismic activity. The team developed a method in which the computer system 

was trained to detect and analyze acoustic signals and seismic signals emitted during fault 

movements. Through further processing of large datasets, it is able identify different audio 

patterns that are previously rejected as a background noise but then found a reliable indicator 

of detect earthquake. This emphasized the importance of fine acoustic signals, which are often 

overlooked, but could be essential to predict seismic events. 

Scientists focused on a small-time window of  1.8 seconds of data to predict the time remaining 

before the laboratory earthquake. Using random forest regression and quasi-periodic data 

analysis, they achieved an impressive 89% of the determination coefficient, showing the 

potential of this method for precise forecasts. Seismic sounds created by the interaction 

between blocks with rocky material-rinse simulation of real-world behavior have been recorded 

by accelerometers. This breakthrough is the first successful prediction of the occurrence of 

laboratory earthquake. While the results are promising, the LANL scientist acknowledges that 

there are inherent differences between shear stress associated with laboratory experiments and 

natural earthquakes. Despite these differences, scientists actively work to verify their findings 

in real conditions. The aim of their continuing efforts is to clarify the model so that it is 

applicable to natural seismic events, which could eventually lead to better readiness and more 

reliable forecasting methods.  

6.4 Data Exploration 

The LANL dataset for the earthquake is a detailed collection of signals of acoustic emissions 

recorded during laboratory simulated earthquakes. This dataset serves as a valuable source for 

studying seismic activities, as each item represents an image of acoustic data captured at 

specific time intervals. Importantly, each sample is paired with a target value that indicates the 

time left before another laboratory earthquake. This time information is critical for 

understanding the dynamics of seismic events and exploring the predictive approaches of 

modeling to predict the occurrence of earthquakes. By analyzing these time series, scientists 
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have gain a deeper insight into the formulas and behavior that precedes the earthquake, 

allowing the development of more precise prediction models. The acoustic data in the data file 

is divided into discrete segments, each of which lasts 0.0375 seconds and recorded at 4 MHz. 

This high -frequency sampling results in a large and rich data file that consists of a total of 

150,000 data points. Each segment is carefully annotated by the "time for failure", which 

corresponds to the duration until the laboratory failure is measured, measured by voltage 

applied to the system value as shown in Table 6.2. These values of time into properties are 

necessary for training predictive models because they provide a clear indication of the 

relationship between acoustic signals and the real failure time. The acoustic signals themselves 

show remarkable fluctuations, especially at times leading to any event of failure as shown in 

Figure 6.4, with significant changes indicating the impending rupture of the failure. A deeper 

view of time graph shows that the main oscillation of acoustic signals serves as time to failure. 

For example, Figure 6.5 shows that significant oscillations on a 1.572 second occur just before 

failure, although it does not equal exactly with the event itself. Before this main oscillation  are 

visible sequences of intensive signal fluctuations, indicating the accumulation of seismic 

activity. 

 

Figure 6.4 Acoustic Data and Time to Failure Analysis: Subset Representing 1% of Total Dataset. 

These fluctuations appear to be formed towards larger, more significant oscillations and signal 

potential failures. Smaller oscillations are observed after the main oscillation, indicating the 

continuation or consequences of the seismic event. This detailed time chart shows that, 

although there is a large oscillation shortly before the fault, it does not happen immediately 

before them, indicating that seismic signals can provide valuable traces to predict earthquake 
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events with a slight delivery time. The ability to detect these fluctuations and oscillations 

provides a more intrinsic understanding of the dynamics of the earthquake, which could have 

significant consequences for applications in the real world in seismology and analysis of time 

to failure.  

Table 6.2 Dataset: Seismic Activity (v) and Time to Failure (s) 

Seismic activity (𝒗) Time to failure (s) 

12 1.4690999832 

6 1.4690999821 

8 1.469099981 

5 1.4690999799 

8 1.469099988 

8 1.469099977 

9 1.4690999766 

7 1.4690999755 

-5 1.4690999744 

... ... 

 

The dataset consists of sequences of intensive oscillations that occur before the main 

oscillation, followed by minor oscillations of the peak after it. The dataset originally structured 

data frame was divided into 150,000 individual samples, each corresponding to a specific time 

to failure value. This segmentation facilitates the development of predictive models by pairing 

each sample with an accurate time to failure time. It contains a data range of 2,626 pre -

designed acoustic segments, which are specially reserved for model testing. This careful 

organization allows scientists to evaluate the performance and reliability of the model in 

predicting an earthquake based on acoustic signals. 



162  

 

Figure 6.5 Zoomed-in-time-plot. 

Instead, there are sequences of intense oscillations that possesses large oscillations, as well as 

minor oscillations of peaks that follow it. Subsequently, after a series of minor oscillations, 

failure might occur. Dataset, originally structured as data frame and the segmented it into 

150,000 individual samples. Each sample is associated with the appropriate failure time, 

making it easier to train and verify predictive models. In addition, the data file contains another 

2626 pre-designed acoustic segments set aside specially for model testing. This careful data 

file organization allows scientists to perform a robust evaluation of the performance of the 

model and efficiency in the tasks of an earthquake prediction. Seismic signals are captured by 

a piezoceramic sensor that generates the voltage in response to deformation caused by 

incoming seismic waves. This voltage, referred to as an acoustic signal, serves as a primary 

input for our analysis. The acoustic signal represents the recorded voltage, expressed as 

integers. 

 

Figure 6.6 The distribution of acoustic signals analyzed individually 
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Seismic signals are captured by a piezoceramic sensor that generates the voltage in response to 

deformation caused by seismic waves. The voltage generated by the sensor is recorded as an 

acoustic signal that forms the main input for analysis. The acoustic signal is expressed in full 

values, with an average of 4.52. When examining the distribution of these values, the diameter 

is clear about the diameter, indicating that most of the values are recorded on average. However, 

distribution also reveals distant values in both directions, suggesting that there are cases of 

unusually high or low signal values. These formulas are clearly visible in Figure 6.6, where the 

form of distribution and the presence of remote values is demonstrated. The range of acoustic 

signals, from -5515 to 5444, represents a complete spectrum of voltage fluctuations, from the 

most unpleasant value to the most positive. These fluctuations reflect the variable intensity of 

seismic waves. Negative values is reduction in voltage which is caused by compression or 

damping on the other hand positive values is an increase in voltage due to voltage or 

amplification. The wide range of these signals reflects significant variability of seismic activity, 

influenced by factors such as the strength of seismic waves, the distance of the source, the 

conditions of the environment and sensitivity of the sensor. The proper management of these 

remote values is important to enhance the precision and quality of the prediction of seismic 

events, since they represent a unique or extreme seismic event that most of the time stay hidden. 

