JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-V Semester (ECE)

COURSE CODE (CREDITS):18B1WEC534

MAX. MARKS: 15

COURSE NAME: NETWORK ANALYSIS AND SYNTHESIS

COURSE INSTRUCTORS: Dr Rajiv Kumar

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Question	CO	Most
a) Define z-parameters of a two-port network. You are given following an open-circuit impedance (Z) matrix. Check whether the given network is: i) Symmetrical. ii) Reciprocal	3	Mark
$Z = \begin{bmatrix} \frac{2}{s+1} & \frac{1}{s+1} \\ \frac{1}{s+1} & \frac{6}{s+1} \end{bmatrix}$ b) Explain the difference between a two-port network and a single-port network with suitable examples.		
what is a linear system? Discuss the significance of the superposition principle and proportionality property in the context of inear systems. b) Establish a mathematical relation between the unit impulse signal and the unit step signal in a linear system.		2.5+2.5 = 5
i) Both poles lie in the negative half of the real axis. ii) Both poles lie in the positive half of the real axis. iii) Poles are mirror images on the imaginary axis. iv) Both poles lie on the imaginary axis. Explain the concept of complex frequency. Discuss its importance in	CO-1	2.5+2.5 = 5
tr asii)	network is: i) Symmetrical. ii) Reciprocal $Z = \begin{cases} \frac{2}{s+1} & \frac{1}{s+1} \\ \frac{1}{s+1} & \frac{6}{s+1} \end{cases}$ ii) Explain the difference between a two-port network and a single-port network with suitable examples. i) What is a linear system? Discuss the significance of the uperposition principle and proportionality property in the context of near systems. i) Establish a mathematical relation between the unit impulse signal and the unit step signal in a linear system. Discuss the effect of pole movement in the s-plane for the following is in the negative half of the real axis. ii) Both poles lie in the negative half of the real axis. iii) Poles are mirror images on the imaginary axis. iv) Both poles lie on the imaginary axis.	an open-circuit impedance (Z) matrix. Check whether the given network is: i) Symmetrical. $Z = \begin{bmatrix} \frac{2}{s+1} & \frac{1}{s+1} \\ \frac{1}{2s+1} & \frac{1}{s+1} \\ \frac{1}{2s+1} & \frac{1}{2s+1} $