JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 1 EXAMINATION - 2025 B.Tech-V Semester (ECE)

COURSE CODE(CREDITS): 18B11EC513(4)

MAX. MARKS: 15

COURSE NAME: Electromagnetic Waves

COURSE INSTRUCTORS: SRU

MAX. TIME: 1 Hours

Note: (a) All questions are compulsory. (b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

Q.No	Question	CO	Marks
Q.1	Derive the Telegrapher's equations for a distributed Transmission line.	CO-4	3
Q.2	A transmission line has the following per-unit-length parameters: $L=0.5~\mu H/m$, $C=200~pF/m$, $R=4.0~\Omega/m$, and $G=0.02~S/m$. Calculate the propagation constant and characteristic impedance of this line at 800 MHz. Recalculate these quantities in the absence of loss ($R=G=0$).	CO-4	2
Q.3	Give the expression for the input impedance of transmission line, whose characteristic impedance is Z_0 , terminated with a load impedance of Z_L . Derive the input impedance of the quarter-wave length transmission line segment.	CO-5	3
Q.4	Use the Smith chart to find the reflection at the load, VSWR and input impedance at the junction between Z_0 and Z_1 if $Z_1=100~\Omega$. Consider $l=0.3\lambda$. Determine the distance at which voltage minimum will occur. $Z_0=40~\Omega \qquad \qquad Z_1 \qquad \qquad Z_L \qquad Z_L=200+J100~\Omega$	CO-5	4
	A load impedance $Z_L=90+j60~\Omega$ is to be matched to a 75 Ω . Clearly indicate the movement on the Smith Chart to design an L-shaped matching circuit.	CO-5	3