JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 25B11EC112

) M.

MAX. MARKS: 15

COURSE NAME: Basic Electronics for Life Sciences

COURSE INSTRUCTORS: Er. Munish Sood

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Using Mesh analysis determine the voltage across 2Ω resistor. 10 10 10 10 10 10 10 10 10 1		for solving problems	<u> </u>	
Q2 Using Nodal analysis determine the voltage across 3Ω resistor. 1 3 Q3. Using Thevenin's theorem, calculate the current I_2 through 2Ω resistor. 2 4 4Ω 5Ω 4Ω 2Ω 4Ω 2Ω		Question	CO	Marks
Q3. Using The venin's theorem, calculate the current I_2 through 2Ω resistor. 2 4Ω 5Ω 4Ω 5Ω 4Ω 2Ω 4Ω 2Ω		$\begin{array}{c c} & & & & 3\Omega \\ \hline 7V & & & & & & \\ \hline & & & & & & \\ \hline & & & &$		3
$9 \text{ V} \stackrel{4\Omega}{=} 1 \frac{5\Omega}{4\Omega}$	Q2	32	1	3
	Q3.	$ \begin{array}{c c} 4\Omega & 5\Omega \\ \hline & 1_2 \\ 9V & 4\Omega & 2\Omega \end{array} $	2	4