 

Figure 6.7 The distribution of time to failure analyzed individually. 

TTF is a critical measure quantifies the remaining duration, in seconds until an immediate 

landslide failure event occurs. This metric is a key indicator of the immediate start of failure 

that allows scientists to implement early interventions or new research events. The minimum 

value recorded for time until the failure is extremely close to zero, namely, up to 9,55039650E-

05 seconds, indicating cases in which the fault occurred almost immediately after the 

observation. On the other hand, the maximum value of time provided that the fault is extended 
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in 16 seconds, which means cases in which the failure has been predicted with a significant 

time. The design is governed by the correct distortion pattern as shown in Figure 6.7. This 

skewness indicates that most observations are clustered towards the lower end of the time scale 

with significantly less cases that are longer before the failure. This distribution pattern is 

essential to understand the dynamics of the failure of the stick-slip events because it emphasizes 

its own variability at intervals that lead to the failure. 

 

Figure 6.8 Time series relationship between first 1000 rows. 

When analyzing data of temporary series, the first 1000 rows are examined, where the orange 

lines represent seismic activity, marked with the acoustic signal characteristics, while the blue 

line corresponds to the failure time and illustrates the duration to the earthquake. This graph 

reveals a clear linear trend at the time of the failure, suggesting that the failure time is constantly 

changing over time. This trend means a potential relationship between seismic signals and a 

time of failure, which guarantees greater survey in the predictive abilities of these signals in 

events of failure. The analysis of temporary series, shown in Figure 6.7, emphasizes the 

importance of evaluation of acoustic signals and failure time. These assessments are essential 

for understanding how these properties develop and interact and provide more accurate ideas 

of the sliding process mechanics. 

Two specific functions are provided to facilitate the analysis of these functions. The first feature 

generates a plot that shows both acoustic data and the corresponding failure time to a certain 

extent of indexes, allowing visual representation of their relationship. The second feature 

allows to compare two different index ranges and offer the opportunity to see how these 

functions behave in different data set segments. 
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Figure 6.9 Time series relationship between first 10,000 rows. 

In the example, the first function for generating the plot of the first 1000 rows is used, while 

the orange rows represent an acoustic element and a blue line indicating the target function, 

which is time for failure. The resulting plot clearly illustrates the linear trend at the time of 

failure, suggesting that further analysis is guaranteed to better understand the behavior of the 

data file to a larger line range. 

 

Figure 6.10: Time series relationship between first 600k rows. 

After analyzing the initial 1000 rows, further exploration on progressively larger subsets of the 

data set is carried out. These include the first 10,000 rows shown in Figure 6.8 and the entire 

data file that contains 600,000 rows shown in Figure 6.9. These wider analyzes reveal 

consistent trends across data. Especially the time to failure decreases rapidly to almost zero 

seconds as the earthquake event approaches, signaling the immediate onset of seismic activity. 

This observation emphasizes the potential of acoustic data in the prediction of earthquake 

events because it shows a clear TTF just before the appearance of seismic events. After 

generating the graphics of the temporal series, an in-depth analysis is performed, which obtains 

significant knowledge of data behavior. This process is used to identify the recurring patterns, 
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determine sudden changes or anomalies, and the evaluation of the general trend in the data. 

The interpretation of temporary series graphics achieves a deeper understanding of the basic 

dynamics that regulates seismic activity and how acoustic data is related to failure time. This 

knowledge is useful for improving predictive models by revealing significant patterns in time 

series, which testifies immediate failure events. In summary, the time series analysis plays an 

essential role in the detection of relationships and time patterns in seismic data and provides 

critical information reported on the development of more precise earthquake forecast models. 

In our analysis, we focus on a data file that contains 629 million rows, although the main 

approach focused on a subset containing 600,000 rows. A specific objective was to understand 

the moment of seismic events, especially the values of time that varied from almost zero 

seconds to a maximum of 12 seconds. This scope of time emphasizes several delivery times 

between the detection of seismic activities and the appearance of earthquakes, thus offering 

valuable knowledge to the forecast window for imminent failure. This large number of data 

files provides a solid basis for a more detailed examination of the factors that affect seismic 

behavior, and time series analysis offers a more refined understanding of dynamics. 

 

Figure 6.11: Cumulative distribution of the time to failure with high signal. 

The time patterns in the dataset examined the cumulative distribution function (CDF) of the 

target function, which is a TTF. This analysis provided a clearer understanding of the frequency 

with which the events occurred in a time range of 0 to 12 seconds. After setting the display 

accuracy and loading the dataset visualized the distribution of acoustic data. The CDF Plot of 

the target element, as shown in Figure 6.10, revealed a significant pattern: approximately 85% 

of the events occurred within just 0.3 seconds of predicted time into failure. This finding 

emphasizes the rapid onset of seismic events, suggesting that only a short interval is preceded 

by most failure occurrences. The observation with high share of events occurs near 0 sec is 
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important for the understanding dynamics of timing in seismic activity. It highlights the 

importance and need of this exact models for prediction almost in real-time that predicts such 

rapid events and improve the efficiency of early warning systems in earthquakes prediction 

system. 

6.5 Feature Engineering 

Data pre-processing is an important role in the preparation of a LANL earthquake for accurate 

training and validation which lead to more accurate model. This step includes various steps to 

enhance the quality of the dataset and make sure that it is clean and informative for further 

analysis. The LANL earthquake contains acoustic emission signals captured in the simulated 

laboratory earthquake. These signals are registered at different time intervals, are combined 

with the appropriate time values to the accompanied, indicating the duration to another seismic 

event. Once the data is loaded, several data cleaning procedures are implemented to treat any 

inconsistency or error in the data set. The missing values that can interrupt the precision and 

reliability of the model training are processed through advanced printing techniques, ensuring 

that the data set remains complete and usable. In addition, peripheral values are carefully 

identified. This step implies the use of statistical methods to detect abnormal values and the 

use of corrective measures to avoid these remote values in the distortion of the analysis. After 

the cleaning process, the functional engineering data set suffers the transformation of 

unprocessed data into adequate format for modeling. The main engineering includes the 

creation of new and informative characteristics that can help the model to better understand the 

basic patterns in the data. This could include aggregation or transformation of existing 

functions to emphasize relationships that are decisive to predict earthquake events. The careful 

improvement of the data set in this way are the data that contribute to the precise and robust 

training of the model and place the foundations for effective earthquake prognosis models. 

