JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech.-III Semester (CSE/IT/FSSD/AIDS/AIML/UXUI)

COURSE CODE (CREDITS): 25B11MA314 (4)

MAX. MARKS: 15

COURSE NAME: Mathematical Foundations for Artificial Intelligence and Data Science

COURSE INSTRUCTORS: RAD, BKP, SST

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

(c) Use of a scientific calculator is allowed.

0.37			
Q. No.	Question	CO	Marks
Q1.	Determine whether the set $S = \{A \in M_{2\times 2}(\mathbb{R}) : det(A) = 0\}$, is a subspace of a vector space $(M_{2\times 2}(\mathbb{R}), +, .)$. Illustrate your answer.	1	3
Q2.	 a) Determine whether or not the vectors (1,1,2), (1,2,5) and (5,3,4) form a basis for R³. b) Find the ℓ₂ norm of the vector (-2,6,8,5). 	2	2+1
Q3.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x,y) = (3x - y, 2x + 4y)$. Verify that T is a linear transformation.	1	3
Q4.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x,y) = (2x-y, x+4y)$. Obtain the matrix representation of T with respect to: a) Standard basis, and b) Basis, $B = \{(1,1), (2,-1)\}$.	1	1+2
Q5.	 a) Find the kernel of the linear transformation T: R³ → R², defined by T(x) = \[\begin{align*} \line{1} & -1 & -2 \\ -1 & 2 & 3 \end{align*} \begin{align*} \chi_1 \\ \chi_2 \\ \chi_3 \end{align*}. \] b) Let T: R⁵ → R⁵ be a linear transformation. What is the rank of T if the nullity of T is 4? 	1	2+1