Jaypee University of Information Technology, Waknaghat

Course Code/Credits: 22B1WMA731/3

Course Title: Linear Algebra for Data Science & Machine Learning Course Instructor: RAD

Max. Marks: 15

Max. Time: 1 Hour

Note: (a) ALL questions are compulsory.

(b) Scientific calculators are allowed.

(c) The candidate is allowed to make suitable numeric assumptions wherever required.

Q.No	Question	THE WAY	N. C.
Q1	Answer the following:	CO-1	Marks 3
	(a) A binary operation * is defined on the set \mathbb{R} of real numbers by $x*y = \frac{1}{2} + x + y$, where $x, y \in \mathbb{R}$. Find the identity element of the operation.		
Q_2	(b) In the group of non-zero rational numbers under the binary operation $*$ defined by $a*b=a+b+1$, what is inverse of 2?		
42	Which of the following sets are vector subspaces? Justify answer. (a) $S_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a, b, c \in \mathbb{R}, \ a-2b=0, \ a-3b+2c=0 \right\}$	CO-1	3
Q3	(b) $S_2 = \left\{ \begin{bmatrix} a & -1 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ Let \mathcal{P}_2 denote the vector space of all real polynomials of degree at	CO-1	3
	f(x) = $x^2 + 1$, g(x) = $3x - 1$, h(x) = $-4x + 1$.	00-1	3
Q4	Consider the subspace of the 4-dimensional vector space \mathbb{R}^4 : $\mathbf{W} = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 - x_4 = 0 \right\}.$	CO-1	3
	Determine a basis and the dimension of W.		
Q5	Find the kernel of linear map $T: \mathbb{R}^5 \to \mathbb{R}^4$ defined by $T(\mathbf{x}) = A\mathbf{x}$:	CO-1	3
	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$		