The process of cleaning and preparation of the dataset for the LANL earthquake included a 

series of critical steps designed to guarantee the quality and consistency of a data set before it’s 

used to train a hybrid model. The first step in the process was to identify and solve missing or 

incomplete data. This has been done using appropriate imputation techniques to complete the 

missing values. In cases where excess gaps were in the data, records were eliminated to avoid 

the insertion of distortion in the data set. In careful missing data processing, we ensure that the 

dataset is maintained complex and representative for basic seismic events. Then similar values 

are identified and removed for the uniqueness and better training of data, which can 
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significantly affect the performance of machine learning models and avoid errors or loss. Since 

seismic data sometimes include irregular values due to sensor failures or other environmental 

factors, it is important to detect and manipulate these remote values were necessary to maintain 

the accuracy of the model. In addition, the normalization and scaling of the data is used to 

standardize the functions and ensure that the variables with different units and ranges have 

affected the performance of the model. Categorical variables, such as types of events or 

geographical locations, have been processed using coding techniques such as unique coding or 

label coding. These methods have ensured that categorical data could effectively integrate into 

the CatBoost algorithm to effectively manage categorical functions. Temporary characteristics, 

such as the date and time of seismic events, were also carefully processed. This allowed the 

extraction of valuable patterns, including trends or seasonal variables, which could increase the 

performance of the model by providing additional context information. Finally, functional 

engineering is used to create new features, which could further improve the predictive 

capabilities of the model. It was a calculation of time between the following events or 

aggregation of data to different time intervals that offer new knowledge about seismic activities 

that could help with more precise earthquake forecasts. 

In this study, feature engineering focused specifically on the extraction of key characteristics 

of the AE data, which is an important source of information for TTF. The main objective of this 

process is to identify features that could effectively capture the basic patterns and trends or 

dynamics of AE signals, because these patterns or trends indicate the behavior of the system 

when they address the fault. The feature engineering in AE data is in the form of peaks or 

anomalies and have valuable information which is used to predict failure. Based on this idea, 

the study assumed that both the frequency and intensity of these AE peaks is correlated directly 

with the remaining system, acting as well as reliable indicators of the failure time. To capture 

these critical dynamics, the engineering process focused on deriving statistical properties that 

could encapsulate the characteristics of AE signals. A set of 18 statistical properties was 

calculated from each AE which comes out to be 150,000. These features included basic 

statistical metrics such as diameter, standard deviation, skewness, which are commonly used 

to describe the form and distribution of dataset. These statistical features have been 

demonstrated in previous research to reflect the key aspects of AE signal, such as its overall 

behaviour, variability and distribution. When capturing these functions, the model could learn 

and identify AE data that preceded the failure of events, and eventually improved the accuracy 

and reliability of time predictions. 
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In the statistical basis, more advanced features are calculate such as the ratio of diameters of 

standard deviations and more detailed distribution elements, such as percentiles such as 1, 5, 

25, 50. These distribution metrics were included because they provide more detailed and more 

specific understanding of AE signal behaviour. This is necessary because it allows the model 

to better recognize the formulas related to the onset of failure that could omit simpler metrics 

such as medium or standard deviation. While many features were derived from AE data, not 

all were eventually used in the final model. For example, although maximum and minimum 

values were originally considered potential features, they were excluded from the final set. This 

decision was based on observing that these values were too sensitive to extreme events - remote 

values that tend to represent a signal disturbance rather than meaningful system failure 

predictors. As a result, they were considered unreliable to contribute to the predictive power of 

the model. 

Once the appropriate functions have been identified and extracted, a comprehensive database 

containing a large set of statistical functions corresponding to each AE data segment has been 

created. This database bridged a wide range of TTF, allowing to explore how every function 

correlates with TTF. During the initial analysis it was found that certain features such as the 

number of modes show a strong correlation with TTF, indicating their potential usefulness in 

predicting event failure. Intrinsic precision, however, was devoted to the exclusion of data 

points, which were recorded immediately after great failures of events, because these values 

after the event often resembled data from the early phase and could introduce noise or 

inaccuracies into the predictive model. By excluding these cases, we ensured that the model 

was trained for data that was more precisely the behavior of the failure system.  

Normalization is usually changed to a region defined between 0 and 1, ensuring that each feat

ure is not disproportionately affected by the original scale, and also contributes to the model. 

Standardization, on the other hand, adapts the data and effectively converts it into a standardi

zed form with a diameter of 0 and standard deviation of 1, and concentrates the data at zero. 

Normalization and standardization are used to harmonize properties and solve the challenge of 

different measurements of functions. This is particularly important for machine learning 

models, as the heterogeneous standards of the elements can lead to the fact that the models lay 

disproportionate weight on the properties with larger quantities, which distorts the results. By 

using these techniques, the dataset becomes more suitable for training, which ensures that each 

element is treated equally and increases the overall efficiency of the model. These pre -
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processing steps improve the stability and speed of the convergence of model training, which 

eventually leads to better predictive performance. 

Table 6.3 Comprehensive Global Overview of the Dataset Statistics 

 
acoustic data time-to-failure 

count 6.29E+08 6.291E+08 

mean 4.52E+00 5.68E+00 

min -5.52E+03 9.55E-01 

max 5.44E+03 1.61E+01 

std 1.07E+01 3.67E+00 

 

In this study, we have extracted a complex set of 25 statistical features from each of the 150,000 

AE data, as shown in Figure 6.11. These features were carefully selected to capture a wide 

range of statistical properties AE signals. The first twelve functions included basic statistics 

such as maximum, minimum, diameter, standard deviation, standard deviation ratio to 

diameter, skewness, regime and frequency. They were selected to represent key distribution 

characteristics such as central tendencies, variability and data shape. In addition, thirteen other 

percentage elements were calculated for specific work, namely 1st, 5th, 10th, 25th, 50th, 60th, 

70th, 75th, 80th, 85th, 90th, 95th and 99th percent. The inclusion of these percentiles allowed 

us to capture the distribution of AE signals and gave a richer understanding of their behavior 

at different levels of intensity. Despite the calculation of maximum and minimum values, these 

functions were excluded from the final set of functions. This decision was made because the 

extreme values associated with these properties were primarily associated with the main events 

of the earthquake, which rarely occurred and did not provide predictive value for predicting 

subsequent disorders. By excluding these remote values and focusing on the remaining 

features, we have focused on the improvement of the ability of the model to predict time for 

failure based on finer, repeating patterns observed in acoustic signals, rather than rare extreme 

events. This process of choosing strategic functions has played a key role in the development 

of a more accurate and reliable predictive model for predicting earthquake. 

