promuti.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT MID TERM (SUMMER SEMESTER EXAMINATION) - June-2018 B.Tech.

COURSE CODE: 10B11EC612

MAX. MARKS: 50

COURSE NAME: VLSI TECHNOLOGY AND APPLICATIONS

COURSE CREDITS: 04

MAX. TIME: 2 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1.

[1+3+1=5]

- (a). What is the effect of scaling on gate capacitance? (Assume constant field scaling)
- **(b).** Show width of channel, C_{isw} , and x_{dS} on the MOS structure.
- (c). Write the formula showing body effect on linear and saturation region current equations for n-MOS.
- 2. Derive the equation for depth of depletion region.

[5]

3. Prove threshold voltage is a function of substrate bias voltage.

[10]

- 4. An *n*-channel device has $k_{\rm n}$ = 50 ${\rm i}$ Δ /V², W/L = 20 and $V_{\rm th} = 0.8$ V. The device is to operate as a switch for small $V_{\rm DS}$ utilizing a control voltage V_{GS} in the range of 0V to 5V. Find the switch closure resistance $r_{\rm DS}$ and closure voltage $V_{\rm DS}$ obtained when $V_{\rm GS} = 5$ V and $I_{\rm D} = 1$ mA. Recalling that $\mu_{\rm n} = 0.4~\mu_{\rm p}$, what must W/L be for a *p*-channel device that provides the same performance as the *n*-channel device in this application? [5]
- 5. Draw and explain energy band diagram of all stages for n-MOS.

[10]

- 6 Explain the device physics for an *n*-channel MOS transistor. Derive the current voltage relation in Linear region. [10]
- 7. Explain in detail about VLSI design cycle.

[5]