JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 1 EXAMINATIONS-2025 ## **B.Tech-V Semester** COURSE CODE (CREDITS): 20B1WCI531 MAX. MARKS: 15 COURSE NAME: FOUNDATION FOR DATA SCIENCE AND VISUALIZATION COURSE INSTRUCTORS: RBT MAX. TIME: 1 HOUR Note: All questions are compulsory. Marks are indicated against each question in square brackets. | Q.No | Question | CO | Marks | |------|--|----|---------| | Q1 | a) Show that the arithmetic mean equals the geometric mean when all terms are the same. b) Classify the following attributes as binary, discrete, or continuous. Also classify them as qualitative (nominal or ordinal) or quantitative (interval or ratio) i) Angles as measured in degrees between 0degree and 360 degrees. ii) ISBN numbers for books iii) Military tank iv) Distance from center of campus | 1 | 1+2 | | Q2 | Briefly outline how to compute the dissimilarity between objects described by the following (ANY THREE): (a) Nominal attributes (b) Asymmetric binary attributes (c) Numeric attributes (d) Term-frequency vectors | 1 | 1+1+1+1 | | Q3 | Show that if M is a square matrix which is not invertible, then either L or U in the LU-decomposition $M = L \cdot U$ has a zero in its diagonal. OR If the $n \times n$ matrix A can be expressed as $A = LU$, where L is a lower triangular matrix and U is an upper triangular matrix, then the linear system A $x = b$ can be expressed as L U $x = b$ and can be solved in two steps: | 6 | 3 | | | $\begin{bmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ -3 & -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -5 & 2 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -5 \\ 2 \end{bmatrix}$ | | | | | Step1. Let $U = y$, so that $U = b$ can be expressed as $U = b$. Solve this system. | | | |--|--|----------------|---------| | | Step2. Solve the system $U x = y$ for x . | Manual and the | | | in the same of | Use this two-step method to solve the given system. | | | | Q4 | Find a singular value decomposition of the matrix | 6 | 3 | | | $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ | | | | | | | | | Q5 | Determine whether the statement is true or false, and justify your answer. (0.5 * 6 = 3) a) Every eigenvalue of a complex symmetric matrix is real. b) The eigenvalues of a 2 × 2 complex matrix are the solutions of the | 6 | 0.5 * 6 | | | equation $\lambda^2 - \text{tr}(A) \lambda + \det(A) = 0$.
c) Two equivalent vectors must have the same initial point.
d) The vectors $\mathbf{v} + (\mathbf{u} + \mathbf{w})$ and $(\mathbf{w} + \mathbf{v}) + \mathbf{u}$ are the same. | | | | | e) If u is a vector and k is a scalar such that k u = 0 , then it must be true that $k = 0$. | | | | | f) In every vector space the vectors (-1)u and - u are the same. | | |