The selection of elements was then further refined by the iteration process, including the 

construction of several models. These models were evaluated on the basis of their MAE, 

allowing us to identify a set of features that minimized the prediction error. However, this 
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process had to be carefully mastered to prevent the curse of dimensions, where the number of 

combinations of potential functions increases exponentially, as multiple features include in the 

model. This rapid increase in combinations can lead to excessive impact and reduce the 

generalization of the model. Therefore, the optimal balance between the selection of elements 

and the complexity of the model was sought to ensure that the model could perform robust and 

avoid excessive and insufficient problems. In an alternative approach, the National Los Alamos 

(LANL) coefficient achieved 0.89 by analyzing quasi-periodic seismic signals. Their method 

included data distribution into a 1.8 -second time window and the use of random forest 

algorithm to identify key properties such as scattering, kurosis and threshold, as most 

influential in predicting failure. Our study is based on same methodology and moved focus on 

predicting time for failure before the next event and used only the time windows of acoustic 

data only for movement. Unlike the 1.8-second ropes window, we segment data to a much 

shorter 0.3 second intervals and covered 1,500,000 observations, which is significantly shorter 

than the typical laboratory cycle of the earthquake 8 to 16 seconds. 

 

Figure 6.12 Total Number of Possible Combinations Compared to the Number of Features. 

In particular, we observed a substantial concentration of high acoustic values (exceeding the 

absolute value of 1000) approximately 0.31 seconds before the earthquake. This made the 

decision to divide the data into 0.3 second windows to minimize the prediction errors that could 

conclude the earthquake cycle. Further evaluation of the time window size revealed optimal 

results with 1.5 million window observations. This approach has led to the creation of 419 

different windows in the dataset, each window representing a picture of seismic activity. We 

have extracted 95 potential statistical properties from each time window, including metrics such 
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as standard deviation, quantiles at 90%, 95% and 99%, absolute standard deviation and 

different routing deviation measurements at different observation intervals. To assess the 

importance of individual functions, we used the technique of the importance of a function that 

helped identify the key variables contributing to the predictive performance of the model. 

To analyze continuous values derived from the acoustic time series, we turned to advanced 

machine learning algorithms, specifically the hybrid model CatBoost-SVR to reduce the 

potential impact of correlated properties, the analysis of the main components PCA was used, 

which effectively compressed 95 functions into 5 main components. These components were 

able to capture 99.9% of the total scattering in the dataset, which significantly simplified the 

function while maintaining a high degree of information. The strategy of continuous 

distribution of 50/50 was used to split data into a set of training and testing, ensuring a balanced 

approach to the evaluation of the model. Hyperparameter tuning for each algorithm was 

performed using a random grid search strategy with a validation of the model performed by a 

triple process of cross validation. Finally, the visualization of relations with the TTF, revealed 

strong correlations between the specific features and the remaining time until the failure, 

providing detailed information about accurate validation of the seismic data. Here, cross 

validation techniques like K-Fold cross validation is an integral part of performance evaluation 

and the generalization of ML models. This method includes the distribution of the training 

dataset in the subset of the same K or "folds" size. The model is trained in the K-1 of these 

folds, while the remaining fold is used for verification. This process is repeated till each fold 

serves as a validation set at least once. By averaging the results in all iterations, the cross 

validation of K-Folds provides a more reliable and consistent estimate of the model 

performance compared to the only training test. This iteration approach helps reduce the risk 

of excessive quantities and ensures that the performance of the model is robust across different 

data groups and eventually offers better representation of how the model will work on unseen 

data. 

6.6 Results 

The efficiency of our hybrid model, which combines the strengths of CatBoost and SVR, is 

strictly evaluated using the LANL dataset of the earthquake. The evaluation results showed 

significant improvement in the accuracy of the earthquake prediction compared to individual 

models. The model training process begins with the acquisition and analysis of acoustic data 

that corresponds to seismic activities. This preliminary processing phase is essential because it 
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includes the solution of missing values, manipulation of remote values and filter noise, ensuring 

cleaning and prepared for subsequent analysis. Once the data is processed, relevant functions 

are extracted from acoustic signals. These features include various statistical and time 

characteristics, such as frequency components, amplitude and attributes of other time series 

that capture the basic formulas in the data. These extracted functions then serve as an input for 

the hybrid model CatBoost-SVR. After extraction of functions, the dataset is divided into 

training and validation sets, with a small part (approximately 6%) assigned to verification. In 

training and validation sets, with a small part approximately 6% is assigned to verification. 

This validation distribution allows continuous performance evaluation during the training 

phase. This assures that the CatBoost, which specializes in recognizing time patterns, can be 

trained with large data and learn from the information available effectively. By using a 

substantial part of training data, the model is better equipped to capture the complexity of 

seismic activity, which finally leads to an improvement in predictive precision in the tests on 

hidden or missing data. 

 

Figure 6.13 Training split in relation to acoustic data to time to failure for earthquake prediction. 

The CatBoost is trained for training data, where the extracted acoustic features feed as an input 

and the fault time is an objective variable, as shown in Figure 6.12. Both models are carefully 

tune by using specific parameters, such as the number of epochs, the depth of the trees, learning 

rate, batch size, the terms of regularization and other relevant configurations to optimize their 

performance and precision. Once both models have been trained, their individual predictions 

are combined using fusion techniques such as averaging or weighing averaging, which is used 

to integrate the strengths of both models. This hybrid approach increases the accuracy of 

prediction by using the CatBoost and SVR abilities, which ensures that the final model earns 

the additional strengths of each of them.  
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Figure 6.14 Subset of training data in relation to acoustic data to time to failure for earthquake prediction. 

The training data set used in this study is exceptionally large and contains a continuous segment 

of more than 629 million acoustic signaling data points. However, it should be noted that this 

data file is based on 16 laboratory simulated earthquakes that were artificially generated in a 

controlled laboratory environment rather than represent natural seismic events. The 

experimental settings took 157.28 seconds during which the data was recorded continuously. 

This extensive data file provides alot of information and offers significant potential for machine 

learning models for prediction of seismic events. Each data point in the data file corresponds 

to the exact measurement or observation of the acoustic signal recorded at 4 MHz, which means 

that the data points were sampled at 4 million samples per second. While the coverage of the 

actual events of the dataset is limited, its large size and the detailed nature of acoustic data 

provide valuable knowledge of the dynamics of seismic activities. Figure 6.13 further 

illustrates that after each earthquake there are clear fluctuations in the acoustic signal that 

emphasize complex formulas that must be captured by the models in order to accurately predict 

future seismic occurrences. The integration of the CatBoost hybrid model and the Support 

vector regression (SVR) to predict the earthquake using the LANL dataset includes a 

sophisticated configuration that optimizes both the efficiency of the calculation and the exact 

prediction. The use of 100 epochs for CatBoost has been made to ensure sufficient training 

while preventing excessive expulsion, which is necessary when working with seismic data that 

can show considerable noise. In addition, the batch size of 32 was chosen to achieve a balance 

between the effective learning of the model and optimize memory, especially when using GPUs 

for training. The learning rate of 0.05 was selected to maintain a synchronous compromise 

between the speed of training and the ability to converge optimal solution without exceeding 

the optimum value. 
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To relieve the risk of excess, critical consideration due to the noisy and potentially irregular 

nature of the earthquake data, the regularization L2 was applied. For SVR, it was established 

in 1.0 to provide an adequate balance between the complexity of the model and minimize 

errors. This ensures that the model captures basic patterns in the data and at the same time 

avoid excessive evaluation. The value of Epsilon was established in 0.1, which allowed small 

errors in the predictions during the training phase. This allows the model to be more accurate 

and robust as it tolerates minor deviations from the objective values . Using the acceleration of 

the GPU, the training process has accelerated significantly, especially when large dataset is 

processed, which is efficient for our hybrid machine learning model CatBoost-SVR hybrid 

model. To further optimize the use of memory during optimization, the size for the SVR has 

been established in 32.  With 100 trees in the CatBoost and 1,000 support vectors in the SVR, 

the training process required significant computing resources. High -performance GPUs such 

as the NVIDIA tesla V100 were used to master this demand, which significantly reduced the 

training time compared to traditional CPU-based processing. In addition, the system was 

equipped with 32 GB of RAM, which ensured that a large dataset can be adapted without 

meeting narrow memory spines, which is essential to maintain smooth operation of the model. 

 

Figure 6.15 Two segments of testing data. 

While deeper analysis are commonly used in neural networks, it does not apply directly to the 

gradient increasing models efficacy for models such as CatBoost or SVR. Therefore, time 

stopping was used in CatBoost to prevent excessive evaluation. This technique stops training 
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when the power of the model on the validation set no longer improves, effectively prevents 

excessive analysis and ensures that the model continues to train on data samples that could not 

be well generalized to invisible data. The gamma parameter in the SVR has been set to 0.1, 

which controls the influence of individual support vectors. The test data set is composed of 

2624 sequential segments, each with 0.0375 seconds of acoustic signals. To coincide with this 

format, the training data set was fragmented in approximately 4194 segments, each also 

contained 0.0375 seconds of data, equivalent to 150,000 sample points. It is remarkable that 

this segment length is relatively less when contrasting with the average time gap between 

earthquakes in training data, which is found in 9.83 seconds. This adjustment in the structure 

of the training data set guarantees uniformity with the format of the test data shown in Figure 

6.14, which helps to standardize the model evaluation process. However, the shortest segment 

length can present certain restrictions, particularly in the capture of longer-term temporary 

patterns inherent in seismic data. However, despite this difference, segmented training data 

remains valuable for the training of automatic learning models to forecast seismic events using 

acoustic signals. 

The hybrid model CatBoost-SVR combined the strengths significantly outperforms both 

individual models, achieving an optimized validation MSE. This improvement highlights the 

capacity of the hybrid model to integrate the recognition forces of wide CatBoost patterns with 

detailed and non-linear modeling capabilities of SVR. The remarkable reduction in MSE 

illustrates the greatest precision and robustness of the hybrid approach. An integral error 

analysis further clarified the performance improvements brought by the hybrid model. The 

analysis of the CatBoost model residuals revealed specific nonlinear patterns that were not 

completely addressed. The SVR model effectively captured these patterns, refining predictions 

and, therefore, reducing the general error. This synergy between CatBoost and SVR was 

particularly beneficial to capture temporary dependencies within the data set, which led to a 

better precision of the prediction for seismic events, especially those that occur in the 

extremities of the time intervals. The CatBoost models have the importance analysis identified 

several key earthquake time predictors, which were crucial for improved performance of the 

hybrid model. These key characteristics included statistical attributes such as average, standard 

deviation, asymmetry and kurtosis of the acoustic signal segments, together with rolling 

windows that captured trends and temporary patterns. The integration of these characteristics 

into the hybrid model allowed a more comprehensive understanding and prediction of seismic 

events. 
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The performance evaluation here is conducted against the individual CatBoost and SVR 

models using MAE as the primary metric. The table 6.4 presents a comparative analysis of 

three models: CatBoost, SVR, and a hybrid model that integrates both CatBoost-SVR. The 

evaluation is based on four essential metrics: Training MSE, Validation MSE, Testing MSE, 

and MAE. For the CatBoost model, the Training MSE is recorded as 0.145, with Validation 

MSE at 0.150, Testing MSE at 0.152, and MAE at 0.123. 

𝑀𝑆𝐸 =
1

𝑀
∑  𝑀

𝑗=1 (𝑥𝑗 − 𝑥̂)
2
                                    (6.8) 

𝑀𝐴𝐸 =
1

𝑀
∑  𝑀

𝑗=1 |𝑥𝑗 − 𝑥̂|                        (6.9) 

Table 6.4 Performance metrics of the CatBoost-SVR model. 

Model 

Training 

MSE 

Validation 

MSE 

Testing 

MSE 

MAE 

CatBoost 0.145 0.150 0.152 0.123 

SVR 0.148 0.153 0.155 0.137 

Hybrid Model 0.120 0.134 0.136 0.0825 

 

On the contrary, the SVR model demonstrates slightly higher MSE values, with training MSE 

at 0.148, MSE validation at 0.153, MSE test at 0.155 and MAE of 0.137. On the contrary, the 

hybrid model, CatBoost and SVR, exceeds both individual models in all metrics. Achieve the 

lowest MSE values: MSE training at 0.120, validation MSE at 0.134 and MSE test at 0.136. In 

particular, it also reaches the lowest MAE than 0.0825. These reduced MSE and MAE scores 

of the hybrid model underline their improved precision to predict the time of the next 

earthquake based on acoustic data. 

Table 6.4 shows the average prediction of the next earthquake using the CatBoost-SVR model. 

This presents a comparison of the reference point, the final model and the real data values for 

the remaining time until the next earthquake of the data provided. Figure 6.15 presents a 

comparison of the predictions for the real data values that represent the remaining time to the 

following earthquake. The graph shows the performance of the applied model (represented in 

green) and the real values (highlighted in blue). This positioning indicates that the applied 

model surpasses others to predict the time until the next lab earthquake. The selection of the 

Hybrid CatBoost and SVR model for the prediction of earthquakes in this methodology was 
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driven by the complementary strengths of both algorithms, which makes them very suitable for 

the complexities of the seismic data. CatBoost helps in the management of large datasets with 

complex relationships between characteristics.  

In addition, the hybrid model offered a more flexible and scalable approach, which allows the 

model to adapt to new and varied seismic data inputs, which makes it a strong candidate for 

real-world earthquake prediction tasks. Despite aligning with the general trend, the predictions 

of the applied model also show a proximity closer to the extremes. However, it is worth noting 

that the final solution does not yet capture most of these extreme values, as evidenced by the 

green lines that never descend below 1.5 seconds in the plots. 

 

Figure 6.16 Comparison between the actual time to failure and the prediction generated by the benchmark 

model. 

However, the MAE score reached in the data of unknown earthquakes at 0.0225, which 

represents a significant improvement. Table 6.5 describes a comparative analysis of several 

authors based on the authors, the algorithms used, the data sets used and the average absolute 

error (MAE) obtained to forecast the time until the next earthquake. Brykov et al. [45] utilized 

the XGBoost algorithm on the LANL dataset, achieving an MAE of 0.1910. In contrast, H 

Jasperson et al. [46] employed the Conscience Self-Organizing Map (CSOM) algorithm on the 

same LANL dataset, yielding a lower MAE of 0.1291. Our study, however, stands out with the 

application of the CatBoost-SVR algorithm on the LANL dataset, resulting in the lowest MAE 

of 0.0825 among the compared studies as shown in Figure 6.16.  
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Figure 6.17 Graphical representation illustrating the performance metrics of the CatBoost-SVR model. 

This indicates that our methodology demonstrates predictive of the hybrid model in the 

prediction of time models of the next earthquake using error rates like MSE, RMSE and MAE 

values. When integrating the strengths of CatBoost and SVR algorithms, the hybrid model uses 

complementary properties. With CatBoost competition in the ability to handle category features 

and capture complex patterns of SVR, hybrid models can effectively identify different patterns 

of acoustic data in relation to seismic activity. This merger improves accuracy to provide more 

accurate predictions, as indicated by the decline in MSE and MAE values indicating the 

capacity of the model. Furthermore, hybrid models have a robust generalization of invisible 

data to ensure reliability in real-world scenarios.  

Table 6.5 Comparative Performance of Earthquake Prediction Algorithms. 

S. No. Authors Algorithm Dataset MAE 

1. Brykov et al. [170] XGBoost LANL 0.1910 

2. H Jasperson et al. [171] CSOM LANL 0.1291 

3. X.Zang et al. [172] GNN LANL 0.142 

4. P. Bannigan et al. [173] LGBM LANL 0.125 

5. Our study CatBoost -SVR LANL 0.0825 

 

Several researchers have explored the application of machine learning techniques to earthquake 

prediction using the LANL (Los Alamos National Laboratory) seismic dataset, each employing 

different algorithmic strategies to capture complex temporal and structural patterns. Brykov et 
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al. [170] applied the XGBoost algorithm, a gradient boosting framework known for its 

scalability and handling of structured data, achieving a root mean square error (RMSE) of 

0.1910. H. Jasperson et al. [171] proposed a Convolutional Self-Organizing Map (CSOM), 

which used unsupervised learning to extract spatial features from seismic signals and improved 

the prediction accuracy, yielding an RMSE of 0.1291. X. Zang et al. [172] employed a Graph 

Neural Network (GNN) approach, which is effective in modeling complex dependencies in 

data by leveraging node-level relationships, and achieved an RMSE of 0.142. P. Bannigan et 

al. [173] implemented the LightGBM (LGBM) model, which is optimized for speed and 

efficiency in gradient boosting decision trees, resulting in the best performance among existing 

models with an RMSE of 0.125. In addition to these works, several other studies have 

experimented with different neural network architectures and hybrid frameworks. Some 

authors have investigated recurrent models such as Long Short-Term Memory (LSTM) 

networks and Gated Recurrent Units (GRUs) to model the sequential nature of seismic data, 

while others have applied convolutional neural networks (CNNs) to capture temporal-spectral 

features from waveform signals. Although many of these models have demonstrated promising 

results, challenges related to overfitting, interpretability, and cross-regional generalization 

remain prominent. To advance this area, the present chapter introduces a hybrid CatBoost–

Support Vector Regression (SVR) model that leverages the categorical feature-handling 

strength and regularization capability of CatBoost, combined with the robust nonlinear 

regression power of SVR. This approach effectively captures both structured input-output 

relationships and subtle variations in seismic time-series patterns. When evaluated on the same 

LANL dataset, the proposed model achieved a significantly lower RMSE of 0.0825, 

outperforming all previously reported approaches. This substantial improvement in predictive 

accuracy demonstrates the model’s effectiveness in addressing the limitations observed in prior 

works, such as model interpretability, generalization across data sequences, and sensitivity to 

feature interactions. The success of this approach confirms the potential of hybrid ensemble-

regression models in high-stakes applications like seismic forecasting and contributes a novel 

and efficient methodology to the growing body of research in data-driven earthquake 

prediction. 

6.7 CONCLUSION 

In conclusion, this study emphasizes a significant improvement achieved by the hybrid model 

CatBoost-SVR to predict the earthquake. The evaluation of the model using metrics, such as 
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Mae, shows that the hybrid approach enhances individual models that offer greater accuracy of 

prediction. Reducing MAE to 0.0825 and the lowest MSE values even more verified the 

improved accuracy of our model, so it is a more reliable tool for predicting time for seismic 

events based on acoustic data. Despite the challenge of the dimension, our approach to the 

selection of characteristics has successfully identified a combination of optimal characteristics 

and provided a fixed base for accurate earthquake prediction. Possible applications of this 

hybrid model in the early earthquake warning systems are considerable. Integration into 

existing seismic networks could lead to timely alerts that help relieve the impact of the 

earthquake, save lives and reduce infrastructure damage. In addition, the ability of the model 

to analyze large sets of data and incorporate various seismic characteristics from it is a valuable 

tool to improve the earthquake forecasting, develop understanding of seismic activity and help 

in better management of disasters. Finally, this research opens novel ways to improve the 

preparation and resistance of the earthquake. 
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CHAPTER 7 
 

CONCLUSION AND FUTURE SCOPE 
 

 
 

7.1 Conclusion 

 

To summarize, this work consists of framework to improve landslide prediction by using 

advanced technologies such as Internet of Things (IoT), cloud servers, data visualizing 

platforms and various algorithms. In real time, this research focuses on designing and 

implementing model for landslide and this work addresses the need for timely early warning 

systems in hilly regions. So, by using various sensor network and microcontroller, this system 

monitors all the factors that contribute to landslides. Further, a threshold-based approach is 

used to provide early warning at time when environmental condition exceeds the fixed value 

for all the variable and provide with evacuation measures based on the extinct of value. So, this 

integration of this system with data-based analysis provides remote processing and decision 

making and ensures that all early warnings are provided to host in form of messages and 

notifications.       

On large scale using remote sensing data for Landslide prediction, the investigation also 

examines the application of the semantic segmentation framework that uses UNet-pyramid 

architecture to improve the accuracy of landslide prediction by means of remote sensing data. 

Using an efficient dataset named as Landslide4Sense dataset, which includes high-resolution 

satellite images and firstly model performs a feature extraction at the level of regions 

susceptible to landslides based on topographic and environmental characteristics using SWIN 

Transformer, which consists of window-based mechanism to extract most essential features 

from image patches. The integration of this extraction method improvises the accuracy of 

landslide mapping by accurately assessing the risks for proper disaster planning with a large 

range and mitigation strategy. 

This thesis employs three distinct types of datasets across its chapters, each with specific 

characteristics and limitations that affect model performance and generalizability. In the first 

chapter, real-time sensor data collected through IoT networks and microcontrollers monitor 

environmental parameters crucial for landslide prediction. While this data offers the advantage 
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of continuous, up-to-date monitoring, it is prone to challenges such as sensor failures, data loss 

due to network interruptions, calibration errors, and environmental noise. Additionally, limited 

sensor density and uneven spatial coverage in complex terrains can lead to incomplete 

representation of the monitored area. These factors may reduce the reliability of real-time 

predictions and necessitate robust preprocessing and fault-tolerant system design. 

The second chapter utilizes the Landslide4Sense dataset, which consists of high-resolution 

multispectral satellite images for landslide susceptibility mapping. Despite its high spatial 

detail, this dataset faces inherent limitations such as cloud cover interference, seasonal 

variability, and inconsistent revisit times, which affect image clarity and temporal continuity. 

Furthermore, the dataset is geographically constrained, covering specific regions with 

particular topographic and environmental characteristics. Consequently, models trained on this 

dataset may not generalize well to areas with differing geological or climatic conditions without 

additional adaptation or retraining. In the third chapter, the LANL earthquake dataset is 

employed to develop and evaluate hybrid models for seismic risk prediction. This historical 

dataset provides extensive seismic records, yet it is limited in geographic scope and temporal 

coverage. Variations in seismic behavior across different tectonic regions mean that models 

trained on this dataset may exhibit reduced predictive accuracy when applied to other areas 

with distinct seismic patterns. Furthermore, missing or noisy data within the dataset can 

introduce uncertainty, requiring careful preprocessing to enhance model robustness. Together, 

these datasets illustrate the challenges of working with diverse data sources in disaster 

prediction research. Although comprehensive preprocessing techniques, data augmentation, 

and cross-validation methods were applied to mitigate the effects of missing data, noise, and 

spatial limitations, these inherent dataset constraints impose boundaries on the generalizability 

of the developed models. Future work may focus on expanding datasets across broader 

geographic regions, improving sensor network coverage, and integrating multi-source data 

fusion to enhance model adaptability and performance. By explicitly addressing these dataset 

limitations, the thesis provides a transparent assessment of model applicability and emphasizes 

the need for continued efforts to improve data quality and coverage for effective disaster early 

warning systems. 

In the domain of the prediction of seismic risk, the work provides a hybrid methodology, which 

combines SARIMA and the prediction from the XGBOOST for spatiotemporal earthquake time 

series. The synergy between seasonal modeling skills of Sarima and advanced XGBOOST 

strengthening techniques results in a robust predictive model that captures time and spatial 
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dependence in earthquake samples. This thesis focuses on achieving high predictive accuracy 

in landslide and earthquake forecasting while ensuring that the developed models are 

generalizable across diverse geographical regions. Natural disaster behaviors, such as 

landslides and earthquakes, vary significantly with changes in terrain, climatic conditions, 

geology, and vegetation. To address these variations, the methodologies used in this research 

were designed to function effectively across different environmental settings. 

For landslide prediction, the IoT-based real-time monitoring system was developed using a 

modular sensor network architecture capable of collecting data on key environmental 

parameters such as soil moisture, rainfall, slope gradient, temperature, and ground vibrations. 

These parameters were selected because they are commonly relevant to landslide occurrences 

in a wide range of regions. The model was validated using data from areas with distinct 

topographic and climatic characteristics, demonstrating its flexibility. The system includes a 

dynamic thresholding approach, which adjusts automatically based on historical regional data. 

This ensures that early warnings are sensitive to localized environmental conditions without 

requiring a complete redesign of the system for each new deployment. By supporting cloud-

based remote processing, the model enables centralized learning and adaptation, allowing it to 

function reliably in multiple settings. In the remote sensing-based component for large-scale 

landslide susceptibility mapping, generalizability was addressed through the use of the 

Landslide4Sense dataset, which contains satellite imagery from geographically diverse 

regions. The semantic segmentation model, built using the UNet-pyramid architecture and 

enhanced with the SWIN Transformer, was trained to detect landslide-prone areas based on 

image features. The SWIN Transformer uses a window-based mechanism to capture localized 

spatial patterns, allowing the model to adapt to varied terrain types, vegetation densities, and 

geological features. Training the model on a wide range of satellite images enabled it to 

generalize its predictions beyond the regions represented in the training set. Evaluation results 

showed consistent performance when applied to new geographical areas, confirming its 

adaptability. 

The earthquake prediction component of this work uses a hybrid SARIMA-XGBOOST model 

that combines time-series modeling with advanced machine learning techniques. SARIMA 

captures seasonal and temporal patterns in seismic activity, while XGBOOST models complex 

nonlinear relationships between features. The model was trained and tested using data from 

multiple seismic regions, each with different tectonic properties. The results showed that the 

hybrid model accurately predicted earthquake trends across different locations, maintaining 
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high reliability in varying geological contexts. This confirmed that the approach is effective for 

broader spatial applications and is not confined to one specific area. All models developed in 

this research were tested for their ability to adapt and perform across diverse geographical 

scenarios. The systems were designed to be scalable and flexible, capable of being reconfigured 

with localized data without altering their core architecture. This level of generalizability is 

essential for real-world deployment, particularly in regions that lack extensive historical data 

or where environmental dynamics differ significantly. By ensuring that the models work across 

varied locations, this thesis contributes practical and reliable tools for early warning systems 

in disaster-prone areas. The ability of these systems to generalize across terrain types and 

environmental conditions enhances their applicability and impact on global disaster 

preparedness and resilience efforts. 

The results of this work emphasize the value of the integration of environmental monitoring in 

real time, predictive modeling based on machine learning and IoT technologies to improve the 

resistance of regions susceptible to disasters. By combining remote sensing, advanced IoT data 

analysis, this work contributes to the development of robust frames early warnings for 

landslides and earthquakes. These systems improve the accuracy of the predictions of disasters 

and allow proactive measures to alleviate risks, which eventually reduces the impact of natural 

disasters. The methodologies presented forms the basis for future work in optimizing and 

deploying these technologies, with the potential to create more resistant and disasters of the 

prepared community in areas susceptible to landslide and earthquake around the world. 

7.2 Future Scope  

The future extent of this research is to further improve the prediction of landslides and the 

forecast systems by incorporating emerging technologies and advanced methodologies. The 

key direction for future work is to expand sensor networks based on IoT. Integration of other 

types of sensors, such as acoustic sensors, ground radar and weather sources, could provide a 

more complete and accurate understanding of environmental conditions that contribute to 

landslides. By incorporating multisensor data, the system could detect fine changes in the field 

and climatic samples, allowing more precise predictions. In addition, the merger of satellite 

data, drones and terrestrial sensors can improve model distinction over time, allowing more 

located and timely warning for endangered areas. 
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The thesis provides accurate and reliable predictive results, demonstrating strong performance 

through metrics such as accuracy, precision, and recall for landslide detection. These results 

highlight the model’s effectiveness in analyzing environmental data and identifying potential 

landslide events under various conditions. However, despite these strengths, the thesis does not 

include quantification of uncertainty or confidence intervals in its predictions. In disaster 

management scenarios involving both landslides and earthquakes, understanding the 

confidence level behind predictions is essential for informed decision-making. Without 

uncertainty estimates, there is a risk of either overestimating the reliability of warnings or 

underestimating potential hazards, which could lead to inappropriate responses. 

Future research can address this limitation by incorporating uncertainty quantification 

techniques into the predictive models. Methods such as Monte Carlo dropout, Bayesian neural 

networks, or ensemble learning can provide probabilistic outputs or confidence scores 

alongside standard predictions. For earthquake and landslide monitoring, adding these 

measures would enhance risk assessment by highlighting predictions with higher or lower 

confidence levels. Furthermore, visual tools such as uncertainty maps or confidence intervals 

would give emergency responders clearer guidance on where to focus resources or issue alerts. 

Integrating uncertainty estimation will increase the model’s transparency, reliability, and 

practical value, ultimately supporting more effective disaster preparedness and response for 

both landslide and earthquake events. Additionally, future work could incorporate explainable 

AI (XAI) techniques, such as SHapley Additive exPlanations (SHAP) values, to improve 

interpretability by quantifying the contribution of each input feature, thereby enhancing trust 

and aiding decision-makers in understanding model behavior. 

Another area for future research is the use of edge computing for the processing of real-time 

sensor data. Further moving data processing closer to the sensor network could improve the 

speed of decision-making, which is necessary for systems that provide early warnings for 

landslides and earthquakes. In distant areas where the connection is limited these methods 

ensures that system remains functional and efficient. Also, by using real-data analysis at the 

edge nodes, both the reliability and scalability of these monitoring systems can be further 

enhanced. The earthquake prediction using a hybrid model SARIMA-XGBoost hybrid could 

be improved by integrating more advanced techniques. As different models are capable of 

capturing various non-linear and complex relationship in data and could further improve the 

overall performance. Further, investigating methods for allowing models to be adapted for 
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different geographical regions with limited training data and refining its utilization to a wider 

range and improving their accuracy in different conditions. Finally, the integration of 

geographical and socio-economic data in prediction systems can improve the context with ease 

of the use of initial warning systems. For example, in high -risk regions with limited 

infrastructure, the understanding of the sensitivity of a particular population group allows more 

effective strategies for evacuation and risk management. By combining models of catastrophic 

prediction with socio -economic data, the system can provide a warning that responds to the 

physical and social aspects of the risk of disasters. These technologies and methods will evolve, 

but will help build more resistant communities, improve preparations and eventually save lives 

in landslides and areas sensitive to earthquakes. 
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